Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,284)

Search Parameters:
Keywords = solvent content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4772 KB  
Article
Deep Eutectic Solvent Ultrasonic-Assisted Extraction of Polysaccharides from Red Alga Asparagopsis taxiformis: Optimization, Characterization, Mechanism, and Immunological Activity in RAW264.7 Cells
by Kun Yang, Yuxin Wang, Wentao Zou, Qin Liu, Riming Huang, Qianwang Zheng and Saiyi Zhong
Foods 2026, 15(3), 438; https://doi.org/10.3390/foods15030438 (registering DOI) - 25 Jan 2026
Abstract
Traditional polysaccharide extraction suffers from low efficiency and high energy consumption, while deep eutectic solvents (DESs) are promising sustainable solvents. This study used DES ChCl-LA (1:2) with ultrasonic assistance to extract polysaccharides from red alga A.taxiformis. Optimized via single-factor experiments and [...] Read more.
Traditional polysaccharide extraction suffers from low efficiency and high energy consumption, while deep eutectic solvents (DESs) are promising sustainable solvents. This study used DES ChCl-LA (1:2) with ultrasonic assistance to extract polysaccharides from red alga A.taxiformis. Optimized via single-factor experiments and response surface methodology (350 W, 1:30 g/mL, 75 °C), the yield reached 11.28% ± 0.50% (1.5 times higher than that obtained by water extraction). Structural characterization revealed that the DES extract was an acidic polysaccharide, mainly composed of galactose (89.2%), glucose (4.9%), xylose (4.9%), and glucuronic acid (1.0%), with a weight-average molecular weight of 99.88 kDa. Density functional theory and molecular dynamics simulations showed that ChCl-LA enhanced galactose solubility via stronger hydrogen bonding (−25.33 vs. −5.06 kcal/mol for water). Notably, the immunological activity of the DES-extracted polysaccharide was significantly compromised compared to the water-extracted counterpart (p < 0.05). At a concentration of 0.25 mg/mL, the water-extracted polysaccharide-treated group exhibited a 33.98% higher neutral red phagocytosis rate in macrophages, a nitric oxide (NO) secretion level of 34.14 μmol/L (94.98% higher) compared with the DES-extracted polysaccharide group, as well as significantly higher secretion levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The observed disparity in bioactivity is likely due to the distinct chemical profiles resulting from the two extraction methods, including the significantly reduced molecular weight and potential alterations of sulfation degree, monosaccharide composition, and protein content in the DES-extracted polysaccharide. This mechanistic perspective is supported by the relevant literature on the structure–activity relationships of polysaccharides. This study demonstrates the potential of ChCl-LA and elucidates the complex effects of extraction methods on polysaccharide’s structure and function, thereby informing the high-value utilization of A. taxiformis in functional foods. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

16 pages, 2538 KB  
Article
Natural Oleosomes from Nuts and Seeds: Structural Function and Potential for Pharmaceutical Applications
by Marlon C. Mallillin, Maryam Salami, Omar A. Villalobos, Shengnan Zhao, Sara R. El-Mahrouk, Kirtypal Singh, Michael J. Serpe, Arno G. Siraki, Ayman O. S. El-Kadi, Nadia Bou-Chacra, Raimar Loebenberg and Neal M. Davies
Pharmaceutics 2026, 18(2), 144; https://doi.org/10.3390/pharmaceutics18020144 - 23 Jan 2026
Viewed by 20
Abstract
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five [...] Read more.
Background/Objectives: Oleosomes, plant-derived lipid nanostructures comprising a triacylglycerol core surrounded by a phospholipid monolayer and interfacial proteins, provide sustainable alternatives to synthetic lipid vesicles. This study compares solvent-free aqueous extractions of oleosomes from five nuts (almond, macadamia, walnut, hazelnut, pine) and five seeds (flaxseed, sunflower, hemp, sesame, canola/rapeseed) to understand how botanical origin influences composition and physicochemical behavior. Methods: Oleosomes were isolated using solvent-free aqueous extraction. Extraction yield, lipid content, protein content, particle size, polydispersity, and zeta potential were determined using standard analytical assays and dynamic light scattering techniques. SDS–PAGE was performed to evaluate interfacial protein profiles and oleosin abundance. Results: Extraction yields ranged from 8.4% (flaxseed) to 59.5% (walnut). Oleosome diameters spanned 424 nm to 3.9 µm, and all oleosome dispersions exhibited negative zeta potentials (–26 to –57 mV). SDS–PAGE revealed abundant 15–25 kDa oleosins in seed oleosomes but relatively sparse proteins in nut oleosomes. Seed oleosomes were smaller and exhibited stronger electrostatic stabilization, while nut oleosomes formed larger droplets stabilized primarily through steric interactions due to lower oleosin content. Conclusions: Variation in oleosin abundance and interfacial composition leads to distinct stabilization mechanisms in nut and seed oleosomes. These findings establish a predictive basis for tailoring oleosome size, stability, and functionality, and highlight their potential as natural nanocarriers for food, cosmetic, and pharmaceutical formulations. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

