The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections—Current State of Knowledge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focused Questions
2.2. Eligibility Criteria
3. Causes and Symptoms of Vaginal and Vulvar Infections
4. Importance of Plant Raw Materials Used in the Treatment of Gynecological Diseases
5. Potential of Hydrogels in Vaginal Administration
6. Review of Studies on Vaginal Hydrogel Preparations Containing Plant Materials
6.1. Basic and Pre-Clinical Research
6.1.1. Global Coverage
6.1.2. South America
6.1.3. Asia
6.1.4. Africa
6.1.5. Australia and Oceania
6.2. Clinical Research
Global Coverage
6.3. Potential of Antipathogenic Activities of Plants
7. Plant Raw Materials—Requirements and Limitations on Their Use
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Capuozzo, M.; Zovi, A.; Langella, R.; Ottaiano, A.; Cascella, M.; Scognamiglio, M.; Ferrara, F. Optimizing Antibiotic Use: Addressing Resistance through Effective Strategies and Health Policies. Antibiotics 2024, 13, 1112. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, C. Treatment of vulvovaginitis. Aust. Prescr. 2020, 43, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, J.P.; Carlson, K.; Kansagor, A.T. Vaginitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470302/ (accessed on 6 October 2024).
- Brown, H.; Drexler, M. Improving the Diagnosis of Vulvovaginitis: Perspectives to Align Practice, Guidelines, and Awareness. Popul. Health Manag. 2020, 23, S3–S12. [Google Scholar] [CrossRef] [PubMed]
- Kairys, N.; Carlson, K.; Garg, M. Bacterial Vaginosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459216/ (accessed on 6 October 2024).
- Jeanmonod, R.; Chippa, V.; Jeanmonod, D. Vaginal Candidiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/sites/books/NBK459317/ (accessed on 6 October 2024).
- Schumann, J.A.; Plasner, S. Trichomoniasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/sites/books/NBK534826/ (accessed on 6 October 2024).
- Obiero, J.; Rulisa, S.; Ogongo, P.; Wiysonge, C.S. Nifuratel-Nystatin combination for the treatment of mixed infections of bacterial vaginosis, vulvovaginal candidiasis, and trichomonal vaginitis. Cochrane Database Syst. Rev. 2018, 2018, CD013012. [Google Scholar] [CrossRef]
- Kuś, J.; Partyka, A.; Hamm, D.; Thumm, A. Application of clinical aromatherapy in the treatment of vaginal infections. Herbalism 2021, 1, 73–90. [Google Scholar]
- Mazzei, R.; Genovese, C.; Magariello, A.; Patitucci, A.; Russo, G.; Tagarelli, G. Plants in Menstrual Diseases: A Systematic Study from Italian Folk Medicine on Current Approaches. Plants 2024, 13, 589. [Google Scholar] [CrossRef]
- Khadim, S.; Malik, K.; Kazmi, A.; Sultana, T.; Ali, A.; Mehmood, K.; Ul Hassan, R.; Nasir Bashir, M.; Ali, M. Folklore use of medicinal plants for the treatment of gynecological diseases in Pakistan—A review. Heliyon 2024, 10, 34869. [Google Scholar] [CrossRef]
- Grzesik-Gąsior, J.; Bień, A.; Pieczykolan, A. Phyotherapy in gynecological infections as natural support in the treatment proces. Pielęgniarstwo XXI Wieku 2018, 17, 69–73. [Google Scholar] [CrossRef]
- Król, S.K.; Skalicka-Woźniak, K.; Kandefer-Szerszeń, M.; Stepulak, A. The biological and pharmacological activity of essential oils in the treatment and prevention of infectious diseases. Postep. Hig. Med. Dosw. 2013, 67, 1000–1007. [Google Scholar] [CrossRef]
- Balamurugan, S.; Vijayakumar, S.; Prabhu, J.E.; Yabesh, M. Traditional plants used for the treatment of gynaecological disorders in Vedaranyam taluk, South India—An ethnomedicinal survey. J. Tradit. Complement. Med. 2018, 8, 308–323. [Google Scholar] [CrossRef]
- Das, D.C.; Sinha, N.K.; Das, M. The use of medicinal plants for the treatment of gynaecological disorders in the Eastern parts of India. J. Obstet. Gynecol. India 2015, 2, 16–27. [Google Scholar]
- Kashani, L.; Hajiaghaee, R.; Akhondzadeh, S. Herbal Medicine in the Treatment of Premenstrual Syndromes. J. Med. Plants 2011, 10, 1–5. [Google Scholar]
- Okpanyi, S.N.; Ezeukwu, G.C. Anti-inflammatory and antipyretic activities of Azadirachta indica. Planta Med. 1981, 41, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Regev, G.; Patel, S.K.; Moncla, B.J.; Twist, J.; Devlin, B.; Rohan, L.C. Novel Application of Hot Melt Extrusion for the Manufacturing of Vaginal Films Containing Microbicide Candidate Dapivirine. AAPS PharmSciTech 2019, 20, 239. [Google Scholar] [CrossRef]
- Thapa, R.; Gurung, S.; Parat, M.-O.; Parekh, H.S.; Pandey, P. Application of Sol–Gels for Treatment of Gynaecological Conditions—Physiological Perspectives and Emerging Concepts in Intravaginal Drug Delivery. Gels 2022, 8, 99. [Google Scholar] [CrossRef]
- Osmałek, T.; Froelich, A.; Jadach, B.; Tatarek, A.; Gadziński, P.; Falana, A.; Gralińska, K.; Ekert, M.; Puri, V.; Wrotyńska-Barczyńska, J.; et al. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021, 13, 884. [Google Scholar] [CrossRef]
- Palmeira-de-Oliveira, R.; Palmeira-de-Oliveira, A.; Martinez-de-Oliveira, J. New strategies for local treatment of vaginal infections. Adv. Drug Deliv. Rev. 2015, 92, 105–122. [Google Scholar] [CrossRef]
- Leyva-Gómez, G.; Prado-Audelo, D.; Ortega-Peña, S.; Mendoza-Muñoz, N.; Urbán-Morlán, Z.; González-Torres, M.; Carmen, G.D.; Figueroa-González, G.; Reyes-Hernández, O.D.; Cortés, H.; et al. Modifications in Vaginal Microbiota and Their Influence on Drug Release: Challenges and Opportunities. Pharmaceutics 2019, 11, 217. [Google Scholar] [CrossRef]
- Ostróżka-Cieślik, A. The Potential of Pharmaceutical Hydrogels in the Formulation of Topical Administration Hormone Drugs. Polymers 2022, 14, 3307. [Google Scholar] [CrossRef]
- Salehi, T.; Raeisi Estabragh, M.A.; Salarpour, S.; Ohadi, M.; Dehghannoudeh, G. Absorption Enhancer Approach for Protein Delivery by Various Routes of Administration: A Rapid Review. J. Drug Target. 2023, 31, 950–961. [Google Scholar] [CrossRef]
- dos Santos, A.M.; Carvalho, S.G.; Araujo, V.H.S.; Carvalho, G.C.; Gremião, M.P.D.; Chorilli, M. Recent Advances in Hydrogels as Strategy for Drug Delivery Intended to Vaginal Infections. Int. J. Pharm. 2020, 590, 119867. [Google Scholar] [CrossRef] [PubMed]
- Siafaka, P.I.; Gündoğdu, E.A.; Cağlar, E.S.; Özgenç, E.; Gonzalez-Alvarez, M.; Gonzalez-Alvarez, I.; Okur, N.Ü. Polymer Based Gels: Recent and Future Applications in Drug Delivery Field. Curr. Drug Deliv. 2023, 20, 1288–1313. [Google Scholar] [CrossRef] [PubMed]
