1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Analysis
2.2. Syntheses
2.3. Optical Properties
2.4. Photocurrent Measurements
2.5. Photodegradation Reactions of RhB
2.6. Photocatalytic Hydrogen Evolution
3. Materials and Methods
3.1. General Remarks
3.2. Syntheses
3.3. X-ray Structure Determination
3.4. Optical Properties
3.5. Photocurrent Measurements
3.6. Photodegradation Properties
3.7. Photocatalytic Hydrogen Evolution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Liu, D.T.; Luo, D.Y.; Iqbal, A.N.; Orr, K.W.P.; Doherty, T.A.S.; Lu, Z.H.; Stranks, S.D.; Zhang, W. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater. 2021, 20, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Katan, C.; Mercier, N.; Even, J. Quantum and Dielectric Confinement Effects in Lower-Dimensional Hybrid Perovskite Semiconductors. Chem. Rev. 2019, 119, 3140–3192. [Google Scholar] [CrossRef]
- Na Quan, L.; Rand, B.P.; Friend, R.H.; Mhaisalkar, S.G.; Lee, T.-W.; Sargent, E.H. Perovskites for Next-Generation Optical Sources. Chem. Rev. 2019, 119, 7444–7477. [Google Scholar] [CrossRef]
- Smith, M.D.; Karunadasa, H.I. White-Light Emission from Layered Halide Perovskites. Acc. Chem. Res. 2018, 51, 619–627. [Google Scholar] [CrossRef]
- Saparov, B.; Mitzi, D.B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, Y.; Martin, J.S.; Sun, Y.; Zhu, D.; Yan, Y. Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 2019, 10, 2843. [Google Scholar] [CrossRef]
- Lei, X.-W.; Yue, C.-Y.; Wei, J.-C.; Li, R.-Q.; Li, Y.; Mi, F.-Q. Transition metal complex directed lead bromides with tunable structures and visible light driven photocatalytic properties. Dalton Trans. 2016, 45, 19389–19398. [Google Scholar] [CrossRef]
- Song, Z.; Wang, C.; Phillips, A.B.; Grice, C.R.; Zhao, D.; Yu, Y.; Chen, C.; Li, C.; Yin, X.; Ellingson, R.J.; et al. Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustain. Energy Fuels 2018, 2, 2460–2467. [Google Scholar] [CrossRef]
- Huang, H.; Pradhan, B.; Hofkens, J.; Roeffaers, M.B.J.; Steele, J.A. Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Lett. 2020, 5, 1107–1123. [Google Scholar] [CrossRef]
- Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. Chin. J. Catal. 2022, 43, 2111–2140. [Google Scholar] [CrossRef]
- Aubrey, M.L.; Valdes, A.S.; Filip, M.R.; Connor, B.A.; Lindquist, K.P.; Neaton, J.B.; Karunadasa, H.I. Directed assembly of layered perovskite heterostructures as single crystals. Nature 2021, 597, 355–359. [Google Scholar] [CrossRef]
- Mitzi, D.B. Templating and structural engineering in organic–inorganic perovskites. J. Chem. Soc. Dalton Trans. 2001, 1–12. [Google Scholar] [CrossRef]
- Li, X.-X.; Zheng, S.-T. Three-dimensional metal-halide open frameworks. Co-ord. Chem. Rev. 2021, 430, 213663. [Google Scholar] [CrossRef]
- Xue, J.; Wang, R.; Chen, X.; Yao, C.; Jin, X.; Wang, K.-L.; Huang, W.; Huang, T.; Zhao, Y.; Zhai, Y.; et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science 2021, 371, 636–640. [Google Scholar] [CrossRef]
- Tang, C.; Yao, J.; Li, Y.; Xia, Z.; Liu, J.; Zhang, C.-Y. Transition-Metal-Complex-Directed Synthesis of Hybrid Iodoargentates with Single-Crystal to Single-Crystal Structural Transformation and Photocatalytic Properties. Inorg. Chem. 2020, 59, 13962–13971. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Yang, Y.; Wang, W.-H.; Shen, H.-Y.; Shao, Y.-N. A new metal complex-templated silver iodobismuthate exhibiting photocurrent response and photocatalytic property. Dalton Trans. 2022, 51, 13361–13367. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, X.; Ren, T.; Jia, D. Syntheses, structures, photoelectric properties and photocatalysis of iodobismuthate hybrids with lanthanide complex cations. Dalton Trans. 2023, 52, 6804–6812. [Google Scholar] [CrossRef]