20 pages, 6904 KB  
Article
Natural Mineral Waters as Solvents for Sustainable Extraction of Polyphenolic Compounds from Aronia Stems
by Irina-Loredana Ifrim, Ionuț Avătămăniței, Oana-Irina Patriciu, Cristina-Gabriela Grigoraș and Adriana-Luminița Fînaru
Foods 2026, 15(2), 406; https://doi.org/10.3390/foods15020406 - 22 Jan 2026
Viewed by 14
Abstract
Aronia melanocarpa, a plant with nutrient-rich fruits, with application in the food and pharmaceutical industry, has been extensively investigated but, nevertheless, the exploration of the secondary metabolites profile from its by-products remains quite limited. The main objective of this study was to evaluate [...] Read more.
Aronia melanocarpa, a plant with nutrient-rich fruits, with application in the food and pharmaceutical industry, has been extensively investigated but, nevertheless, the exploration of the secondary metabolites profile from its by-products remains quite limited. The main objective of this study was to evaluate the possibility of using some different natural mineral waters from Romania, as green solvents, for the extraction of bioactive compounds from aronia stems and fruits by applying eco-compatible working techniques (maceration for 24 h, and ultrasonication at room temperature and 50 °C for 30 min). The effect of five natural mineral waters (one with medium and four with low mineral content) on the extraction capacity and phytochemical profile of stems and fruits’ extracts was monitored using fast and efficient analysis techniques (electrochemical, spectroscopic, and chromatographic) and compared with that of classical solvents. The results showed that, in the case of stems, extraction by maceration was, for all types of water used, the most efficient, followed by ultrasonication at room temperature. Also, at the same time, in most cases, all mineral waters showed better performance than distilled water, and the highest efficiency of the extraction process was recorded for natural water with a medium mineralization level. The similarity observed in the phytochemical profiles of aqueous extracts from the aronia stems and the fruits highlights both the potential of this by-product as a source of bioactive compounds and the efficiency of natural mineral waters as green extraction solvents. Full article
Show Figures

Figure 1

20 pages, 1761 KB  
Article
Valorization of Turnip Greens (Brassica rapa subsp. sylvestris) Wastes: Investigation on the Sustainable Recovery of Bioactive Extracts with Antioxidant and Antibiofilm Properties
by Anna Maria Maurelli, Davide Coniglio, Francesco Milano, Sara Mancarella, Barbara Laddomada, Vincenzo De Leo, Francesco Longobardi, Francesca Coppola, Florinda Fratianni, Michelangelo Pascale, Filomena Nazzaro and Lucia Catucci
Molecules 2026, 31(2), 388; https://doi.org/10.3390/molecules31020388 - 22 Jan 2026
Viewed by 22
Abstract
The valorization of agri-food residues is crucial for advancing circular bioeconomy strategies and mitigating environmental impacts. Turnip greens (Brassica rapa subsp. sylvestris) are a traditional vegetable cultivated in southern Italy. While the edible portions include flower sprouts, buds, and young leaves, [...] Read more.
The valorization of agri-food residues is crucial for advancing circular bioeconomy strategies and mitigating environmental impacts. Turnip greens (Brassica rapa subsp. sylvestris) are a traditional vegetable cultivated in southern Italy. While the edible portions include flower sprouts, buds, and young leaves, the more leathery leaves and stems are typically discarded. These wastes represent valuable sources of compounds with antioxidant and antimicrobial potential. This study aims to develop the extraction of phenolic compounds from turnip green residues using two techniques: silent maceration and ultrasound-assisted extraction (UAE). Ethanol was selected over methanol as a food-safe alternative solvent, with preliminary tests confirming equivalent efficiency. A Design of Experiments (DoE) approach was applied to both leaves and stems to assess the effects of solvent composition, solvent-to-matrix ratio, and extraction time on Total Phenolic Content and Trolox Equivalent Antioxidant Capacity. DoE results identified UAE as the most effective method for stems, while for leaves, the solvent-to-dry-mass ratio was the key parameter. HPLC-DAD analysis was performed to identify and quantify the phenolic acids in selected extracts. The antibacterial activity of these extracts against biofilms of six pathogenic strains was evaluated using crystal violet and MTT assays, confirming efficacy in both biofilm formation and mature stages. Full article
Show Figures

