Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = solid-state tablet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5459 KB  
Article
Influence of Drug Properties, Formulation Composition, and Processing Parameters on the Stability and Dissolution Performance of Amorphous Solid Dispersions-Based Tablets
by Ioannis Pantazos, Maria Poimenidou, Dimitrios Kouskouridas, Evangelos Tzaferas, Vasiliki Karava, Christos Cholevas, Afroditi Kapourani and Panagiotis Barmpalexis
Polymers 2025, 17(18), 2484; https://doi.org/10.3390/polym17182484 - 14 Sep 2025
Viewed by 553
Abstract
Polymeric-based amorphous solid dispersions (ASDs) represent a widely employed strategy for enhancing the oral bioavailability of poorly water-soluble drugs, but their successful implementation in solid dosage forms requires careful optimization of both formulation composition and compaction parameters. In this study, the performance of [...] Read more.
Polymeric-based amorphous solid dispersions (ASDs) represent a widely employed strategy for enhancing the oral bioavailability of poorly water-soluble drugs, but their successful implementation in solid dosage forms requires careful optimization of both formulation composition and compaction parameters. In this study, the performance of polymeric-based ASD tablets were investigated using two model active pharmaceutical ingredients (APIs) with distinct glass-forming abilities (GFAs) and physicochemical characteristics: (1) indomethacin (IND, a good glass former) and (2) carbamazepine (CBZ, a poor glass former). ASDs were prepared at various API-to-polyvinylpyrrolidone (PVP) ratios (10:90, 20:80 and 40:60 w/w) and incorporated into round-shaped tablets at different ASD loadings (20% and 50% w/w). The impact of compaction pressure and dwell time on the mechanical properties, disintegration, and supersaturation performance was assessed, both immediately after preparation and following three months of storage at 25 °C and 60% relative humidity. Solid-state analysis confirmed the amorphous state of the APIs and revealed the development of API–polymer molecular interactions. Supersaturation studies under non-sink conditions demonstrated that dissolution behavior was strongly influenced by drug loading, polymer content, and compaction conditions, with CBZ formulations exhibiting faster release but greater susceptibility to performance loss during storage. The comparative evaluation of IND and CBZ highlights the critical role of API properties in determining the physical stability and dissolution performance of ASD tablets, underscoring the need for API-specific design strategies in ASD-based formulation development. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

24 pages, 3919 KB  
Article
High Drug Loading of Amorphous Solid Dispersion by Hot Melt Extrusion: The Role of Magnesium Aluminometasilicate (Neusilin® US2)
by Nithin Vidiyala, Pavani Sunkishala, Prashanth Parupathi, Preethi Mandati, Srujan Kumar Mantena, Raghu Rami Reddy Kasu and Dinesh Nyavanandi
Sci. Pharm. 2025, 93(3), 30; https://doi.org/10.3390/scipharm93030030 - 16 Jul 2025
Viewed by 901
Abstract
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of [...] Read more.
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of drug loading using Kollidon VA 64 (Copovidone) as a polymer matrix and Neusilin US2 as a porous carrier. The solid-state characterization of EZB was studied using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). The formulation blends were characterized for flow properties, and CTC (compressibility, tabletability, compactibility) profile. The in-vitro drug release profiles were studied in 0.1 N HCl (pH 1.2). The incorporation of Neusilin US2 has facilitated the development of ASDs up to 40% of drug loading. The CTC profile has demonstrated excellent tabletability for the ternary (EZB, copovidone and Neusilin) dispersions over binary dispersion (EZB and copovidone) formulations. The tablet formulations with binary (20%) and ternary (30% and 40%) dispersions have demonstrated complete dissolution of the drug in 30 min in 0.1 N HCl (pH 1.2). The incorporation of copovidone has prevented the recrystallization of the drug in the solution state. Upon storage of formulations at accelerated conditions, the stability of ternary dispersion tablets was preserved attributing to the entrapment of the drug within Neusilin pores thereby inhibiting molecular mobility. Based on the observations, the current research concludes that it is feasible to incorporate Neusilin US2 to improve the drug loading and stability of ASD systems. Full article
Show Figures