- Caramella, C.M.; Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Sandri, G. Mucoadhesive and thermogelling systems for vaginal drug delivery. Adv. Drug Deliv. Rev. 2015, 92, 39–52. [Google Scholar] [CrossRef]
- Cook, M.T.; Brown, M. Polymeric gels for intravaginal drug delivery. J. Control. Release 2018, 270, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Binaymotlagh, R.; Hajareh Haghighi, F.; Chronopoulou, L.; Palocci, C. Liposome–Hydrogel Composites for Controlled Drug Delivery Applications. Gels 2024, 10, 284. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, T.; Wu, H.; Su, Q.; Zhou, Y.; Zhou, B.; Yang, K.; Pu, Z.; Feng, W.; Yong, X.; et al. Research progress of hydrogels in the prevention of pelvic inflammatory disease. MedComm Biomater. Appl. 2024, 3, e100. [Google Scholar] [CrossRef]
- Borotová, P.; Galovičová, L.; Vukovic, N.L.; Vukic, M.; Tvrdá, E.; Kačániová, M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants 2022, 11, 558. [Google Scholar] [CrossRef]
- Kędzia, B.; Alkiewicz, J.; Han, S. Significance of tea tree oil in phytotherapy. Part I. Composition of essential oil and its biological properties. Post. Fitoter. 2000, 2, 36–40. [Google Scholar]
- Kania-Dobrowolska, M.; Baraniak, J. Trigonella foenum-graecum seeds in treatment of metabolic syndrome. Herba Pol. 2020, 66, 48–55. [Google Scholar] [CrossRef]
- Patela, S.M.; Nagulapalli Venkatab, K.C.; Bhattacharyyac, P.; Sethid, G.; Bishayeeb, A. Potential of neem (Azadirachta indica L.) for prevention and treatment of oncologic diseases. Semin. Cancer Biol. 2016, 40–41, 100–115. [Google Scholar] [CrossRef]
- Herrera-Calderon, O.; Ejaz, K.; Wajid, M.; Shehzad, M.; Tinco-Jayo, J.A.; Enciso-Roca, E.; Franco-Quino, C.; Yuli-Posadas, R.Á.; Chumpitaz-Cerrate, V. Azadirachta indica: Antibacterial Activity of Neem against Different Strains of Bacteria and their Active Constituents as Preventive in Various Diseases. Pharmacog. J. 2019, 11, 1597–1604. [Google Scholar] [CrossRef]
- Aisa, H.A.; Xin, X.; Tang, D. Chemical constituents and their pharmacological activities of plants from Cichorium genus. Chin. Herb. Med. 2020, 12, 224–236. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Zhang, Y.; Gao, B.; Li, Y.; He, X.; Sun, J.; Choe, U.; Chen, P.; Blaustein, R.A.; et al. Chemical Composition of Turmeric (Curcuma longa L.) Ethanol Extract and Its Antimicrobial Activities and Free Radical Scavenging Capacities. Foods 2024, 13, 1550. [Google Scholar] [CrossRef] [PubMed]
- Niranjan, A.; Prakash, D. Chemical constituents and biological activities of turmeric (Curcuma longa L.)—A review. J. Food Sci. Technol. 2008, 45, 109–116. [Google Scholar]
- Kazemi, M. Phytochemical Composition of Thymus vulgaris L. Essential Oil. J. Essent. Oil Bear. Plants 2015, 18, 751–753. [Google Scholar] [CrossRef]
- Usha Kiran Reddy, T.; Sindhu, G.; Rajesh, S.; Aruna, B. A review on Thymus vulgaris for its reported pharmacological activities and major chemical constituents. IAJPS 2017, 4, 1372–1376. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R.; Chrapek, A. Genus Thymus L.—Aromatic and medicinal values. Overview of selected species. Ann. Hortic. 2022, 31, 33–53. [Google Scholar] [CrossRef]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Kooti, W.; Hasanzadeh-Noohi, Z.; Sharafi-Ahvazi, N.; Asadi-Samani, M.; Ashtary-Larky, D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa). Chin. J. Nat. Med. 2016, 14, 732–745. [Google Scholar] [CrossRef]
- Argon, Z.U.; Gokyer, A. Determination of Physicochemical Properties of Nigella sativa Seed Oil from Balıkesir Region, Turkey. Chem. Process Eng. Res. 2016, 41, 43–46. [Google Scholar]
- Bilel, H.; Yahia, M.; Moustafa, S.M.N. An overview of chemical composition and fungicidal activity of Olive (Olea europea L.) Leaf Extract. Egypt. J. Chem. 2023, 66, 303–311. [Google Scholar] [CrossRef]
- Wroniak, M.; Maszwska, M. Olive oil in the Mediterranean diet. Food. Sci. Technol. Qual. 2011, 5, 26–36. [Google Scholar] [CrossRef]
- Saoulajan, C.; Boujida, N.; El Mihyaoui, A.; El Baakili, A.; Merae Alshahrani, M.; Lee, L.H.; Bouyahya, A. Phytochemistry, pharmacological investigations, industrial applications, and encapsulation of Thymbra capitata L., a review. Trends Food Sci. Technol. 2022, 129, 463–491. [Google Scholar] [CrossRef]
- Benkhayal, F.A.; Al-Gazwi, S.M.; Ramesh, S.; Kumar, S. Biochemical studies on the effect of volatile oil of thymus capitatus in alloxan-induced diabetic rats. Curr. Trends Biotechnol. Pharm. 2010, 4, 519–525. [Google Scholar]
- Taskın, T.; Çam, M.E.; Bulut, G.; Hazar-Yavuz, A.N.; Kabasakal, L.; Bitis, L. Antioxidant and anti-inflammatory activities of Phlomis pungens and Coridothymus capitatus. MARMARA Pharm. J. 2018, 22, 80–85. [Google Scholar] [CrossRef]
- de Freitas Araújo, M.G.; Pacífico, M.; Vilegas, W.; Dos Santos, L.C.; Icely, P.A.; Miró, M.S.; Scarpa, M.V.C.; Bauab, T.M.; Sotomayor, C.E. Evaluation of Syngonanthus nitens (Bong.) Ruhl. extract as antifungal and in treatment of vulvovaginal candidiasis. Med. Mycol. 2013, 51, 673–682. [Google Scholar] [CrossRef]
- Siqueira de Oliveira, A.P.; Ferreira de Sousa, J.; Aparecido da Silva, M.; Hilario, F.; Aparecida Resende, F.; Santoro de Camargo, M.; Vilegas, W.; Campaner dos Santos, L.; Aparecida Varanda, E. Estrogenic and chemopreventive activities of xanthones and flavones of Syngonanthus (Eriocaulaceae). Steroids 2013, 78, 1053–1063. [Google Scholar] [CrossRef]
- Souza-Moreira, T.M.; Queiroz-Fernandes, G.M.; Pietro, R.C.L.R. Stryphnodendron Species Known as “Barbatimão”: A Comprehensive Report. Molecules 2018, 23, 910. [Google Scholar] [CrossRef]
- Chen, F.; Al-Ahmad, H.; Joyce, B.; Zhao, N.; Kollner, T.G.; Degenhardt, J.; Neal Stewart, C., Jr. Within-plant distribution and emission of sesquiterpenes from Copaifera officinalis. Plant Physiol. Biochem. 2009, 47, 1017–1023. [Google Scholar] [CrossRef]
- Jaradat, N.; Hawash, M.; Qadi, M.; Abualhasan, M.; Odetallah, A.; Qasim, G.; Awayssa, R.; Akkawi, A.; Abdullah, I.; Al-Maharik, N. Chemical Markers and Pharmacological Characters of Pelargonium graveolens Essential Oil from Palestine. Molecules 2022, 27, 5721. [Google Scholar] [CrossRef]