Figure 1

19 pages, 6979 KB  
Article
Deep Eutectic Solvents Mediated Extraction of a Pectin Polysaccharide from Processed Sweet Potato By-Products: Optimization and Characterization Studies
by Wenting Zhang, Ke Liu, Jian Sun, Xiaoxue Liang, Juntao Guo, Qiang Li and Chanmin Liu
Foods 2026, 15(2), 388; https://doi.org/10.3390/foods15020388 - 21 Jan 2026
Viewed by 53
Abstract
In this study, a pectin polysaccharide named DESP was extracted using a deep eutectic solvent (DES) from sweet potato residue (SPR) and the extract was optimized through response surface methodology (RSM). The DESP, based on choline chloride–urea (ChCl-Ur), was characterized for yield, molecular [...] Read more.
In this study, a pectin polysaccharide named DESP was extracted using a deep eutectic solvent (DES) from sweet potato residue (SPR) and the extract was optimized through response surface methodology (RSM). The DESP, based on choline chloride–urea (ChCl-Ur), was characterized for yield, molecular weight (Mw), and monosaccharide composition. Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), 1H-nuclearmagnetic resonance (1H-NMR), and scanning electron microscopy (SEM) were used to analyze the structure. Optimal extraction conditions for DESP were ChCl-Ur in a molar ratio of 1:2, water content of 75 wt.%, extraction time of 125.7 min, extraction temperature of 83.2 °C, and a liquid-to-solid ratio of 37.0 mL·g−1. The optimized extraction yield was 5.6% ± 0.09%, which was 2.4 times higher than that of hot-water-extracted sweet potato pectin (HWSP, 2.32%). The monosaccharide analysis revealed that galacturonic acid (GalA) was the most abundant saccharide, followed by glucose (Glc), galactose (Gal), arabinose (Ara), and rhamnose (Rha). The Mw of DESP was 20.90 kDa, which was lower than that of HWSP and HASP. In addition, DESP exhibited certain anti-inflammatory activity. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

18 pages, 5019 KB  
Article
A High-Solid-Content and Low-Surface-Treatment Epoxy-Polysiloxane Ceramic Metal Coating for Metal Anti-Corrosion in Harsh Environments
by Xiufen Liao, Liang Fan, Qiumei Jiang, Maomi Zhao, Songqiang Huang, Junxiang Lai, Congtao Sun and Baorong Hou
Metals 2026, 16(1), 123; https://doi.org/10.3390/met16010123 - 21 Jan 2026
Viewed by 94
Abstract
Conventional anticorrosive coatings suffer from limitations of low solid content and rigorous surface pretreatment, posing environmental and cost challenges in field applications. In this study, a novel high-solid-content (>95%) epoxy-polysiloxane (Ep-PSA) ceramic metal coating was prepared that enables low-surface-treatment application. The originality lies [...] Read more.
Conventional anticorrosive coatings suffer from limitations of low solid content and rigorous surface pretreatment, posing environmental and cost challenges in field applications. In this study, a novel high-solid-content (>95%) epoxy-polysiloxane (Ep-PSA) ceramic metal coating was prepared that enables low-surface-treatment application. The originality lies in the synergistic combination of nano-sized ceramic powders, high-strength metallic powders, polysiloxane resin (PSA), and solvent-free epoxy resin (Ep), which polymerize through an organic–inorganic interpenetrating network to form a dense shielding layer. The as-prepared Ep-PSA coating system chemically bonds with indigenous metal substrate via Zn3(PO4)2 and resin functionalities during curing, forming a conversion layer that reduces surface preparation requirements. Differentiating from existing high-solid coatings, this approach achieves superior long-term barrier properties, evidenced by |Z|0.01Hz value of 9.64 × 108 Ω·cm2, after 6000 h salt spray exposure—four orders of magnitude higher than commercial 60% epoxy zinc-rich coatings (2.26 × 104 Ω·cm2, 3000 h salt spray exposure). The coating exhibits excellent adhesion (14.28 MPa) to standard sandblasted steel plates. This environmentally friendly, durable, and easily applicable composite coating demonstrates significant field application value for large-scale energy infrastructure. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials (2nd Edition))
Show Figures