Figure 1

16 pages, 3597 KB  
Article
Towards a Customized Oral Drug Therapy for Pediatric Applications: Chewable Propranolol Gel Tablets Printed by an Automated Extrusion-Based Material Deposition Method
by Kristiine Roostar, Andres Meos, Ivo Laidmäe, Jaan Aruväli, Heikki Räikkönen, Leena Peltonen, Sari Airaksinen, Niklas Sandler Topelius, Jyrki Heinämäki and Urve Paaver
Pharmaceutics 2025, 17(7), 881; https://doi.org/10.3390/pharmaceutics17070881 - 4 Jul 2025
Cited by 1 | Viewed by 678
Abstract
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid [...] Read more.
Background: Automated semi-solid extrusion (SSE) material deposition is a promising new technology for preparing personalized medicines for different patient groups and veterinary applications. The technology enables the preparation of custom-made oral elastic gel tablets of active pharmaceutical ingredient (API) by using a semi-solid polymeric printing ink. Methods: An automated SSE material deposition method was used for generating chewable gel tablets loaded with propranolol hydrochloride (-HCl) at three different API content levels (3.0 mg, 4.0 mg, 5.0 mg). The physical appearance, surface morphology, dimensions, mass and mass variation, process-derived solid-state changes, mechanical properties, and in-vitro drug release of the gel tablets were studied. Results: The inclusion of API (1% w/w) in the semi-solid CuraBlendTM printing mixture decreased viscosity and increased fluidity, thus promoting the spreading of the mixture on the printed (material deposition) bed and the printing performance of the gel tablets. The printed gel tablets were elastic, soft, jelly-like, chewable preparations. The mechanical properties of the gel tablets were dependent on the printing ink composition (i.e., with or without propranolol HCl). The maximum load for the final deformation of the CuraBlend™-API (3.0 mg) gel tablets was very uniform, ranging from 73 N to 80 N. The in-vitro dissolution test showed that more than 85% of the drug load was released within 15–20 min, thus verifying the immediate-release behavior of these drug preparations. Conclusions: Automated SSE material deposition as a modified 3D printing method is a feasible technology for preparing customized oral chewable gel tablets of propranolol HCl. Full article
Show Figures

Figure 1

37 pages, 5283 KB  
Project Report
Physicochemical Properties and Molecular Insights of Favipiravir and Roflumilast Solid Dispersions for COVID-19 Treatment
by Abdul Rauf and Saad Salman
Pharmaceuticals 2025, 18(4), 590; https://doi.org/10.3390/ph18040590 - 18 Apr 2025
Viewed by 657
Abstract
Background/Objectives: Fixed-dose combinations (FDCs) offer significant advantages for patients and healthcare systems by improving adherence and reducing pill burden. However, developing multi-drug formulations remains challenging due to complexities in drug compatibility, stability, and dissolution behavior. The COVID-19 pandemic has necessitated innovative therapeutic approaches. [...] Read more.
Background/Objectives: Fixed-dose combinations (FDCs) offer significant advantages for patients and healthcare systems by improving adherence and reducing pill burden. However, developing multi-drug formulations remains challenging due to complexities in drug compatibility, stability, and dissolution behavior. The COVID-19 pandemic has necessitated innovative therapeutic approaches. This study aims to develop and evaluate an FDC containing FR (an antiviral drug) and RT (a PDE4 inhibitor) for potential COVID-19 treatment. Methods: The proposed dual-layer FDC was formulated to achieve immediate release of RT using Klucel EXF and controlled release of FR using a combination of Klucel HXF and Compritol ATO888. Critical quality attributes, including drug–excipient compatibility, solid-state properties, tablet uniformity, and dissolution kinetics, were assessed. RT and FR quantification methods were developed and validated per international guidelines. Compatibility studies were conducted by combining excipients in fixed ratios with APIs, followed by stability testing. Results: No degradation or adverse interactions were observed between APIs and excipients. RT exhibited rapid dissolution within 30 min, while FR release was effectively controlled through a gel-forming matrix and lipid barrier. Bulk powder and tablet physical parameters met pharmacopeial standards, and content uniformity between layers was maintained. The formulation demonstrated a stable dissolution profile for both drugs, ensuring consistent drug release. Conclusions: The novel FDC of RT and FR exhibits favorable physicochemical properties, a stable dissolution profile, and potential for improved treatment efficacy in COVID-19 patients. By optimizing drug release mechanisms and ensuring formulation stability, this FDC could serve as a pharmaco-economically viable alternative to existing therapies, enhancing patient compliance and treatment outcomes. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