- Boukhris, M.; Simmonds, M.S.J.; Sayadi, S.; Bouaziz, M. Chemical Composition and Biological Activities of Polar Extracts and Essential Oil of Rose-scented Geranium, Pelargonium graveolens. Phytother. Res. 2013, 27, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Fabri, R.L.; Garcia, R.A.; Rodrigues Florêncio, J.; de Castro Campos Pinto, N.; de Oliveira, L.G.; Kopke Aguiar, J.A.; Ribeiro, A.; Scio, E. Anti-inflammatory and antioxidative effects of the methanolic extract of the aerial parts of Mitracarpus frigidus in established animal models. J. Pharm. Pharmacol. 2014, 66, 722–732. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.S.D.O.; Campos, L.M.; Souza, T.D.F.; Paula, P.D.L.; Granato, J.D.T.; da Silva, J.V.G.; Aragão, D.M.; Rocha, V.N.; Coimbra, E.S.; Fabri, R.L. Pharmacological investigation of antioxidant and anti-inflammatory activities of aqueous extract from Mitracarpus frigidus (Rubiaceae). J. Pharm. Pharmacol. 2022, 74, 750–760. [Google Scholar] [CrossRef]
- Liao, H.; Ye, J.; Gao, L.; Liu, Y. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: A comprehensive review. Biomed. Pharmacother. 2021, 133, 110917. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhu, H.; Liu, Z.; He, X.; Sun, J.; Li, Y.; Wu, X.; Pehrsson, P.; Zhang, Y.; Yu, L. Chemical Compositions of Scutellaria baicalensis Georgi. (Huangqin) Extracts and Their Effects on ACE2 Binding of SARS-CoV-2 Spike Protein, ACE2 Activity, and Free Radicals. Int. J. Mol. Sci. 2024, 25, 2045. [Google Scholar] [CrossRef]
- de Souza Pereira, J.J.; Pereira, A.P.C.; Jandú, J.J.B.; da Paz, J.A.; dos Santos, C.; Correia, M.T.; de Azevêdo Silva, J. Commiphora leptophloeos Phytochemical and Antimicrobial Characterization. Front. Microbiol. 2017, 8, 52. [Google Scholar] [CrossRef]
- Bhatnagar, A. Chemical constituents and biological activities of Cymbopogon flexuosus (Lemon Grass). J. Res. Chem. 2023, 4, 91–95. [Google Scholar] [CrossRef]
- Aubert, C.; Chalot, G. Chemical Batiha composition, bioactive compounds, and volatiles of six table grape varieties (Vitis vinifera L.). Food Chem. 2018, 240, 524–533. [Google Scholar] [CrossRef]
- Giraldo-Silva, L.; Ferreira, B.; Rosa, E.; Dias, A.C.P. Opuntia ficus-indica Fruit: A Systematic Review of Its Phytochemicals and Pharmacological Activities. Plants 2023, 12, 543. [Google Scholar] [CrossRef]
- Lei, G.; Song, C.; Wen, X.; Gao, G.; Qi, Y. Chemical Diversity and Potential Target Network of Woody Peony Flower Essential Oil from Eleven Representative Cultivars (Paeonia × suffruticosa Andr.). Molecules 2022, 27, 2829. [Google Scholar] [CrossRef]
- Wang, J.; Wu, G.; Chu, H.; Wu, Z.; Sun, J. Paeonol Derivatives and Pharmacological Activities: A Review of Recent Progress. Mini Rev. Med. Chem. 2020, 20, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Moghadamtousi, S.Z.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.M.; Abdul Kadir, H. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities. Int. J. Mol. Sci. 2015, 16, 15625–15658. [Google Scholar] [CrossRef]
- Caputo, L.; Capozzolo, F.; Amato, G.; De Feo, V.; Fratianni, F.; Vivenzio, G.; Nazzaro, F. Chemical composition, antibiofilm, cytotoxic, and anti-acetylcholinesterase activities of Myrtus communis L. leaves essential oil. BMC Complement. Med. Ther. 2022, 22, 142. [Google Scholar] [CrossRef] [PubMed]
- Ivan, I.M.; Olaru, O.T.; Popovici, V.; Chițescu, C.L.; Popescu, L.; Luță, E.A.; Ilie, E.I.; Brașoveanu, L.I.; Hotnog, C.M.; Nițulescu, G.M.; et al. Antioxidant and Cytotoxic Properties of Berberis vulgaris (L.) Stem Bark Dry Extract. Molecules 2024, 29, 2053. [Google Scholar] [CrossRef] [PubMed]
- El-Saber, G.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef]
- Luthfianti, H.R.; Waresindo, W.X.; Edikresnha, D.; Hapidin, D.A.; Noor, F.A.; Elfahmi, E.; Khairurrijal, K. Bioactive Compounds-Loaded Polyvinyl Alcohol Hydrogels: Advancements in Smart Delivery Media for Biomedical Applications. Mater. Res. Express 2024, 11, 062002. [Google Scholar] [CrossRef]
- Pelin, I.M.; Silion, M.; Popescu, I.; Rîmbu, C.M.; Fundueanu, G.; Constantin, M. Pullulan/Poly(vinyl alcohol) Hydrogels Loaded with Calendula officinalis Extract: Design and In Vitro Evaluation for Wound Healing Applications. Pharmaceutics 2023, 15, 1674. [Google Scholar] [CrossRef]
- Tabata, Y.; Nagano, A.; Ikada, Y. Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng. 1999, 5, 127–138. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. In vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp. J. Antimicrob. Chemother. 1998, 42, 591–595. [Google Scholar] [CrossRef]
- Chopra, S.; Motwani, S.K.; Iqbal, Z.; Talengaonkar, S.; Ahmad, F.J.; Khar, R.K. Optimization of polyherbal gels for vaginal drug delivery by Box-Behnken statistical design. Eur. J. Pharm. Biopharm. 2007, 67, 120–131. [Google Scholar] [CrossRef]
- das Neves, J.; Pinto, E.; Amaral, M.H.; Bahia, M.F. Antifungal activity of a gel containing Thymus vulgaris essential oil against Candida species commonly involved in vulvovaginal candidosis. Pharm. Biol. 2009, 47, 151–153. [Google Scholar] [CrossRef]
- Sangi, S.; Harsha, S.; Tasleem-ur-Rasool, S.; Asif, A.H. Formulation and evaluation of mucoadhesive Nigalla sativa and Olive oils for vaginal infections. Pharm. Lett. 2011, 3, 39–46. [Google Scholar]
- Palmeira-de-Oliveira, A.; Palmeira-de-Oliveira, R.; Gaspar, C.; Salgueiro, L.; Cavaleiro, C.; Martinez-de-Oliveira, J.; Queiroz, J.; Rodrigues, A. Association of Thymbra capitata essential oil and chitosan (TCCH hydrogel): A putative therapeutic tool for the treatment of vulvovaginal candidosis. Flavour. Fragr. J. 2013, 28, 354–359. [Google Scholar] [CrossRef]
- dos Santos Ramos, M.A.; Calixto, G.; de Toledo, L.G.; Bonifácio, B.V.; dos Santos, L.C.; de Almeida, M.T.; Chorilli, M.; Bauab, T.M. Liquid crystal precursor mucoadhesive system as a strategy to improve the prophylactic action of Syngonanthus nitens (Bong.) Ruhland against infection by Candida krusei. Int. J. Nanomed. 2015, 10, 7455–7466. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Ramos, M.A.; de Toledo, L.G.; Calixto, G.M.; Bonifácio, B.V.; de Freitas Araújo, M.G.; Dos Santos, L.C.; de Almeida, M.T.; Chorilli, M.; Bauab, T.M. Syngonanthus nitens Bong. (Rhul.)-Loaded Nanostructured System for Vulvovaginal Candidiasis Treatment. Int. J. Mol. Sci. 2016, 17, 1368. [Google Scholar] [CrossRef]
- Costa, M.A.; Blainski, A.; Kaplum, V.; de Souza Lima, M.M.; Ueda-Nakamura, T.; Dias Filho, B.P.; de Mello, J.C.P.; Nakamura, C.V. Pharmaceutical topical gel containing proanthocyanidin polymers-rich fraction from Stryphnodendron adstringens. J. Med. Plant Res. 2018, 12, 116–123. [Google Scholar] [CrossRef]
- de Freitas, A.L.D.; Kaplum, V.; Rossi, D.C.P.; da Silva, L.B.R.; Melhem, M.S.C.; Taborda, C.P.; de Mello, J.C.P.; Nakamura, C.V.; Ishida, K. Proanthocyanidin polymeric tannins from Stryphnodendron adstringens are effective against Candida spp. isolates and for vaginal candidiasis treatment. J. Ethnopharmacol. 2018, 216, 184–190. [Google Scholar] [CrossRef]