Figure 1

23 pages, 2250 KB  
Article
MHY498 Nanosuspensions for Improved Topical Drug Delivery: Understanding of Its Solubility Behavior in DEGME + Water Mixtures and Preparation of Nanosuspension Using Box–Behnken Design
by Eun-Sol Ha, Ha Nim Lee, Seon-Kwang Lee, Ji-Su Jeong, Jeong-Soo Kim, Hyung Ryong Moon, In-hwan Baek, Heejun Park and Min-Soo Kim
Pharmaceutics 2026, 18(1), 127; https://doi.org/10.3390/pharmaceutics18010127 - 20 Jan 2026
Viewed by 221
Abstract
Background/Objectives: MHY498, a tyrosinase inhibitor, exhibits poor water solubility, which limits its topical delivery. Despite the importance of solubility data in rational formulation design, comprehensive information on its solubility behavior in various solvents and across a range of temperatures remains limited. Thus, [...] Read more.
Background/Objectives: MHY498, a tyrosinase inhibitor, exhibits poor water solubility, which limits its topical delivery. Despite the importance of solubility data in rational formulation design, comprehensive information on its solubility behavior in various solvents and across a range of temperatures remains limited. Thus, this study aimed to systematically evaluate the solubility characteristics of MHY498 and to develop a nanosuspension formulation using an antisolvent precipitation approach to facilitate the development of an optimized topical formulation. Methods: In this study, we measured the solubility of MHY498 in various monosolvents and diethylene glycol monoethyl ether (DEGME) + water solvent mixtures at 293.15–313.15 K using a solid–liquid equilibrium technique. Based on these solubility data, MHY498 nanosuspensions were prepared via antisolvent precipitation guided by a Box–Behnken design matrix. In vitro skin permeability was also assessed using a Franz diffusion cell system to assess the topical delivery potential of the MHY498 nanosuspensions. Results: Among the investigated monosolvents, MHY498 exhibited the highest solubility in dimethylformamide, dimethylacetamide, DEGME, while the lowest solubility was observed in water. The solubility increased with temperature and DEGME content in solvent mixtures, and the experimental data were well described by thermodynamic and semi-empirical models, indicating an endothermic and spontaneous dissolution process. Solvent–solute interaction analysis revealed that hydrogen-bonding and nonspecific polarity interactions played key roles in enhancing MHY498 solubility. All nanosuspensions prepared within the design space exhibited particle sizes below 150 nm, and the optimized formulation achieved an average particle size of 28.1 nm. The optimized nanosuspension demonstrated a 3.3-fold increase in the cumulative permeated amounts compared with the conventional microsuspension. Conclusions: These findings demonstrate that a rational solvent selection strategy based on thermodynamic solubility analysis and antisolvent precipitation enables effective nanosuspension formulation of MHY498. The DEGME–water system was identified as a formulation-relevant solvent environment that supports both adequate drug solubilization and reproducible formation of nanosized particles. The resulting nanosuspension exhibited favorable particle size characteristics and enhanced formulation feasibility for topical applications. Therefore, it was shown that the developed nanosuspension system, established through a solubility-driven systematic approach, represents a promising strategy for improving topical delivery of MHY498. Full article
(This article belongs to the Special Issue Methods of Potentially Improving Drug Permeation and Bioavailability)
Show Figures