36 pages, 727 KB  
Review
The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections—Current State of Knowledge
by Aneta Ostróżka-Cieślik, Monika Michalak, Tomasz Bryś and Marek Kudła
Polymers 2025, 17(4), 470; https://doi.org/10.3390/polym17040470 - 11 Feb 2025
Cited by 1 | Viewed by 2616
Abstract
Vaginal hydrogels are a modern alternative to solid (tablets, globules) and other semi-solid forms of medication (ointments, creams) in the control of pathogenic microorganisms in diseases of the female reproductive tract. This review aims to summarize the current state of knowledge regarding the [...] Read more.
Vaginal hydrogels are a modern alternative to solid (tablets, globules) and other semi-solid forms of medication (ointments, creams) in the control of pathogenic microorganisms in diseases of the female reproductive tract. This review aims to summarize the current state of knowledge regarding the efficacy of hydrogels containing plant materials in the treatment of vaginal and vulvar infections. New therapies are essential to address the growing antimicrobial resistance crisis. Google Scholar, Web of Science, Cochrane, and Medline (PubMed) databases were searched. Twenty-five studies were included in the review, including basic, pre-clinical, and clinical studies. The results obtained confirmed the therapeutic potential of plant raw materials embedded in the polymer matrix of hydrogels. However, due to the small number of clinical trials conducted, further research in this area is needed. Full article
Show Figures

Figure 1

15 pages, 2853 KB  
Article
The Formulation and Evaluation of Customized Prednisolone Gel Tablets Prepared by an Automated Extrusion-Based Material Deposition Method
by Marina Tihhonova, Andres Meos, Sari Airaksinen, Jaan Aruväli, Niklas Sandler Topelius, Jyrki Heinämäki and Urve Paaver
Pharmaceutics 2024, 16(12), 1532; https://doi.org/10.3390/pharmaceutics16121532 - 29 Nov 2024
Viewed by 1583
Abstract
Background/Objectives: An automated extrusion-based material deposition is a contemporary and rapid method for pharmaceutical dose-dispensing and preparing (printing) individualized solid dosage forms. The aim of this study was to investigate and gain knowledge of the feasibility of automated extrusion-based material deposition technology [...] Read more.
Background/Objectives: An automated extrusion-based material deposition is a contemporary and rapid method for pharmaceutical dose-dispensing and preparing (printing) individualized solid dosage forms. The aim of this study was to investigate and gain knowledge of the feasibility of automated extrusion-based material deposition technology in preparing customized prednisolone (PRD)-loaded gel tablets for veterinary applications (primarily for dogs and cats). Methods: The PRD loads of the extrusion-based deposited gel tablets were 0.5% and 1.0%, and the target weights of tablets were 0.250 g, 0.500 g, and 1.000 g. The effects of the material deposition processes on the physical solid state, in vitro dissolution, and the physicochemical stability of PRD gel tablets were investigated. Results: The small-sized gel tablets presented a uniform round shape with an exceptionally smooth outer surface texture. The actual average weight of the tablets (n = 10) was very close to the target weight, showing the precision of the process. We found that PRD was in a pseudopolymorphic sesquihydrate form (instead of an initial PRD crystalline form II) in the gel tablets. In all the immediate-release gel tablets studied, more than 70% of the drug load was released within 30 min. The soft texture and dimensions of gel tablets affected the dissolution behaviour in vitro, suggesting the need for further development and standardization of a dissolution test method for such gel tablets. A short-term storage stability study revealed that the content of PRD did not decrease within 3 months. Conclusions: Automated extrusion-based material deposition is a feasible method for the rapid preparation of gel tablets intended for veterinary applications. In addition, the present technology and gel tablets could be used in pediatric and personalized medicine where precise dosing is crucial. Full article
(This article belongs to the Special Issue Dosage Form Design for Oral Administration)
Show Figures