- Tang, Z.; Guloy, A.M. A Methylviologen Lead(II) Iodide: Novel [PbI3−]∞ Chains with Mixed Octahedral and Trigonal Prismatic Coordination. J. Am. Chem. Soc. 1999, 121, 452–453. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.-N.; Liao, W.-Q.; Tang, Y.-Y.; Li, P.-F.; Shi, P.-P.; Zhao, D.; Xiong, R.-G. A Room-Temperature Hybrid Lead Iodide Perovskite Ferroelectric. J. Am. Chem. Soc. 2018, 140, 12296–12302. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.-T.; Wan, M.-Y.; Wang, F.-X.; Zhang, Y.; Tang, Y.-Z.; Tan, Y.-H.; Liao, J.; Wang, L.-J. High-Tc 1D Phase-Transition Semiconductor Photoluminescent Material with Broadband Emission. Chem. Eur. J. 2023, 29, e202203893. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, B.; Zhou, Q.; Ma, D.; Han, X.; He, D.; Chen, S.; Li, Y.; Lu, S.; Xu, Z.-X.; et al. Critical role of 1D materials in realizing efficient and stable perovskite solar cells. J. Mater. Chem. A 2023, 11, 18592–18604. [Google Scholar] [CrossRef]
- Zhang, B.; Li, J.; Pang, M.; Chen, X.; Liu, M.-Z. Two [Co(bipy)3]3+-Templated Silver Halobismuthate Hybrids: Syntheses. Structures, Photocurrent Responses, and Theoretical Studies. Inorg. Chem. 2022, 61, 9808–9815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, Y.-N.; Li, J.; Ren, X.-C.; Yang, Y.; Yang, X.-R. Two Silver Halobismuthate Hybrids Decorated by Photosensitive Metal Complexes: Syntheses. Structures, Photoelectric Properties, and Theoretical Studies. Cryst. Growth Des. 2022, 22, 7434–7442. [Google Scholar] [CrossRef]
- Attwood, M.; Turner, S.S. Back to back 2,6-bis(pyrazol-1-yl)pyridine and 2,2′:6′,2″-terpyridine ligands: Untapped potential for spin crossover research and beyond. Coord. Chem. Rev. 2017, 353, 247–277. [Google Scholar] [CrossRef]
- Yu, K.; Wan, B.; Yu, Y.; Wang, L.; Su, Z.-H.; Wang, C.-M.; Wang, C.-X.; Zhou, B.-B. Assembly of Organic–Inorganic Hybrid Supramolecular Materials Based on Basketlike {M⊂P6Mo18O73} (M = Ca., Sr, Ba) Cage and Transition-Metal Complex. Inorg. Chem. 2013, 52, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.-Y.; Lei, X.-W.; Lu, X.-X.; Li, Y.; Wei, J.-C.; Wang, W.; Yin, Y.-D.; Wang, N. Comparison studies of hybrid lead halide [MPb2X7]2− (M = Cu, Ag; X = Br, I) chains: Band structures and visible light driven photocatalytic properties. Dalton Trans. 2017, 46, 9235–9244. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.; Li, J.; Li, J.; Pang, M.; Pang, M.; Wang, Y.-S.; Wang, Y.-S.; Liu, M.-Z.; Liu, M.-Z.; et al. Four Discrete Silver Iodobismuthates/Bromobismuthates with Metal Complexes: Syntheses, Structures, Photocurrent Responses, and Theoretical Studies. Inorg. Chem. 2022, 61, 406–413. [Google Scholar] [CrossRef]