Figure 1

26 pages, 3890 KB  
Article
An Integrated Leach–Extract–Strip Process for Yttrium Recovery from Spent Fluorescent Lamps: Kinetic Assessment and Solid–Liquid Extraction with D2EHPA-Impregnated XAD-7
by Pedro Adrián Martínez-Montoya, Mónica Corea-Téllez, Ricardo Gerardo Sánchez-Alvarado, Teresita del Refugio Jiménez-Romero, Jorge Luis Gutiérrez-Estrada, Margarita García-Hernández and Angel de Jesús Morales-Ramírez
Recycling 2026, 11(1), 22; https://doi.org/10.3390/recycling11010022 - 19 Jan 2026
Viewed by 182
Abstract
Growing demand for rare earth elements (REEs) necessitates the development of efficient recycling strategies from secondary sources. This work presents a complete hydrometallurgical process for recovering yttrium (Y) from spent fluorescent lamps, emphasizing the efficient coupling of a conventional acid leaching with a [...] Read more.
Growing demand for rare earth elements (REEs) necessitates the development of efficient recycling strategies from secondary sources. This work presents a complete hydrometallurgical process for recovering yttrium (Y) from spent fluorescent lamps, emphasizing the efficient coupling of a conventional acid leaching with a solid–liquid extraction system. Multi-stage sulfuric acid leaching (2 M, 65 °C, an S/L ratio of 0.25 g/L) achieved a cumulative yttrium dissolution of 71.11% over four stages, with individual stage recoveries (based on initial yttrium content) of 44.2%, 21.56%, 7.19%, and 0.68%. Kinetic and spectroscopic analyses (FTIR, SEM-EDS) revealed that the leaching rate is controlled by diffusion through an in situ formed sulfate-rich layer (CaSO4, Na2SO4), as described by the Z-L-T (Zhuravlev–Leshokin–Templeman) model (Ea = 35.5 kJ mol−1). The resulting leachate was subjected to solid–liquid extraction using Amberlite XAD-7 resin impregnated with D2EHPA. Under optimal conditions, the extraction process was highly efficient, yielding over 99% yttrium recovery at an optimal pH of 0.75 with a low resin dosage of 0.1 g/L. Furthermore, the solvent-impregnated resins exhibited excellent reusability over five consecutive extraction–stripping cycles, maintaining a single-cycle stripping efficiency above 70% and a cumulative recovery exceeding 97%. This study validates the technical feasibility of an integrated leach–extract–strip process based on impregnated resins as an alternative approach for yttrium recycling from electronic waste, potentially supporting the development of a circular economy. Full article
(This article belongs to the Topic Converting and Recycling of Waste Materials)
Show Figures

Graphical abstract

21 pages, 4628 KB  
Article
Effect of Popping and Steam Cooking on Total Ferulic Acid, Phenolic and Flavonoid Contents, and Antioxidant Properties of Sukhothai Fragrant Black Rice
by Thayada Phimphilai, Onsaya Kerdto, Kajorndaj Phimphilai, Phronpawee Srichomphoo, Wachiraporn Tipsuwan, Pornpailin Suwanpitak, Yanping Zhong and Somdet Srichairatanakool
Foods 2026, 15(2), 320; https://doi.org/10.3390/foods15020320 - 15 Jan 2026
Viewed by 231
Abstract
This study investigated the effects of thermal processing and extraction solvents on the phytochemical composition, antioxidant potential, and cytotoxic activity of Sukhothai fragrant rice (Oryza sativa L.). Rice subjected to three processing methods, unprocessed (raw), popped/puffed and steam-cooked, was extracted using hot [...] Read more.
This study investigated the effects of thermal processing and extraction solvents on the phytochemical composition, antioxidant potential, and cytotoxic activity of Sukhothai fragrant rice (Oryza sativa L.). Rice subjected to three processing methods, unprocessed (raw), popped/puffed and steam-cooked, was extracted using hot water or 70% (v/v) ethanol, yielding six extracts. Trans-ferulic acid, γ-oryzanol and anthocyanins were quantified using HPLC-DAD and HPLC-ESI-MS, while total phenolic and flavonoid contents, and antioxidant activities were evaluated using Folin–Ciocalteu, aluminium chloride, DPPH and ABTS assays. Cytotoxicity was assessed in Huh7 hepatocellular carcinoma cells. Water extracts consistently produced higher yields and contained greater total phenolic, flavonoid and anthocyanin contents, resulting in stronger antioxidant activity. Unprocessed rice water extract exhibited the highest trans-ferulic acid recovery and antioxidant capacity. Thermal processing, particularly steamed cooking, markedly reduced phytochemical contents, likely due to heat-induced degradation. In contrast, ethanolic extracts yielded lower quantities but higher concentrations of less polar bioactive compounds and exhibited greater cytotoxic effects. Overall, minimal thermal processing combined with aqueous extraction best preserved antioxidant compounds, while ethanolic extraction enhanced biological potency. These findings highlight the importance of processing intensity and solvent polarity in optimizing the nutraceutical and functional potential of black rice. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