Figure 1

22 pages, 11317 KB  
Article
Exploring 3D Printing in Drug Development: Assessing the Potential of Advanced Melt Drop Deposition Technology for Solubility Enhancement by Creation of Amorphous Solid Dispersions
by Nabil Lamrabet, Florian Hess, Philip Leidig, Andreas Marx and Thomas Kipping
Pharmaceutics 2024, 16(12), 1501; https://doi.org/10.3390/pharmaceutics16121501 - 22 Nov 2024
Cited by 2 | Viewed by 3054
Abstract
Background: Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) [...] Read more.
Background: Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding. This method offers several advantages over traditional melt-based 3D printing techniques, making it particularly suitable for pharmaceutical applications. Objectives: This study evaluates the AMDD printing system for producing solid oral dosage forms, with a primary focus on the thermo-stable polymer polyvinyl alcohol (PVA). The suitability of AMDD technology for creating amorphous solid dispersions (ASDs) is also examined. Finally, the study aims to define the material requirements and limitations of the raw materials used in the process. Methods: The active pharmaceutical ingredients (APIs) indometacin and ketoconazole were used, with PVA 4-88 serving as the carrier polymer. Powders, wet granulates, and pellets were investigated as raw materials and characterized. Dissolution testing and content analyses were performed on the printed dosage forms. Solid-state characterization was conducted using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Degradation due to thermal and mechanical stress was analyzed using nuclear magnetic resonance spectroscopy (NMR). Results/Conclusions: The results demonstrate that the AMDD 3D printing process is well-suited for producing solid dosage forms. Tablets were successfully printed, meeting mass uniformity standards. Adjusting the infill volume from 30% to 100% effectively controlled the drug release rate of the tablets. Solid-state analysis revealed that the AMDD process can produce amorphous solid dispersions with enhanced solubility compared to their crystalline form. The experiments also demonstrated that powders with a particle size of approximately 200 µm can be directly processed using AMDD technology. Full article
(This article belongs to the Special Issue Impact of Raw Material Properties on Solid Dosage Form Processes)
Show Figures