- Chen, R.; Sun, C.; Cheng, X.; Lin, Y.; Zhou, J.; Yin, J.; Cui, B.-B.; Mao, L. One-Dimensional Organic–Inorganic Lead Bromide Hybrids with Excitation-Dependent White-Light Emission Templated by Pyridinium Derivatives. Inorg. Chem. 2023, 62, 9722–9731. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.-W.; Yue, C.-Y.; Zhao, J.-Q.; Han, Y.-F.; Yang, J.-T.; Meng, R.-R.; Gao, C.-S.; Ding, H.; Wang, C.-Y.; Chen, W.-D.; et al. Two Types of 2D Layered Iodoargentates Based on Trimeric [Ag3I7] Secondary Building Units and Hexameric [Ag6I12] Ternary Building Units: Syntheses, Crystal Structures, and Efficient Visible Light Responding Photocatalytic Properties. Inorg. Chem. 2015, 54, 10593–10603. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.-W.; Yue, C.-Y.; Wu, F.; Jiang, X.-Y.; Chen, L.-N. Syntheses, crystal structures and photocatalytic properties of transition metal complex directed iodoargentates: [TM(2,2-bipy) 3 ]Ag 5 I 7. Inorg. Chem. Commun. 2017, 77, 64–67. [Google Scholar] [CrossRef]
- Lei, X.; Yue, C.; Zhao, J.; Han, Y.; Ba, Z.; Wang, C.; Liu, X.; Gong, Y. Syntheses, Crystal Structures, and Photocatalytic Properties of Polymeric Iodoargentates [TM(2,2-bipy)3]Ag3I5 (TM = Mn, Fe, Co, Ni, Zn). Eur. J. Inorg. Chem. 2015, 2015, 4412–4419. [Google Scholar] [CrossRef]
- Tang, C.; Tang, C.; Sun, Y.; Sun, Y.; Liu, J.; Liu, J.; Xu, Q.; Xu, Q.; Zhang, C.-Y.; Zhang, C.-Y. [Co(2,2′-bipy)3]Ag3I6 with a hole structure facilitates dye adsorption and photocatalytic reduction. Dalton Trans. 2022, 51, 16784–16789. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.-W.; Yue, C.-Y.; Wei, J.-C.; Li, R.-Q.; Mi, F.-Q.; Li, Y.; Gao, L.; Liu, Q.-X. Novel 3D Semiconducting Open-Frameworks based on Cuprous Bromides with Visible Light Driven Photocatalytic Properties. Chem. Eur. J. 2017, 23, 14547–14553. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.-Y.; Yue, Y.-D.; Sun, H.-X.; Li, D.-Y.; Lin, N.; Wang, X.-M.; Jin, Y.-X.; Dong, Y.-H.; Jing, Z.-H.; Lei, X.-W. Transition metal complex dye-sensitized 3D iodoplumbates: Syntheses, structures and photoelectric properties. Chem. Commun. 2019, 55, 6874–6877. [Google Scholar] [CrossRef] [PubMed]
- Nandihalli, N.; Gregory, D.H.; Mori, T. Energy-Saving Pathways for Thermoelectric Nanomaterial Synthesis: Hydrothermal/Solvothermal, Microwave-Assisted, Solution-Based, and Powder Processing. Adv. Sci. 2022, 9, e2106052. [Google Scholar] [CrossRef] [PubMed]
- Kortüm, G.; Braun, W.; Herzog, G. Principles and Techniques of Diffuse-Reflectance Spectroscopy. Angew. Chem. Int. Ed. 1963, 2, 333–341. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Tang, S.-Y.; Xu, Y.-Q.; Li, M.-Z.; Cheng, S.-P.; Ai, Y. Halogen substitution assisted modification on phase transition point and band gap of (DBU) PbX3 (X = Cl, Br, I). J. Solid State Chem. 2022, 312, 123198. [Google Scholar] [CrossRef]
- Liao, W.-Q.; Ye, H.-Y.; Zhang, Y.; Xiong, R.-G. Phase transitions and dielectric properties of a hexagonal ABX3perovskite-type organic–inorganic hybrid compound: [C3H4NS][CdBr3]. Dalton Trans. 2015, 44, 10614–10620. [Google Scholar] [CrossRef] [PubMed]
- Dohner, E.R.; Hoke, E.T.; Karunadasa, H.I. Self-Assembly of Broadband White-Light Emitters. J. Am. Chem. Soc. 2014, 136, 1718–1721. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Wu, Y.; Stoumpos, C.C.; Wasielewski, M.R.; Kanatzidis, M.G. White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites. J. Am. Chem. Soc. 2017, 139, 5210–5215. [Google Scholar] [CrossRef] [PubMed]
- LLey, K.; Schanze, K. Photophysics of metal-organic π-conjugated polymers. Co-ord. Chem. Rev. 1998, 171, 287–307. [Google Scholar] [CrossRef]