17 pages, 672 KB  
Article
Unlocking the Antioxidant Potential of Pigeon Peas (Cajanus cajan L.) via Wild Fermentation and Extraction Optimization
by Tamara Machinjili, Chikondi Maluwa, Chawanluk Raungsri, Hataichanok Chuljerm, Pavalee Chompoorat Tridtitanakiat, Elsa Maria Salvador and Kanokwan Kulprachakarn
Foods 2026, 15(2), 310; https://doi.org/10.3390/foods15020310 - 15 Jan 2026
Viewed by 569
Abstract
Oxidative stress contributes significantly to chronic disease burden, necessitating identification of accessible dietary antioxidant sources. Pigeon peas (Cajanus cajan L.) contain substantial bioactive compounds, yet most exist in bound forms with limited bioavailability. This study evaluated wild fermentation combined with systematic extraction [...] Read more.
Oxidative stress contributes significantly to chronic disease burden, necessitating identification of accessible dietary antioxidant sources. Pigeon peas (Cajanus cajan L.) contain substantial bioactive compounds, yet most exist in bound forms with limited bioavailability. This study evaluated wild fermentation combined with systematic extraction optimization to enhance antioxidant recovery from pigeon peas. Seeds underwent wild fermentation in brine solution, followed by extraction under varying conditions (seven solvent systems, three temperatures, and three-time durations). Multiple complementary assays assessed antioxidant capacity (total phenolic content, DPPH radical scavenging, ferric reducing power, and ABTS activity). Fermentation substantially improved antioxidant properties across all parameters, with particularly pronounced effects on radical scavenging activities. Extraction optimization identified 70% methanol at 40 °C for 24 h as optimal, demonstrating marked improvements over conventional protocols. Strong intercorrelations among assays confirmed coordinated enhancement of multiple antioxidant mechanisms rather than isolated changes. The findings demonstrate that both biotechnological processing and analytical methodology critically influence antioxidant characterization in pigeon peas. This integrated approach offers practical guidance for developing antioxidant-rich functional foods, particularly relevant for resource-limited settings where pigeon peas serve as dietary staples. The study establishes foundation for translating fermentation technology into nutritional interventions, though further research addressing bioavailability, microbiological characterization, and bioactive compound identification remains essential. Full article
Show Figures

Figure 1

15 pages, 1585 KB  
Article
Comparative Analysis of Phytochemical Profile and Antioxidant and Antimicrobial Activity of Green Extracts from Quercus ilex and Quercus robur Acorns
by Diego Gonzalez-Iglesias, Francisco Martinez-Vazquez, Laura Rubio, Jesús María Vielba, Trinidad de Miguel and Marta Lores
Molecules 2026, 31(2), 277; https://doi.org/10.3390/molecules31020277 - 13 Jan 2026
Viewed by 225
Abstract
An environmentally friendly extraction strategy based on an MSAT (Medium Scale Ambient Temperature) system was applied to Quercus ilex and Quercus robur acorns with the aim of maximizing polyphenolic yield and antioxidant activity while minimizing solvent consumption. Operational parameters were first optimized for [...] Read more.
An environmentally friendly extraction strategy based on an MSAT (Medium Scale Ambient Temperature) system was applied to Quercus ilex and Quercus robur acorns with the aim of maximizing polyphenolic yield and antioxidant activity while minimizing solvent consumption. Operational parameters were first optimized for Quercus ilex using a BBD-RSM (Box–Behnken response surface methodology), where the optimum working zone corresponds to the values of 200 g of acorn, 100 mL of extracting solvent, and 0.5 dispersant/acorn ratio. Subsequently, these conditions were applied to Quercus robur to enable an interspecific comparison. Extracts were evaluated in terms of total polyphenolic content, antioxidant activity, reducing sugars, proteins, targeted polyphenols quantified by UHPLC-QToF, and antimicrobial activity. Optimal extractions from Quercus ilex reached 25,072 mgGAE L−1 and 162 mmolTE L−1, while Quercus robur extracts showed markedly superior values of 35,822 mgGAE L−1 and 234 mmolTE L−1. Polyphenol quantification revealed higher concentrations of gallotannins in Quercus robur and procyanidins and catechin in Quercus ilex. The extracts showed strong antibacterial activity, especially Quercus ilex against S. aureus with a MIC ≤ 0.63%. Furthermore, it has been demonstrated for the first time that acorn extracts can inhibit the growth of Phytophthora cinnamomi in vitro, with Quercus robur extracts having a MIC ≤ 0.1% and Quercus ilex extracts ≤ 1%. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