Graphical abstract

23 pages, 4779 KB  
Article
An Additive Manufacturing MicroFactory: Overcoming Brittle Material Failure and Improving Product Performance through Tablet Micro-Structure Control for an Immediate Release Dose Form
by Elke Prasad, John Robertson and Gavin W. Halbert
Polymers 2024, 16(18), 2566; https://doi.org/10.3390/polym16182566 - 11 Sep 2024
Cited by 3 | Viewed by 2076
Abstract
Additive manufacturing of pharmaceutical formulations offers advanced micro-structure control of oral solid dose (OSD) forms targeting not only customised dosing of an active pharmaceutical ingredient (API) but also custom-made drug release profiles. Traditionally, material extrusion 3D printing manufacturing was performed in a two-step [...] Read more.
Additive manufacturing of pharmaceutical formulations offers advanced micro-structure control of oral solid dose (OSD) forms targeting not only customised dosing of an active pharmaceutical ingredient (API) but also custom-made drug release profiles. Traditionally, material extrusion 3D printing manufacturing was performed in a two-step manufacturing process via an intermediate feedstock filament. This process was often limited in the material space due to unsuitable (brittle) material properties, which required additional time to develop complex formulations to overcome. The objective of this study was to develop an additive manufacturing MicroFactory process to produce an immediate release (IR) OSD form containing 250 mg of mefenamic acid (MFA) with consistent drug release. In this study, we present a single-step additive manufacturing process employing a novel, filament-free melt extrusion 3D printer, the MicroFactory, to successfully print a previously ‘non-printable’ brittle Soluplus®-based formulation of MFA, resulting in targeted IR dissolution profiles. The physico-chemical properties of 3D printed MFA-Soluplus®-D-sorbitol formulation was characterised by thermal analysis, Fourier Transform Infrared spectroscopy (FTIR), and X-ray Diffraction Powder (XRPD) analysis, confirming the crystalline state of mefenamic acid as polymorphic form I. Oscillatory temperature and frequency rheology sweeps were related to the processability of the formulation in the MicroFactory. 3D printed, micro-structure controlled, OSDs showed good uniformity of mass and content and exhibited an IR profile with good consistency. Fitting a mathematical model to the dissolution data correlated rate parameters and release exponents with tablet porosity. This study illustrates how additive manufacturing via melt extrusion using this MicroFactory not only streamlines the manufacturing process (one-step vs. two-step) but also enables the processing of (brittle) pharmaceutical immediate-release polymers/polymer formulations, improving and facilitating targeted in vitro drug dissolution profiles. Full article
(This article belongs to the Special Issue Applications of 3D Printing for Polymers, 3rd Edition)
Show Figures

Figure 1

9 pages, 1108 KB  
Communication
Development of Orodispersible Tablets with Solid Dispersions of Fenofibrate and Co-Processed Mesoporous Silica for Improved Dissolution
by Ana Baumgartner and Odon Planinšek
Pharmaceutics 2024, 16(8), 1060; https://doi.org/10.3390/pharmaceutics16081060 - 12 Aug 2024
Viewed by 1720
Abstract
Poor water solubility is an important challenge in the development of oral patient-friendly solid dosage forms. This study aimed to prepare orodispersible tablets with solid dispersions of a poorly water-soluble drug fenofibrate and a co-processed excipient consisting of mesoporous silica and isomalt. This [...] Read more.
Poor water solubility is an important challenge in the development of oral patient-friendly solid dosage forms. This study aimed to prepare orodispersible tablets with solid dispersions of a poorly water-soluble drug fenofibrate and a co-processed excipient consisting of mesoporous silica and isomalt. This co-processed excipient, developed in a previous study, exhibited improved flow and compression properties compared to pure silica while maintaining a high specific surface area for drug adsorption. Rotary evaporation was used to formulate solid dispersions with different amounts of fenofibrate, which were evaluated for solid state properties and drug release. The solid dispersion with 30% fenofibrate showed no signs of crystallinity and had a significantly improved dissolution rate, making it the optimal sample for formulation or orodispersible tablets. The aim was to produce tablets with minimal amounts of additional excipients while achieving a drug release profile similar to the uncompressed solid dispersion. The compressed formulations met the requirements for orodispersible tablets in terms of disintegration time, and the drug release from best formulation approximated the profile of uncompressed solid dispersion. Future research should focus on reducing the disintegration time and tablet size to enhance patient acceptability further. Full article
(This article belongs to the Special Issue Advanced Pharmaceutical Excipients Used in Solid Dosage Forms)
Show Figures