- Alves, T.; Souza, J.; Rebelo, M.; Pontes, K.; Santos, C.; Lima, R.; Jozala, A.; Grotto, D.; Severino, P.; Rai, M.; et al. Formulation and evaluation of thermoresponsive polymeric blend as a vaginal controlled delivery system. J. Sol. Gel Sci. Technol. 2018, 86, 536–552. [Google Scholar] [CrossRef]
- Morguette, A.E.B.; Bigotto, B.G.; Varella, R.D.L.; Andriani, G.M.; Spoladori, L.F.D.A.; Pereira, P.M.L.; De Andrade, F.G.; Lancheros, C.A.C.; Nakamura, C.V.; Arakawa, N.S.; et al. Hydrogel Containing Oleoresin from Copaifera officinalis Presents Antibacterial Activity against Streptococcus agalactiae. Front. Microbiol. 2019, 10, 2806. [Google Scholar] [CrossRef]
- dos Santos, M.K.; Kreutz, T.; Danielli, L.J.; De Marchi, J.G.B.; Pippi, B.; Koester, L.S.; Fuentefria, A.M.; Limberger, R.P. A chitosan hydrogel-thickened nanoemulsion containing Pelargonium graveolens essential oil for treatment of vaginal candidiasis. J. Drug Deliv. Sci. Technol. 2020, 56, 101527. [Google Scholar] [CrossRef]
- Campos, L.M.; de Oliveira Lemos, A.S.; da Cruz, L.F.; de Freitas Araújo, M.G.; de Mello Botti, G.C.R.; Júnior, J.L.R.; Rocha, V.N.; Denadai, Â.M.L.; da Silva, T.P.; Tavares, G.D. Development and in Vivo Evaluation of Chitosan-Gel Containing Mitracarpus Frigidus Methanolic Extract for Vulvovaginal Candidiasis Treatment. Biomed. Pharmacother. 2020, 130, 110609. [Google Scholar] [CrossRef]
- Chanaj-Kaczmarek, J.; Rosiak, N.; Szymanowska, D.; Rajewski, M.; Wender-Ozegowska, E.; Cielecka-Piontek, J. The Chitosan-Based System with Scutellariae baicalensis radix Extract for the Local Treatment of Vaginal Infections. Pharmaceutics 2022, 14, 740. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Medeiros, R.; Marena, G.D.; Araújo, V.H.S.; Neto, F.D.A.B.; Zanatta, A.C.; Lopes, N.P.; Bermejo, P.; Guerra, J.A.; Bedoya, L.M.; Fonseca-Santos, B.; et al. A new hydrogel containing a proanthocyanidin polymer-rich extract of Commiphora leptophloeos for treating vulvovaginal candidiasis: Preclinical results using the alternative model of Galleria mellonella. J. Drug Deliv. Sci. Technol. 2023, 85, 104531. [Google Scholar] [CrossRef]
- Kola-Mustapha, A.T.; Aliu, M.H.; Bello, R.H.; Adedeji, O.J.; Ghazali, Y.O. The Formulation and Evaluation of Melaleuca alternifolia Cheel and Cymbopogon flexuosus Linn Essential Oils Emulgel for the Treatment of Vulvovaginal Candidiasis. Gels 2023, 9, 949. [Google Scholar] [CrossRef] [PubMed]
- Moraru, A.; Dima, Ș.-O.; Tritean, N.; Oprița, E.-I.; Prelipcean, A.-M.; Trică, B.; Oancea, A.; Moraru, I.; Constantinescu-Aruxandei, D.; Oancea, F. Bioactive-Loaded Hydrogels Based on Bacterial Nanocellulose, Chitosan, and Poloxamer for Rebalancing Vaginal Microbiota. Pharmaceuticals 2023, 16, 1671. [Google Scholar] [CrossRef]
- Jia, S.; Huang, S.; Jimo, R.; Axi, Y.; Lu, Y.; Kong, Z.; Ma, J.; Li, H.; Luo, X.; Qu, Y.; et al. In-situ forming carboxymethyl chitosan hydrogel containing Paeonia suffruticosa Andr. leaf extract for mixed infectious vaginitis treatment by reshaping the micro-biota. Carbohydr. Polym. 2024, 339, 122255. [Google Scholar] [CrossRef]
- Campos, L.M.; de Oliveira Lemos, A.S.; de Lima Paula, P.; da Rocha, V.N.; de Freitas Araújo, M.G.; Tavares, G.D.; Barradas, T.N.; Nascimento, W.W.G.; Denadai, A.M.L.; de Oliveira, L.F.C.; et al. Exploring the antifungal potential of Annona muricata leaf extract-loaded hydrogel in treating vulvovaginal candidiasis. Colloids Surf. B Biointerfaces 2024, 238, 113919. [Google Scholar] [CrossRef]
- Carvalho, G.C.; Domingues, M.N.V.; Marena, G.D.; Mäkilä, E.; Li, J.; Geertsema-Doornbusch, G.; de Andrade, C.R.; Stuart, M.C.; Shahbazi, M.A.; Corrêa, I.; et al. Hybrid Nanoparticles Dual-Loaded with Curcumin and Benzydamine Hydrochloride for the Treatment of Vulvovaginal Candidiasis: From Development to Biological Application In Vitro and In Vivo. Adv. Therap. 2024, 2400342, 2400342. [Google Scholar] [CrossRef]
- Masoudi, M.; Miraj, S.; Rafieian-Kopaei, M. Comparison of the effects of Myrtus communis L., Berberis vulgaris and metronidazole vaginal gel alone for the treatment of bacterial vaginosis. J. Clin. Diagn. Res. 2016, 10, QC04–QC07. [Google Scholar] [CrossRef]
- Masoudi, M.; Kopaei, M.R.; Miraj, S. Comparison between the efficacy of metronidazole vaginal gel and Berberis vulgaris (Berberis vulgaris) combined with metronidazole gel alone in the treatment of bacterial vaginosis. Eletronic Phys. 2016, 8, 2818–2827. [Google Scholar] [CrossRef]
- Masoudi, M.; Kopaei, M.R.; Miraj, S. A comparison of the efficacy of metronidazole vaginal gel and Myrtus (Myrtus communis) extract combination and metronidazole vaginal gel alone in the treatment of recurrent bacterial vaginosis. Avicenna J. Phytomed. 2017, 7, 129–136. [Google Scholar] [PubMed]
- Murina, F.; Vicariotto, F.; Di Francesco, S. Thymol, Eugenol and Lactobacilli in a Medical Device for the Treatment of Bacterial Vaginosis and Vulvovaginal Candidiasis. New Microbiol. 2018, 41, 220–224. [Google Scholar] [PubMed]
- Shabanian, S.; Ghahfarrokhi, S.H.; Lotfizadeh, M. Comparative study of the effects of metronidazole gel and Berberis vulgaris gel on the treatment of bacterial vaginosis. J. Appl. Hortic. 2019, 21, 244–248. [Google Scholar] [CrossRef]
- Yadav, U.C.S.; Baquer, N.Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol. 2014, 52, 243–254. [Google Scholar] [CrossRef]
- Janda, K.; Gutowska, I.; Geszke-Moritz, M.; Jakubczyk, K. The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties—A Review. Molecules 2021, 26, 1814. [Google Scholar] [CrossRef]
- Zagórska, J.; Kukula-Koch, W.; Czop, M.; Iłowiecka, K.; Koch, W. Impact of Thermal Processing on the Composition of Curcuma longa Rhizome. Foods 2023, 12, 3086. [Google Scholar] [CrossRef]
- Moga, M.A.; Bălan, A.; Anastasiu, C.V.; Dimienescu, O.G.; Neculoiu, C.D.; Gavriș, C. An Overview on the Anticancer Activity of Azadirachta indica (Neem) in Gynecological Cancers. Int. J. Mol. Sci. 2018, 19, 3898. [Google Scholar] [CrossRef]
- Barut, M.; Cavdar, A.S.; Tansı, L.S.; Karaman, Ş. Yield and quality traits of Black Cumin (Nigella sativa L.) genotypes in response to the different sowing dates. Turkish J. Agri. Food Sci. Technol. 2023, 11, 2276–2287. [Google Scholar] [CrossRef]
- Wroniak, M.; Krygier, K.; Kaczmarczyk, M. Comparison of the quality of cold pressed and virgin rapeseed oils with industrially obtained oils. Pol. J. Food Nutr. Sci. 2008, 58, 85–89. [Google Scholar]