20 pages, 2128 KB  
Article
Valorization of Carrot Processing Waste Through Lycopene Recovery and Development of Functional Oil-Enriching Agents
by María Celia Román, Mathias Riveros-Gómez, Daniela Zalazar-García, Inés María Ranea-Vera, Celina Podetti, María Paula Fabani, Rosa Rodriguez and Germán Mazza
Sustainability 2026, 18(2), 789; https://doi.org/10.3390/su18020789 - 13 Jan 2026
Viewed by 151
Abstract
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit [...] Read more.
This study demonstrates a sustainable, integrated pathway for valorizing carrot processing by-products through solvent-free lycopene recovery. The approach combines optimized infrared dehydration with ultrasound-assisted extraction using edible oils. Drying kinetics were modeled at multiple temperatures, with the Midilli model providing the best fit (R2 > 0.99), enabling accurate prediction of moisture content removal while preserving bioactive compounds. Optimization via Box–Behnken design identified efficient extraction conditions (49.7–60 °C, 10 mL/g, 60 min), achieving lycopene equivalent (LE) yields of 3.07 to 5.00 mg/kg oil. Sunflower and blended oils showed comparable performance under maximum sonication power (240 W), with strong agreement between predicted and experimental yields. The process generated two valuable outputs: a functional lycopene-enriched oil and an exhausted carrot powder co-product, the latter retaining its crude fiber content despite other compositional changes. This research presents a scalable, green methodology that aligns with circular economy principles, transforming agro-industrial waste into functional food ingredients without organic solvents. Thus, the developed approach establishes a transferable model for the sustainable valorization of carotenoid-rich residues, contributing directly to greener food production systems. By providing a practical technological framework to convert waste into wealth, this work supports the fundamental transition toward a circular bioeconomy. Full article
(This article belongs to the Section Bioeconomy of Sustainability)
Show Figures

Figure 1

18 pages, 6750 KB  
Article
Impact of Different Extraction Methods on the Physicochemical Characteristics and Bioactivity of Polysaccharides from Baobab (Adansonia suarezensis) Fruit Pulp
by Huimin Cui, Shang Gao, Jiahui Shi, Yinghui Pan, Pengzhi Hong, Jiannong Lu and Chunxia Zhou
Foods 2026, 15(2), 273; https://doi.org/10.3390/foods15020273 - 12 Jan 2026
Viewed by 162
Abstract
Polysaccharides from baobab (Adansonia suarezensis) fruit pulp (ASPs) hold significant potential for pharmaceutical and functional food applications due to their bioactivities. This study systematically evaluated the effects of six extraction methods—hot water (ASP-HW), acid (ASP-AC), alkaline (ASP-AL), and their ultrasound-assisted counterparts [...] Read more.
Polysaccharides from baobab (Adansonia suarezensis) fruit pulp (ASPs) hold significant potential for pharmaceutical and functional food applications due to their bioactivities. This study systematically evaluated the effects of six extraction methods—hot water (ASP-HW), acid (ASP-AC), alkaline (ASP-AL), and their ultrasound-assisted counterparts (ASP-HWU, ASP-ACU, ASP-ALU)—on the yield, chemical composition, structural properties, and biological activities of ASPs. The results demonstrated that the extraction solvent critically influenced key properties: alkaline-based methods (ASP-AL, ASP-ALU) achieved the highest yields (up to 62.47%) and yielded polysaccharides with lower molecular weights (approximately 19,600–19,813 Da) and smaller particle sizes (around 140–147 nm). All ASPs were identified as acidic pectic polysaccharides, composed of galacturonic acid, xylose, galactose, and arabinose. Notably, ASP-AC, ASP-ACU, ASP-AL, and ASP-ALU exhibited a triple-helix conformation, which was absent in hot water-extracted polysaccharides. Bioactivity assessments revealed that ASP-AL and ASP-ALU possessed superior antioxidant capacities, demonstrating the lowest IC50 values for DPPH radical scavenging (113.67–116.67 μg/mL) and ABTS radical scavenging (79.33–79.67 μg/mL), as well as potent α-glucosidase inhibitory activity (IC50: 0.146–0.206 mg/mL), outperforming other extracts and the positive control acarbose. Correlation analysis indicated that enhanced bioactivity was associated with lower molecular weight and reduced uronic acid content. These findings underscore that alkaline extraction is an efficient strategy for obtaining highly bioactive polysaccharides from Adansonia suarezensis fruit pulp, providing a valuable theoretical foundation for their utilization in developing nutraceuticals and functional foods. Full article
Show Figures