Figure 1

23 pages, 10530 KB  
Article
Formulation and Evaluation of pH-Modulated Amorphous Solid Dispersion-Based Orodispersible Tablets of Cefdinir
by Yahya Alhamhoom, Thanusha Kumaraswamy, Avichal Kumar, Shivakumar Hagalavadi Nanjappa, Sanjana S. Prakash, Mohamed Rahamathulla, Kamal Y. Thajudeen, Mohammed Muqtader Ahmed and Thippeswamy Boreddy Shivanandappa
Pharmaceutics 2024, 16(7), 866; https://doi.org/10.3390/pharmaceutics16070866 - 27 Jun 2024
Cited by 4 | Viewed by 2289
Abstract
Cefdinir (CEF) is a semi-synthetic third-generation broad-spectrum oral cephalosporin that exhibits poor solubility at lower pH values. Considering this, pH-modulated CEF solid dispersions (ASDs) were produced by solvent evaporation method employing various hydrophilic carriers and alkalizers. Among different carriers, ASDs produced using PEG [...] Read more.
Cefdinir (CEF) is a semi-synthetic third-generation broad-spectrum oral cephalosporin that exhibits poor solubility at lower pH values. Considering this, pH-modulated CEF solid dispersions (ASDs) were produced by solvent evaporation method employing various hydrophilic carriers and alkalizers. Among different carriers, ASDs produced using PEG 6000 with meglumine as alkalizer were found to significantly increase (p < 0.005) the drug solubility (4.50 ± 0.32 mg/mL) in pH 1.2. Fourier transform infrared spectrophotometry confirmed chemical integrity of CEF while differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) indicated CEF was reduced to an amorphous state in ASD8. Antimicrobial assay performed by well diffusion method against Staphylococcus aureus (MTCC96) and Escherichia coli (MTCC118) demonstrated significantly superior (p < 0.001) efficacy of CEFSD compared to CEF. The porous orodispersible tablets (ODTs) of ASD8 (batch F5) were developed by incorporating ammonium bicarbonate as a subliming agent by direct compression, followed by vacuum drying displayed quick disintegration (27.11 ± 1.96 s) that met compendial norms and near-complete dissolution (93.85 ± 1.27%) in 30 min. The ODTs of ASD8 appear to be a promising platform to mitigate the pH-dependent solubility and dissolution issues associated with CEF in challenging physiological pH conditions prevalent in stomach. Thus, ODTs of ASD8 are likely to effectively manage various infections and avoid development of drug-resistant strains, thereby improving the curing rates. Full article
Show Figures

Figure 1

14 pages, 2641 KB  
Article
Development of Oral Tablets of Nebivolol with Improved Dissolution Properties, Based on Its Combinations with Cyclodextrins
by Francesca Maestrelli, Marzia Cirri, Natascia Mennini, Silvia Fiani, Beatrice Stoppacciaro and Paola Mura
Pharmaceutics 2024, 16(5), 633; https://doi.org/10.3390/pharmaceutics16050633 - 9 May 2024
Cited by 2 | Viewed by 1944
Abstract
New oral tablets of nebivolol have been developed aiming to improve, by cyclodextrin (CD) complexation, its low solubility/dissolution properties—the main reason behind its poor/variable oral bioavailability. Phase-solubility studies, performed using βCD and highly-soluble βCD-derivatives, indicated sulfobutylether-βCD (SBEβCD) as the best solubilizing/complexing agent. Solid [...] Read more.
New oral tablets of nebivolol have been developed aiming to improve, by cyclodextrin (CD) complexation, its low solubility/dissolution properties—the main reason behind its poor/variable oral bioavailability. Phase-solubility studies, performed using βCD and highly-soluble βCD-derivatives, indicated sulfobutylether-βCD (SBEβCD) as the best solubilizing/complexing agent. Solid drug-SBEβCD systems were prepared by different methods and characterized for solid-state and dissolution properties. The coevaporated product was chosen for tablet development since it provided the highest dissolution rate (100% increase in dissolved drug at 10 min) and almost complete drug amorphization/complexation. The developed tablets reached the goal, allowing us to achieve 100% dissolved drug at 60 min, compared to 66% and 64% obtained, respectively, with a reference tablet without CD and a commercial tablet. However, the percentage dissolved after 10 min from such tablets was only 10% higher than the reference. This was ascribed to the potential binding/compacting abilities of SBEβCD, reflected in the greater hardness and longer disintegration times of the new tablets than the reference (7.64 vs. 1.06 min). A capsule formulation with the same composition of nebivolol-SBEβCD tablets showed about a 90% increase in dissolved drug after 5 min compared to the reference tablet, and reached 100% dissolved drug after only 20 min. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