- Tommasi, L.; Negro, C.; Cerfeda, A.; Nutricati, E.; Zuccarello, V.; De Bellis, L.; Miceli, A. Influence of environmental factors on essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Puglia (Italy). J. Essent. Oil Res. 2007, 19, 572–580. [Google Scholar] [CrossRef]
- Iftikhar, T.; Majeed, H.; Zahra, S.S.; Waheed, M.; Niaz, M.; Bano, N. Thyme. In Essentials of Medicinal and Aromatic Crops; Zia-Ul-Haq, M., AL-Huqail, A.A., Riaz, M., Gohar, U.F., Eds.; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Sharafan, M.; Malinowska, M.A.; Ekiert, H.; Kwaśniak, B.; Sikora, E.; Szopa, A. Vitis vinifera (Vine Grape) as a Valuable Cosmetic Raw Material. Pharmaceutics 2023, 15, 1372. [Google Scholar] [CrossRef] [PubMed]
- Humphries, T.; Campbell, S.; Florentine, S. Challenges Inherent in Controlling Prickly Pear Species; a Global Review of the Properties of Opuntia stricta, Opuntia ficus-indica and Opuntia monacantha. Plants 2022, 11, 3334. [Google Scholar] [CrossRef] [PubMed]
- Mendes, D.S.; Borges, C.E.; de Oliveira, E.A.; Batista, A.C.; da Conceição, C.A.; Duque, T.S.; Araújo, F.H.V.; Moreira, V.H.; do Nascimento, V.G.; de Aguiar Coelho, F.; et al. Assessing current environmental conditions and climate change influences on Syngonanthus nitens (Bong.) Ruhland: An endemic species and economic resource for extractive communities as globally important agricultural heritage systems. Discov. Conserv. 2024, 1, 6. [Google Scholar] [CrossRef]
- Costa Drigo, R.T.D.S.; Becker, A.C.; Riesco, M.L.G.; Mascarenhas, V.H.A.; Nick, J.M. Wound-healing properties of Stryphnodendron adstringens (barbatimão) in skin and mucosa injuries: A scoping review protocol. JBI Evid. Synth. 2024, 22, 1610–1616. [Google Scholar] [CrossRef]
- Da Trindade, R.; da Silva, J.K.; Setzer, W.N. Copaifera of the neotropics: A review of the phytochemistry and pharmacology. Int. J. Mol. Sci. 2018, 19, 1511. [Google Scholar] [CrossRef]
- Fabri, R.L.; Campos, L.M.; Florêncio, J.R.; Oliveira, L.G.; de Oliveira Aragão, D.M.; Ferreira, A.L.P.; de Aguiar, J.A.K.; Apolônio, A.C.M.; Alves, M.S.; Scio, E. Mitracarpus frigidus (Rubiaceae) inhibits inflammatory and oxidative stress mediators in Salmonella sp. mouse infection. J. Pharm. Pharmacol. 2021, 73, 82–92. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, X.; Peng, C.; Wei, J.; Yang, X. The Genus Commiphora: An Overview of Its Traditional Uses, Phytochemistry, Pharmacology, and Quality Control. Pharmaceuticals 2024, 17, 1524. [Google Scholar] [CrossRef]
- Santos, I.L.; Rodrigues, A.M.d.C.; Amante, E.R.; Silva, L.H.M.d. Soursop (Annona muricata) Properties and Perspectives for Integral Valorization. Foods 2023, 12, 1448. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Sung, B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol. Sci. 2009, 30, 85–94. [Google Scholar] [CrossRef]
- Arzi, L.; Mollaei, H.; Hoshyar, R. Countering Triple Negative Breast Cancer via Impeding Wnt/β-Catenin Signaling, a Phytotherapeutic Approach. Plants 2022, 11, 2191. [Google Scholar] [CrossRef]
- Ekiert, H.; Klimek-Szczykutowicz, M.; Szopa, A. Paeonia × suffruticosa (Moutan Peony)—A Review of the Chemical Composition, Traditional and Professional Use in Medicine, Position in Cosmetics Industries, and Biotechnological Studies. Plants 2022, 11, 3379. [Google Scholar] [CrossRef]
- Van Der Walt, J.J.A.; Demarne, F. Pelargonium graveolens and P. radens: A comparison of their morphology and essential oils. S. Afr. J. Bot. 1988, 54, 617–622. [Google Scholar] [CrossRef]
- Voelker, J.; Shepherd, M.; Mauleon, R. A high-quality draft genome for Melaleuca alternifolia (tea tree): A new platform for evolutionary genomics of myrtaceous terpene-rich species. GigaByte 2021, 2021, gigabyte28. [Google Scholar] [CrossRef] [PubMed]
- Dabbaghi, M.M.; Fadaei, M.S.; Soleimani Roudi, H.; Baradaran Rahimi, V.; Askari, V.R. A review of the biological effects of Myrtus communis. Physiol. Rep. 2023, 11, e15770. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, R.A.; Samba, N.; Soeiro, P.; Alves, G.; Gonçalves, A.C.; Silva, L.R.; Silvestre, S.; Rodilla, J.; Ismael, M.I. Thymus hirtus Willd. ssp. algeriensis Boiss. and Reut: A Comprehensive Review on Phytochemistry, Bioactivities, and Health-Enhancing Effects. Foods 2022, 11, 3195. [Google Scholar] [CrossRef]
- Setiawan, A.; Ito, S.; Mitsuda, Y.; Yamagishi, K.; Hirata, R.; Umar, Y.P. Plant species occurrence and spatial heterogeneity in the understory of a mixed-culture stand for clove (Syzygium aromaticum L.) production in East Java Indonesia. Veg. Sci. 2021, 38, 37–47. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef]
- Kazemi, M.; Mousavi, E.; Bandrez, N. Chemical compositions and antibacterial activity of the essential oils of Thymus vulgaris and Tanacetum parthenium. Res. J. Soil. Biol. 2012, 4, 21–31. [Google Scholar] [CrossRef]
- Freires, I.d.A.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; Alencar, S.M.d.; Figueira, G.M.; de Oliveira Rodrigues, J.A.; Duarte, M.C.T.; Rosalen, P.L. Coriandrum sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression. PLoS ONE 2014, 9, e99086. [Google Scholar] [CrossRef]
- Tian, F.; Woo, S.Y.; Lee, S.Y.; Park, S.B.; Zheng, Y.; Chun, H.S. Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus flavus. Antibiotics 2022, 11, 1727. [Google Scholar] [CrossRef] [PubMed]
- Chizzola, R.; Eller, A. Seasonal variability in pyrrolizidine alkaloids in Jacobaea alpina from the Trentino-Alto Adige region (Northern Italy). Chem. Biodivers. 2022, 19, e202200603. [Google Scholar] [CrossRef]
- Fuchs, B.; Breuer, T.; Findling, S.; Krischke, M.; Mueller, M.J.; Holzschuh, A.; Krauss, J. Enhanced aphid abundance in spring desynchronizes predator–prey and plant–microorganism interactions. Oecologia 2017, 183, 469–478. [Google Scholar] [CrossRef]
- Kaya, D.A.; Arslan, M.; Rusu, L.C. Effects of harvesting hour on essential oil content and composition of Thymus vulgaris. Farmacia 2013, 61, 1194–1203. [Google Scholar]
- Krishna, P.D.; Gowrav, M.P.; Bhaskaran, M.; Kruthika, M.R. Current regulations of herbal medicines in the US and EU. Curr. Tradit. Med. 2024, 10, 141–151. [Google Scholar] [CrossRef]
- Gerschler, S.; Neumann, N.; Schultze, N.; Guenther, S.; Schulze, C. Quality parameters for the medicinal plant Drosera rotundifolia L.: A new approach with established techniques. Arch. Pharm. 2023, 357, e2300436. [Google Scholar] [CrossRef]
- Chelu, M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024, 10, 636. [Google Scholar] [CrossRef]