Graphical abstract

17 pages, 1390 KB  
Article
Ultrasound-Assisted Extraction of Oil and Antioxidant Compounds from Wheat Germ and the Obtention of Protein and Fiber-Rich Residue
by Silvina Patricia Meriles, Carlos Guillermo Ferrayoli, Marcela Lilian Martínez, Pablo Daniel Ribotta and María Cecilia Penci
Processes 2026, 14(2), 259; https://doi.org/10.3390/pr14020259 - 12 Jan 2026
Viewed by 150
Abstract
Wheat germ (WG) oil is highly used in cosmetics and pharmaceutics for its high tocopherol content. The present study explored and optimized the ultrasound-assisted extraction of oil and bioactive compounds from stabilized wheat germ at a laboratory scale. Optimum conditions were 15 s, [...] Read more.
Wheat germ (WG) oil is highly used in cosmetics and pharmaceutics for its high tocopherol content. The present study explored and optimized the ultrasound-assisted extraction of oil and bioactive compounds from stabilized wheat germ at a laboratory scale. Optimum conditions were 15 s, 36% amplitude, and 10:1 solvent-to-solid ratio. The yield (5.1%) and the ether-soluble fraction (87.92%) obtained were remarkable considering the short extraction time, and the solvent used was absolute ethanol. Sonication did not have a significant impact on oil oxidation parameters (acidity and peroxide value), tocopherol content (1499 μg toc/g extract), and antiradical scavenging activity of the extracts (71% DPPH loss). The total fiber content (16%) and type of the remaining solids were not affected as well. Protein solubility increased with sonication. Altogether, these findings propose ultrasound-assisted extraction of oil from wheat germ as a promising alternative to conventional techniques. Full article
(This article belongs to the Special Issue Extraction Processes, Modeling, and Optimization of Oils)
Show Figures

Graphical abstract

19 pages, 3131 KB  
Article
Bacteriostatic Effect of Some Plant Extracts Against Crown Gall Caused by Agrobacterium tumefaciens L.
by Beata Jacek and Michał Miłek
Int. J. Mol. Sci. 2026, 27(2), 711; https://doi.org/10.3390/ijms27020711 - 10 Jan 2026
Viewed by 142
Abstract
The agar diffusion method was used to test the antibacterial activity of 12 plant species against Agrobacterium tumefaciens, the bacterium that is responsible for crown gall disease. Leaf, root, or flower extracts were prepared, but not all parts were used for each [...] Read more.
The agar diffusion method was used to test the antibacterial activity of 12 plant species against Agrobacterium tumefaciens, the bacterium that is responsible for crown gall disease. Leaf, root, or flower extracts were prepared, but not all parts were used for each of the 12 plants listed. Plant extracts from leaves exhibited higher antibacterial activity than those from flowers and roots. Furthermore, the type of solvent had a significant influence on both the antibacterial activity and the flavonoid and polyphenol content. Acetone and alcohol extracts contained higher contents of these compounds than water extracts. The strongest bacteriostatic effect was of the leaf extracts of eucalyptus (Eucalyptus nicholii L.) and St. John’s wort (Hypericum perforatum L.). Based on HPTLC analysis, eucalyptus extracts contained, among others, chlorogenic acid, hyperoside, and quercetin, while St. John’s wort extracts contained rutin, hyperoside, and quercetin. The tansy leaf extracts (Tanacetum vulgare L.) were also rich in flavonoids and phenolic acids, such as kaempferol-3-glucoside, luteolin, chlorogenic acid, cynarine, and rutin. However, a moderate inhibitory effect against the tested bacterium was found in tansy extracts, as well as hop (Humulus lupulus L.), wormwood (Artemisia absinthium L.), peppermint (Mentha piperita L.), yarrow (Achillea millefolium L.), and nettle (Urtica dioica L.) extracts. The least effective were the root extracts of dandelion (Taraxacum officinale F.H. Wiggers coll.) and valerian (Valeriana officinalis L.), as well as the flower extracts of chamomile (Matricaria chamomilla L.) and marigold (Calendula officinalis L.). Given the lack of effective chemical products and the unavailability of commercially resistant cultivars, the use of plant-based extracts for protecting against crown gall appears to be of particular interest. The preliminary results are promising and suggest that eucalyptus and St. John’s wort extracts are the most promising for controlling A. tumefaciens. Full article
Show Figures

Figure 1

Back to TopTop