14 pages, 2802 KB  
Article
Fabrication of a Controlled-Release Core-Shell Floating Tablet of Ketamine Hydrochloride Using a 3D Printing Technique for Management of Refractory Depressions and Chronic Pain
by Tahmineh Karami, Emad Ghobadi, Mohammad Akrami and Ismaeil Haririan
Polymers 2024, 16(6), 746; https://doi.org/10.3390/polym16060746 - 8 Mar 2024
Cited by 8 | Viewed by 2731
Abstract
In this study, a novel floating, controlled-release and core-shell oral tablet of ketamine hydrochloride (HCl) was produced using a dual extrusion by 3D printing method. A mixture of Soluplus® and Eudragit® RS-PO was extruded by a hot-melt extrusion (HME) nozzle at [...] Read more.
In this study, a novel floating, controlled-release and core-shell oral tablet of ketamine hydrochloride (HCl) was produced using a dual extrusion by 3D printing method. A mixture of Soluplus® and Eudragit® RS-PO was extruded by a hot-melt extrusion (HME) nozzle at 150–160 °C to fabricate the tablet shell, while a second nozzle known as a pressure-assisted syringe (PAS) extruded the etamine HCl in carboxymethyl cellulose gel at room temperature (25 °C) inside the shell. The resulting tablets were optimized based on the United States pharmacopeia standards (USP) for solid dosage forms. Moreover, the tablet was characterized using Fourier-transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and buoyancy techniques. The results showed a desired dissolution profile for a 100% infill optimized tablet with total drug release (100%) during 12 h. Weight variation and content uniformity of the tablets achieved the USP requirements. SEM micrographs showed a smooth surface with acceptable layer diameters. According to the FTIR analysis, no interference was detected among peaks. Based on DSC analysis, the crystallinity of ketamine HCl did not change during melt extrusion. In conclusion, the floating controlled-release 3D-printed tablet of ketamine HCl can be a promising candidate for management of refractory depressions and chronic pain. Additionally, the additive manufacturing method enables the production of patient-tailored dosage with tunable-release kinetics for personalized medicine in point-of care setting. Full article
Show Figures

Figure 1

15 pages, 3238 KB  
Article
Development of α-Cyclodextrin-Based Orally Disintegrating Tablets for 4-Phenylbutyrate
by Kindness L. Commey, Airi Enaka, Ryota Nakamura, Asami Yamamoto, Kenji Tsukigawa, Koji Nishi, Daisuke Iohara, Fumitoshi Hirayama, Masaki Otagiri and Keishi Yamasaki
Pharmaceutics 2024, 16(1), 82; https://doi.org/10.3390/pharmaceutics16010082 - 7 Jan 2024
Cited by 7 | Viewed by 2664
Abstract
Despite major improvements brought about by the introduction of taste-masked formulations of 4-phenylbutyrate (PB), poor compliance remains a significant drawback to treatment for some pediatric and dysphagic patients with urea cycle disorders (UCDs). This study reports on the development of a cyclodextrin (CD)-based [...] Read more.
Despite major improvements brought about by the introduction of taste-masked formulations of 4-phenylbutyrate (PB), poor compliance remains a significant drawback to treatment for some pediatric and dysphagic patients with urea cycle disorders (UCDs). This study reports on the development of a cyclodextrin (CD)-based orally disintegrating tablet (ODT) formulation for PB as an alternative to existing formulations. This is based on previous reports of the PB taste-masking potential of CDs and the suitability of ODTs for improving compliance in pediatric and dysphagic populations. In preliminary studies, the interactions of PB with α and βCD in the solid state were characterized using X-ray diffraction, scanning electron microscopy, dissolution, and accelerated stability studies. Based on these studies, lyophilized PB-CD solid systems were formulated into ODTs after wet granulation. Evaluation of the ODTs showed that they had adequate physical characteristics, including hardness and friability and good storage stability. Notably, the developed αCD-based ODT for PB had a disintegration time of 28 s and achieved a slightly acidic and agreeable pH (≈5.5) in solution, which is suitable for effective PB-CD complexation and taste masking. The developed formulation could be helpful as an alternative to existing PB formulations, especially for pediatric and dysphagic UCD patients. Full article
Show Figures