- Baj, T.; Korona-Głowniak, I.; Kowalski, R.; Malm, A. Chemical Composition and Microbiological Evaluation of Essential Oil from Hyssopus officinalis L. with White and Pink Flowers. Open Chem. 2018, 16, 317–323. [Google Scholar] [CrossRef]
- Modearai, M.; Gertsch, J.; Suter, A.; Heinrich, M.; Kortenkamp, A. Cytochrome P450 inhibitory action of Echinacea preparations differs widely and co-varies with alkylamide content. J. Pharm. Pharmacol. 2007, 59, 567–573. [Google Scholar] [CrossRef]
- Roy, A.; Adeline, P.R.; Thangavelu, L. Evaluation of the cytochrome p450 inhibitory effect of thyme oleoresin from Thymus vulgaris L.—An in vitro study. Asian. J. Pharm. Clin. Res. 2018, 11, 149–151. [Google Scholar] [CrossRef]
- Vandeweege, S.; Debaene, B.; Lapeere, H.; Verstraelen, H. A systematic review of allergic and irritative contact dermatitis of the vulva: The most important allergens/irritants and the role of patch testing. Contact Dermat. 2023, 88, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, E. Contact sensitization from Compositae-containing herbal remedies and cosmetics. Contact Dermat. 2002, 47, 189–198. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A.C.; Schmidt, E. Tea tree oil: Contact allergy and chemical composition. Contact Dermat. 2016, 75, 129–143. [Google Scholar] [CrossRef]
- Gokhale, N.; Mukta, M.S.; Priya, J.; Juhi, B.; Manoj, L.; Prerna, C.; Sumeet, D. Embracing Herbal Wisdom for Vaginal Comfort and Balance: An Insight on Herbal Approach and other therapies in the Treatment of Vaginal Infection Article Sidebar. Afr. J. Biol. Sci. 2024, 6, 625–642. Available online: https://www.afjbs.com/uploads/paper/9bc52a1d9cf1c2f8b2ba8bc145565417.pdf (accessed on 7 January 2025).
Bioactive Compound | Plant | Plant Part | Activity |
---|---|---|---|
Flavonoids | Solidago virgaurea | herba | |
Arctostaphylus uva ursi | folium | ||
Tropaeolum majus | flos | ||
Matricaria chamomilla | flos | antimicrobial | |
Lamium album | herba, flos | antifungal | |
Phenolic acids | Polygonum hydropiper | herba | antioxidant |
Salvia officinalis | herba | anti-inflammatory | |
Scutellaria baicalensis | radix | ||
Tannins | Potentilla anserina | rhizome | astringent |
Quercus robur | cortex | antimicrobial | |
Hamamelis virginiana | cortex | anti-inflammatory | |
reduces the sensation of burning and itching | |||
Mucus | Althaea officinalis | folium | covering |
Malva sylvestris | flos | softening | |
Verbascum densiflorum | flos | protective | |
Plantago lanceolata | semen | anti-inflammatory | |
Linum usitatissimum | semen | ||
Chamomilla recutita | anthodium | anti-allergenic | |
Azulenes | Achillea millefolium | herba | bacteriostatic |
anti-bacterial anti-inflammatory disinfectant | |||
Melaleuca alternifolia | folium | ||
Thymus vulgaris | herba | ||
Rosmarinus officinalis | herba | ||
Ingredients of essential oils | Eucalyptus globulus | folium | antiseptic |
Lavandula angustifolia | flos, herba | anti-inflammatory | |
Mentha piperita | herba | strong bacterio- | |
Eugenia caryophyllus | gemma | static properties | |
Pelargonium graveolens | flos | anti-bacterial | |
Cymbopogon citratus | folium | antifungal | |
Cuminum cyminum | semen | ||
Origanum vulgare | folium |
Plant | Other Name | Family | Part of Plant | Main Constituents | References |
---|---|---|---|---|---|
Melaleuca alternifolia Maiden & Betche | tea tree | Myrtaceae | leaves | - essential oil, including terpinen-4-ol, γ-terpinene, α-terpinene, α-terpinolene, α-terpineol, α-pinene 1,8-cineole, p-cymene, limonene, β-pinene, myrcene, α-felandrene, aromadendrene, viridiflorene, and δ-cadinene | [31,32] |
Trigonella foenum-graecum L. | fenugreek | Fabaceae | seeds | - mucous substances (galactomannan) -proteins, amino acids (rich in tryptophan and lysine) - alkaloids (trigonelline) - steroidal saponins (diosgenin derivatives, yamogenins, tigogenins, gitogenins, glycosidic combinations: trigofoenosides, foenugraceina, greekine) - lipids (phospholipids, glycolipids), sterols, lecithin, choline - flavonoids (orientin, saponarin, apigenin, luteolin, quercetin, vitexin) | [33] |
Azadirachta indica A. Juss | neem | Meliaceae | leaves, flowers, fruits, seeds, bark | - isoprenoids (nimbin, nimbidol, nimbidin, salannin, gedunin, azadirachtin) - flavonoids (quercetin, catechin, nimbaflavanone) - fatty acids (arachidic, stearic, oleic acid) - thiols (dipropylsulfide) - acids and their derivatives (e.g., nimbochalcin, nimbocetin, tiglic acid) - coumarins (scopoletin), isocoumarins (margocetin) | [34,35] |
Cichorium intybus L. | chicory | Asteraceae | seeds, roots, flowers, leaves, whole plant | - phenylpropenoids (esculetin, esculin, cichoriin, umbelliferone, scopoletin) - flavonoids (isoscutellarein, apigenin, luteolin, hyperin, quercetin, quercitrin, kaempferol) - sesquiterpenoids (lactucopicin, intybulide A, cichoriolide A, crepidiaside A, cichoriosides A) - nitrogen compounds (caffeine, theophylline, zeatin, riboside) - organic acids (tartaric acid, oxalic acid, quinic acid, ascorbic acid, citric acid, malic acid, cichoric acid) - polysaccharudes (inulin) | [36] |
Curcuma longa L. | turmeric | Zingiberaceae | rhizome | - phenolic compounds (curcuminoids: curcumin, demethoxycurcumin, bisdemethoxycurcumin, coumaric acid, calebin A) - polysaccharides (L-arabinose, D-xylose, D-galactose, D-glucose, L-rhamnose) - peptide (turmerin) - carotenoids - volatile oil (curcumenone, dehydrocurdione, arturmerone, bisacumol) | [37,38] |
Thymus vulgaris L. | common thyme | Lamiaceae | herba | - essential oil (mainly thymol, carvacrol, p-cymene, γ-terpinene, α-pinene, linalool, borneol, 1,8-cyneol, geraniol) - flavonoids (e.g., apigenin, luteolin, naringenin) - phenolic acids (e.g., quinic, rosmarinic, coffee, p-coumaric, syryngic, p-hydroxybenzoenoic, ferulic, gentisic acid) | [39,40,41] |
Nigella sativa L. | black cumin | Ranunculaceae | seeds | - oil with dominant fatty acids: linoleic, oleic, palmitic - terpenes and terpenoids (thymoquinone and its derivatives: carvacrol, 4-terpineol, α-pinene, thymol, t-anethol, dithymoquinone, p-cymene, longifolene) - alkaloids (nigellicimine, nigellicimine-N-oxide, nigellidine, nigellicine) - polyphenols (caftaric, gentisic, caffeic, chlorogenic, p-coumaric, ferulic, sinapic, cichoric acid, hyperoside, isoquercitrin, rutin, myricetin, fisetin, quercitrin, quercetin, patuletin, luteolin, kaempferol, apigenin) | [42,43,44] |