- Chen, J.; Pan, X.; Zhang, X.; Sun, C.; Chen, C.; Ji, X.; Chen, R.; Mao, L. One-Dimensional Chiral Copper Iodide Chain-Like Structure Cu4I4(R/S-3-quinuclidinol)3 with Near-Unity Photoluminescence Quantum Yield and Efficient Circularly Polarized Luminescence. Small 2023, 19, 2300938. [Google Scholar] [CrossRef] [PubMed]
- Kieslich, G.; Sun, S.; Cheetham, A.K. Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog. Chem. Sci. 2014, 5, 4712–4715. [Google Scholar] [CrossRef]
- Huang, L.; Zhou, J. Two Hybrid Polymeric Iodoargentates Incorporating Aromatic N-Heterocycle Derivatives as Electron Acceptors. Inorg. Chem. 2020, 59, 16814–16818. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-H.; Zhao, L.-M.; Lin, X.-Y.; Wang, Y.-K.; Zhang, W.-T.; Song, K.-Y.; Li, H.-H.; Chen, Z.-R. Iodoargentate/iodobismuthate-based materials hybridized with lanthanide-containing metalloviologens: Thermochromic behaviors and photocurrent responses. Inorg. Chem. Front. 2018, 5, 1162–1173. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, H.-Y.; Li, J.; Xu, Y.-R.; Xu, Y.-P.; Yang, X.; Zou, G.-D. Hybrid iodoplumbates with metal complexes: Syntheses, crystal structures, band gaps and photoelectric properties. Dalton Trans. 2020, 49, 1803–1810. [Google Scholar] [CrossRef]
- Teo, S.H.; Ng, C.H.; Islam, A.; Abdulkareem-Alsultan, G.; Joseph, C.G.; Janaun, J.; Taufiq-Yap, Y.H.; Khandaker, S.; Islam, G.J.; Znad, H.; et al. Sustainable toxic dyes removal with advanced materials for clean water production: A comprehensive review. J. Clean. Prod. 2022, 332, 130039. [Google Scholar] [CrossRef]
- Liu, M.; Ren, X.; Wen, W.; Li, B.; Li, J.; Li, J.; Zhang, B. Three Iodoargentate-Based Hybrids Decorated by Metal Complexes: Structures, Optical/Photoelectric Properties and Theoretical Studies. Molecules 2023, 28, 6116. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.; Lin, F.; Chen, S.; Ni, Y.; Wang, R.; Chen, H.; Duan, L.; Ji, Y.; Zhou, A.; Tong, L. Ruthenium Complex-Incorporated Two-Dimensional Metal–Organic Frameworks for Cocatalyst-Free Photocatalytic Proton Reduction from Water. Inorg. Chem. 2020, 59, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- Tur, Y.I.; Kohen, R. Formal redox potentials of the dehydro-l-ascorbic acid/l-ascorbic acid system. J. Electroanal. Chem. 1995, 380, 273–277. [Google Scholar] [CrossRef]
- Kumar, S.G.; Devi, L.G. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Compound | Δoct | σoct | Intra-Chain Pb-Pb Distance (Å) |
---|---|---|---|
Pb1 (1) | 5.95 × 10−3 | 9.85 | 4.47 |
Pb2 (1) | 1.17 × 10−3 | 10.05 | |
Pb1 (2) | 2.13 × 10−3 | 8.29 | 3.89 |
Pb2 (2) | 1.71 × 10−3 | 8.29 | |
(2,4-LD)PbBr3 | 3.28 × 10−3 | 9.36 | 3.95 |
(2-MP)PbBr3 | 3.35 × 10−2 | 10.46 | 4.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-Q.; Huang, S.; Leng, J.-D.; Lin, W.-Q. 1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties. Molecules 2024, 29, 4217. https://doi.org/10.3390/molecules29174217
Liu Y-Q, Huang S, Leng J-D, Lin W-Q. 1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties. Molecules. 2024; 29(17):4217. https://doi.org/10.3390/molecules29174217
Chicago/Turabian StyleLiu, Ya-Qi, Sen Huang, Ji-Dong Leng, and Wei-Quan Lin. 2024. "1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties" Molecules 29, no. 17: 4217. https://doi.org/10.3390/molecules29174217
APA StyleLiu, Y. -Q., Huang, S., Leng, J. -D., & Lin, W. -Q. (2024). 1D Lead Bromide Hybrids Directed by Complex Cations: Syntheses, Structures, Optical and Photocatalytic Properties. Molecules, 29(17), 4217. https://doi.org/10.3390/molecules29174217