Figure 1

67 pages, 19288 KB  
Review
Status and Challenges of Blue OLEDs: A Review
by Iram Siddiqui, Sudhir Kumar, Yi-Fang Tsai, Prakalp Gautam, Shahnawaz, Kiran Kesavan, Jin-Ting Lin, Luke Khai, Kuo-Hsien Chou, Abhijeet Choudhury, Saulius Grigalevicius and Jwo-Huei Jou
Nanomaterials 2023, 13(18), 2521; https://doi.org/10.3390/nano13182521 - 8 Sep 2023
Cited by 63 | Viewed by 9782
Abstract
Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow [...] Read more.
Organic light-emitting diodes (OLEDs) have outperformed conventional display technologies in smartphones, smartwatches, tablets, and televisions while gradually growing to cover a sizable fraction of the solid-state lighting industry. Blue emission is a crucial chromatic component for realizing high-quality red, green, blue, and yellow (RGBY) and RGB white display technologies and solid-state lighting sources. For consumer products with desirable lifetimes and efficiency, deep blue emissions with much higher power efficiency and operation time are necessary prerequisites. This article reviews over 700 papers covering various factors, namely, the crucial role of blue emission for full-color displays and solid-state lighting, the performance status of blue OLEDs, and the systematic development of fluorescent, phosphorescent, and thermally activated delayed fluorescence blue emitters. In addition, various challenges concerning deep blue efficiency, lifetime, and approaches to realizing deeper blue emission and higher efficacy for blue OLED devices are also described. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

25 pages, 4505 KB  
Article
Twin Screw Melt Granulation: A Single Step Approach for Developing Self-Emulsifying Drug Delivery System for Lipophilic Drugs
by Dinesh Nyavanandi, Preethi Mandati, Sagar Narala, Abdullah Alzahrani, Praveen Kolimi, Sateesh Kumar Vemula and Michael A. Repka
Pharmaceutics 2023, 15(9), 2267; https://doi.org/10.3390/pharmaceutics15092267 - 1 Sep 2023
Cited by 14 | Viewed by 2374
Abstract
The current research aims to improve the solubility of the poorly soluble drug, i.e., ibuprofen, by developing self-emulsifying drug delivery systems (SEDDS) utilizing a twin screw melt granulation (TSMG) approach. Gelucire® 44/14, Gelucire® 48/16, and Transcutol® HP were screened as [...] Read more.
The current research aims to improve the solubility of the poorly soluble drug, i.e., ibuprofen, by developing self-emulsifying drug delivery systems (SEDDS) utilizing a twin screw melt granulation (TSMG) approach. Gelucire® 44/14, Gelucire® 48/16, and Transcutol® HP were screened as suitable excipients for developing the SEDDS formulations. Initially, liquid SEDDS (L-SEDDS) were developed with oil concentrations between 20–50% w/w and surfactant to co-surfactant ratios of 2:1, 4:1, 6:1. The stable formulations of L-SEDDS were transformed into solid SEDDS (S-SEDDS) using a suitable adsorbent carrier and compressed into tablets (T-SEDDS). The S-SEDDS has improved flow, drug release profiles, and permeability compared to pure drugs. The existence of the drug in an amorphous state was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction analysis (PXRD). The formulations with 20% w/w and 30% w/w of oil concentration and a 4:1 ratio of surfactant to co-surfactant have resulted in a stable homogeneous emulsion with a globule size of 14.67 ± 0.23 nm and 18.54 ± 0.55 nm. The compressed tablets were found stable after six months of storage at accelerated and long-term conditions. This shows the suitability of the TSMG approach as a single-step continuous manufacturing process for developing S-SEDDS formulations. Full article
Show Figures

Graphical abstract

Back to TopTop