Olea europaea L. | olive tree | Oleaceae | leaves | - phenolic acids (e.g., ferulic, gallic, homovanillic, coffee acid) - flavonoids (e.g., apigenin, luteolin, kaempferol, rutin) - glycosides (e.g., oleuropein, verbacoside) - alcohols (e.g., hydroxytyrosol, tyrosol) - oil (mainly oleic acid, palmitic acid, linoleic acid, stearic acid) | [45,46] |
Thymbra capitata L. | Mediterranean thyme | Lamiaceae | aerial parts | - essential oil (carvacrol, thymol, p-cymene, γ-terpinene, β-caryophyllene, linalool, borneol) - phenolic acids (e.g., rosmarinic, vanilic, caffeic acid) - flavonoids (e.g., taxifolin, quercetin, aromadendrin, eriodictyol, naringenin, ladanein, genkwanin) - terpenoids (e.g., carvacrol, thymol, camphor, α-terpineol) | [47,48,49] |
Syngonanthus nitens (Bong.) Ruhland | golden grass | Eriocaulaceae | capitula and scapes | - flavones (predominantly luteolin O- and C-glucosides and apigenin O-glucosides) - xanthones (A-1,3,6-trihydroxy-2-methoxyxanthone, B-1,3,6-trihydroxy-2,5-dimethoxyxanthone, 1,5,7-trihydroxy-3, 6-dimethoxyxanthone, 1,3,6,8-tetrahydroxy-2,5-dimethoxyxanthone) | [50,51] |
Stryphnodendron adstringens (Mart.) Coville | barbatimão | Fabaceae | stem bark, roots | - polyphenolic compounds, especially hydrolysable and condensed tannins (gallic acid, catechin, epicatechin, gallocatechin, epigallocatechin, epigallocatechin 3-O-gallate, robinetinidol) | [52] |
Copaifera officinalis (L.) Kuntze | copaiba balsam | Fabaceae | leaves, stems, roots | - sesquiterpenes (germacrene D), (E)-β-caryophyllene, α-cubebene, β-bourbonene, cis-α-bergamotene, α-calacorene, selina-3,7-(11)-diene, α-gurjunene | [53] |
Pelargonium graveolens L’Hér. | rose geranium | Geraniaceae | leaves, flowers, aerial parts | - essential oil (citronellol, citronellyl formate, γ-eudesmol, isomenthone, geranyl formate, germacerene D, geranyl butanoate) - flavonoids (kaempferol 3-O-rhamnoside-glucoside, isorhamnetin aglycone, quercetin 3-O-glucoside, kaempferol 3,7-di-O-glucoside, quercetin 3-O-pentose and kaempferol 3-O-glucoside, quercetin 3-O-rhamnoside-glucoside, quercetin 3-O-pentoside-glucoside, myrisetin 3-O-glucoside-rhamnoside) | [54,55] |
Mitracarpus frigidus (Willd.) K.Schum. | girdlepod | Rubiaceae | aerial parts | - kaempferol, kaempferol-O-rutenoside, rutin, quercetin-hexosylpentoside, kaempferol-rhamnosylhexoside, quercetin-pentosylrhamnosylhexoside, chlorogenic and ursolic acid - clarinoside, harounoside - pyranonaphthoquinone psychorubrin - 2-azaanthraquinone | [56,57] |
Scutellariae baicalensis Georgi. | Chinese skullcap | Lamiaceae | roots | - flavonoids (baicalin, baicalein, wogonoside, wogonin, oroxylin A, oroxylin A-7-glucuronide, apigenin 7-O-glucuronide, skullcapflavone II) - terpenoids, - volatile oils - polysaccharides | [58,59] |
Commiphora leptophloeos (Mart.) J. B. Gillet | imburana | Burseraceae | stem bark | - phenolic acids (e.g., gallic, chlorogenic, protocatechuic, quinic acid) - O- and C-glycosylated flavonoids - A- and B-type polymeric proanthocyanidins - coumarins - lignans | [60] |
Cymbopogon flexuosus (Steud.) Wats. | lemongrass | Poaceae | aerial parts | - essential oil, including citral-a, citral-b, citronellol, geraniol, geranyl acetate, limonene, linalol, nerol, piperitone, α-terpineol, thujane, α-bisabolol, isointermedeol, borneol | [61] |
Vitis vinifera L. | common grape vine | Vitaceae | fruit | - vitamin C and E - carotenoids (lutein, β-carotene) - flavonols (quercetin-3-glucoside, quercetin-3-rutinoside) - flavanols (procyanidin B1, catechin, epicatechin, epigallocatechin) - hydroxycinnamic acid derivatives (caftaric acid, coumaroyl tartaric acid) - anthocyanins (delphinidin-3-glucoside, cyanidin-3-glucoside, petunidin-3-glucoside, peonidin-3-glucoside, malvidin-3-glucoside, malvidin-3-coumaroyl glucoside) - stilbenes (piceid, trans-resveratrol) | [62] |
Opuntia ficus-indica L. Mill | prickly pear | Cactaceae | fruits | - flavonoids, mainly isorhamnetin glycoside derivatives, kaempferol - glycosyl-rhamnoside, rutin - organic acids (ascorbic, glutaric, malic, succinic, pyruvic, quinic, citric, piscidic acid) - betalains (betacyanins (betanidin-5-O-β-sophoroside, etanidin-5-O-β-glucoside (betanin), isobetanin, gomphrenin I and betanidin) | [63] |
Paeonia suffruticosa Andr. | woody peony | Paeoniaceae | flowers | - essential oil (geraniol, citronellol, pentadecane, tricosane, pentacosane, 6,9-heptadecadiene, trans-8-heptadecene, germacrene D, trans-β-ocimene) - paeonol, 2-hydroxy-4-methoxy acetophenone | [64,65] |
Annona muricata L. | soursop, graviola | Annonaceae | fruits, leaves | - alkaloids (annonaine, nornuciferine, asimilobine, isolaureline, anonaine, xylopine) - annonaceous acetogenin (epomusenin, epomurinin, cis-annoreticuin, muricin, annohexocin, annomuricin, muricatocin) - megastigmanes (annoionol, vomifoliol, roseoside, loliolide) - polyphenols (cinnamic and caffeic acid derivative, epicatechine, quercetin 3-O-rutinosid, kaempferol) - minerals (K, Ca, Na, Cu, Fe, Mg) - essential oils (β-pinene, germacrene D, α-pinene, β-elemene) | [66] |
Myrtus communis L. | myrtle | Myrtaceae | leaves | - essential oil, mainly 1,8-cineole, linalool, eugenol, α-terpineol, γ-terpinene, myrtenyl-acetate, α-pinene, heptyl isobutanoate, geranyl-acetate, α-terpineol, (Z)-caryophyllene, α-humulene | [67] |
Berberis vulgaris L. | barberry | Berberidaceae | roots, rhizomes, stem, bark | - alkaloid berberine - quercetin 3-O-glucuronide, narirutin, rutin, kaempferol, apigenin, hydroxyferulic acid, piceatannol, lignan, lehmannin, taxifolin 3-O-rhamnoside, gallic acid, galangin, ferulic acid, p-coumaric acid | [68] |
Syzygium aromaticum L. | clove | Myrtaceae | leaves, buds | - essential oil (eugenol, eugenyl acetate, eugenol, β-caryophyllene, 2-heptanone, α-humulene, calacorene, humulenol, calamenene) - polyphenols (quercetin, kaempferol, ferulic, caffeic, ellagic, and salicylic acid) | [69] |
Author, Year of Publication | Hydrogel Composition | Plant Source | Experimental Model | Species Tested | Infection Type | Achieved Effects |
---|---|---|---|---|---|---|
Basic and preclinical studies | ||||||
Hammer et al., 1998 [73] | ns | Melaleuca alternifolia essential oil | in vitro strain of C. albicans (ATCC 10231) | C. albicans | vaginal candidiasis |
|
Chopra et al., 2007 [74] | Carbopol 934P, Carbopol 974P, Noveon AA-1 (polycarbophil) -based hydrogel | NAC extracted from Trigonella foenum-graecum, Azadirachta indica, Cichorium intybus, Curcuma longa | basic studies: rheological measurements, in vitro release, stability studies | ns | aerobic vaginitis |
|
das Neves et al., 2009 [75] | Polycarbophil-based gel | Thymus vulgaris essential oil | in vitro four strains of Candida spp. | C. albicans, C. glabrata, C. krusei | vulvovaginal candidosis |
|
Sangi et al., 2011 [76] | Carbopol 974P- based hydrogel | Microspheres containing Nigella sativa and Olea europaea oil | basic studies: in vitro release, stability studies | ns | vaginal infections |
|
Palmeira-de-Oliveira et al., 2013 [77] | Chitosan-based hydrogel | Thymbra capitata essential oil | Candida isolates from mucocutaneous infections and Candida biofilms | C. albicans, C. krusei, C. glabrata, C. parapsilosis, C. tropicalis, C. guilliermondii | vulvovaginal candidiasis |
|
dos Santos Ramos et al., 2015 [78] | Polycarbophil/Carbopol 974P- based liquid-crystal hydrogel | Methanolic extract of Syngonanthus nitens scapes | in vitro strain of C. krusei (ATCC 6258) and three clinical strains from the vaginal region (CKV1, CKV2, CKV3), in vivo female Wistar rats (n = 24) | C. krusei | vulvovaginal candidiasis |
|
dos Santos Ramos et al., 2016 [79] | Polycarbophil/Carbopol 974P- based liquid crystal hydrogel | Methanolic extract of Syngonanthus nitens scapes | in vitro strain of C. albicans (ATCC 10231) and clinical strains (CAV1, CAV2, CAV3, CAV4, CAV5), in vivo female Wistar rats (n = 78) | C. albicans | vulvovaginal candidiasis |
|
Costa et al., 2018 [80] | Carbopol-940-based hydrogel | Extract of Stryphnode-ndron adstringens | strains of C. albicans (ATCC 10230) | C. albicans | vaginal candidiasis |
|
de Freitas et al., 2018 [81] | Carbopol-based hydrogel | Tannin fractions from Stryphnode-ndron adstringens | strains of C. albicans C. glabrata, in vivo female BALB/c mice | C. albicans, C. glabrata | vaginal candidiasis |
|
Alves et al., 2018 [82] | Poloxamer 407, chitosan, and HPMC K4M-based hydrogel | Curcumin | HeLa cells | not specified | vaginal mucositis, bacterial infection, HPV infection |
|
Morguette et al., 2019 [83] | Carbopol-940-based hydrogel | Oleoresin from Copaifera officinalis | female BALB/c mice | S. agalactiae | bacterial vaginosis |
|
dos Santos et al., 2020 [84] | Chitosan-based hydrogel-thickened nanoemulsion | Pelargonium graveolens essential oil | HET-CAM test | C. albicans, C. krusei, C. tropicalis, C. parapsilosis, C. glabrata | vaginal candidiasis |
|
Campos et al., 2020 [85] | Chitosan-based gel | Methanolic extract of Mitracarpus frigidus | female Wistar rats (n = 36) | C. albicans | vulvovaginal candidiasis |
|
Chanaj-Kaczmarek et al., 2022 [86] | Chitosan-based gel | Scutellariae baicalensis extract | in vitro strain of G. vaginalis (ATCC 14018), S. agalactiae (ATCC BAA611), S. aureus (ATCC 25923), E. coli (ATCC 25922), and yeast-like fungi: C. albicans ATCC 3153, C. parapsilosis ATCC 2195, C. krusei ATCC 573) | G. vaginalis, S. agalactiae, S. aureus, E. coli, C. albicans, C. parapsilosis, C. krusei | vulvovaginal candidiasis |
|
Dantas-Medeiros et al., 2023 [87] | Chitosan and poloxamer 407 based hydrogel | Extract of Commiphora leptophloeos | in vitro uterine/endometrial epithelial cells (HEC-1A); in vivo model of Galleria mellonella | C. albicans | vulvovaginal candidiasis |
|
Kola-Mustapha et al., 2023 [88] | Xanthan gum-based emulgel | Essential oils of Melaleuca alternifolia and Cymbopogon flexuosus | basic studies: viscosity, compatibility study, stability test; vagina women’s swabs (n = 47) | C. albicans | vulvovaginal candidiasis |
|
Moraru et al., 2023 [89] | NDBNC-PX hydrogel NDBNC-PX-CS hydrogel (CS, chitosan; NDBNC, never-dried bacterial nanocellulose; PX, poloxamer 407) | Thymus vulgaris essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica powder | basic studies: FTIR spectroscopy, XRD, TEM, rheology; cell viability assay: the NCTC cell line (clone 929); antimicrobial and antibiofilm activity | E. coli C. albicans | vulvovaginal candidiasis |
|
Jia et al., 2024 [90] | Carboxymethyl chitosan hydrogel | Paeonia suffruticosa extract | female BALB/c mice (n = 40) | C. albicans, S. aureus, S. epidermidis, E. coli, B. streptococcus, MRSA | aerobic vaginitis, vulvovaginitis |
|
Campos et al., 2024 [91] | Carbopol-based hydrogel | Annona muricata extract | female Wistar rats (n = 36) | C. albicans | vulvovaginal candidiasis |
|
Carvalho et al., 2024 [92] | Chitosan and poloxamer 407-based hydrogel | Hybrid nanoparticles dual-loaded with curcumin and benzydamine hydrochloride | in vitro strain of C. albicans (ATCC 18 804 and FMB-01), in vivo female BALB/c mice (n = 76) | C. albicans | vulvovaginal candidiasis |
|
Clinical studies | ||||||
Masoudi et al., 2016a [93] | Carbopol-based hydrogel | Myrtus communis 2% in metronidazole vaginal gel 0.75%; Berberis vulgaris 5% in metronidazole vaginal gel 0.75% | 120 women aged 18–40 years | ns | bacterial vaginosis |
|
Masoudi et al., 2016b [94] | Carbopol-based hydrogel | Berberis vulgaris 5% in metronidazole vaginal gel 0.75% | 80 women aged 18–40 years | ns | bacterial vaginosis |
|
Masoudi et al., 2017 [95] | Carbopol-based hydrogel | Myrtus communis 2% in metronidazole vaginal gel 0.75% | 80 women of 18–40 years old | ns | bacterial vaginosis |
|
Murina et al., 2018 [96] | Xanthan gum | Extracts of Thymus vulgaris and Syzygium aromaticum | 209 women (mean age: 35.8 years old) | 100 women had BV, 82 had VVC, and 27 had RVVC (recurrent VVC) | bacterial vaginosis and vulvovaginal candidiasis |
|
Shabanian et al., 2019 [97] | ns | Extracts of Berberis vulgaris | 80 women (mean age: 34 years old) | 80 women with BV | bacterial vaginosis |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostróżka-Cieślik, A.; Michalak, M.; Bryś, T.; Kudła, M. The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections—Current State of Knowledge. Polymers 2025, 17, 470. https://doi.org/10.3390/polym17040470
Ostróżka-Cieślik A, Michalak M, Bryś T, Kudła M. The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections—Current State of Knowledge. Polymers. 2025; 17(4):470. https://doi.org/10.3390/polym17040470
Chicago/Turabian StyleOstróżka-Cieślik, Aneta, Monika Michalak, Tomasz Bryś, and Marek Kudła. 2025. "The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections—Current State of Knowledge" Polymers 17, no. 4: 470. https://doi.org/10.3390/polym17040470
APA StyleOstróżka-Cieślik, A., Michalak, M., Bryś, T., & Kudła, M. (2025). The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections—Current State of Knowledge. Polymers, 17(4), 470. https://doi.org/10.3390/polym17040470