Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (366)

Search Parameters:
Keywords = solid-state coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2369 KB  
Article
Pulmonary Delivery of Inhalable Sustained Release Nanocomposites Microparticles Encapsulating Osimertinib for Non-Small Cell Lung Cancer Therapy
by Iman M. Alfagih, Alanood Almurshedi, Basmah Aldosari, Bushra Alquadeib, Baraa Hajjar, Hafsa Elwali, Hadeel ALtukhaim, Eman Alzahrani, Sara Alhumaidan and Ghaida Alharbi
Pharmaceutics 2026, 18(1), 134; https://doi.org/10.3390/pharmaceutics18010134 - 21 Jan 2026
Abstract
Background/Objective: Osimertinib (OSI) is a third-generation tyrosine kinase inhibitor approved for non-small cell lung cancer (NSCLC) therapy. OSI is administered orally; this route limits the amount of OSI reaching the tumor in the lungs and is associated with serious systemic toxicity. This study [...] Read more.
Background/Objective: Osimertinib (OSI) is a third-generation tyrosine kinase inhibitor approved for non-small cell lung cancer (NSCLC) therapy. OSI is administered orally; this route limits the amount of OSI reaching the tumor in the lungs and is associated with serious systemic toxicity. This study aimed to develop a dry powder inhalable formulation to provide tumor-targeted delivery and minimize systemic toxicity. To the best of our knowledge, this is the first study to prepare and evaluate a dry powder inhalation formulation of OSI. Methods: Chitosan-coated PLGA nanoparticles (PLGA-C NPs) encapsulating OSI were prepared using a single emulsion-solvent evaporation technique. PLGA-C NPs were assembled into respirable nanocomposite microparticles (NCMPs) via spray drying with L-leucine as a carrier. PLGA-C NPs were characterized for particle size, zeta-potential, encapsulation efficiency, and in vitro efficacy in A-549 cell line. NCMPs were evaluated for solid-state properties, aerosolization performance, stability and in vitro release. Results: PLGA-C NPs exhibited a particle size of 145.18 ± 3.0 nm, high encapsulation efficiency and a positive zeta potential. In vitro studies demonstrated a 3.6-fold reduction in IC50 compared to free OSI, superior antimigratory effects and enhanced cell cycle arrest. Solid-state characterization of NCMPs demonstrated drug encapsulation in the polymer without chemical interaction. NCMPs exhibited excellent aerosolization (mass median aerodynamic diameter of 1.09 ± 0.23 μm, fine particle fraction of 73.48 ± 8.6%) and sustained drug release (61.76 ± 3.9% at 24 h). Stability studies confirmed the physicochemical stability integrity. Conclusions: These findings suggest that this novel dry powder inhalable OSI formulation may improve therapeutic outcomes while reducing systemic toxicity. Full article
(This article belongs to the Special Issue Anticancer Nanotherapeutics for Lung Cancer Therapy)
15 pages, 7578 KB  
Article
Effect of Titanium Content and Mechanical Alloying Time on the Formation of Nanocrystalline Solid Solutions in the Ni–Al–Ti System
by Yerkezhan Tabiyeva, Dias Yerbolat, Sayat Zakerov, Yerkhat Dauletkhanov, Azamat Urkunbay, Elfira Sagymbekova and Nurgamit Kantay
Crystals 2026, 16(1), 71; https://doi.org/10.3390/cryst16010071 - 21 Jan 2026
Abstract
This work investigates the effect of titanium content and the duration of mechanical alloying on the structural and phase state of powder mixtures in the Ni–Al–Ti system. The initial mixtures of Ni68Al25Ti7, Ni72Al22Ti [...] Read more.
This work investigates the effect of titanium content and the duration of mechanical alloying on the structural and phase state of powder mixtures in the Ni–Al–Ti system. The initial mixtures of Ni68Al25Ti7, Ni72Al22Ti6, Ni70Al21Ti9, and Ni75Al25 were subjected to high-energy milling in a planetary ball mill for 1–6 h. It was found that the addition of titanium accelerates the dissolution of components and promotes the formation of a supersaturated fcc Ni(Al,Ti) solid solution. The most pronounced effects were observed for the Ni70Al21Ti9 composition, where after 6 h of alloying, the minimum crystallite size (11.3 nm) and maximum lattice strain (1.52%) were achieved. It is shown that titanium reduces the tendency for cold welding and promotes more uniform particle refinement. The optimal conditions for synthesizing a nanocrystalline solid solution with a homogeneous structure are a titanium content of 9 at.% and a mechanical alloying duration of 6 h. The resulting powders are promising for subsequent sintering and application in structural and heat-resistant intermetallic alloys and coatings. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

20 pages, 1485 KB  
Article
SPH Simulation of Multiple Droplets Impact and Solidification on a Cold Surface
by Lujie Yuan, Qichao Wang and Hongbing Xiong
Coatings 2026, 16(1), 117; https://doi.org/10.3390/coatings16010117 - 15 Jan 2026
Viewed by 186
Abstract
The impact and solidification of multiple molten droplets on a cold substrate critically influence the quality and performance of thermally sprayed coatings. We present a Smoothed Particle Hydrodynamics (SPH) model that couples fluid-solid interaction, wetting, heat transfer and phase change to simulate multi-droplet [...] Read more.
The impact and solidification of multiple molten droplets on a cold substrate critically influence the quality and performance of thermally sprayed coatings. We present a Smoothed Particle Hydrodynamics (SPH) model that couples fluid-solid interaction, wetting, heat transfer and phase change to simulate multi-droplet impact and freezing. The model is validated against benchmark cases, including the Young–Laplace relation, wetting dynamics, single-droplet impact and the Stefan solidification problem, showing good agreement. Using the validated model, we investigate two droplets—either centrally or off-centrally—impacting on a cold surface. Simulations reveal two distinct solidification patterns: convex pattern (CVP), which results in a mountain-like splat morphology, and concave pattern (CCP), which leads to a valley-like shape. The criterion for the two patterns is explored with two dimensionless numbers, the Reynolds number Re and the Stefan number Ste. When Re17.8, droplets tend to solidify in CVP; at higher Reynolds numbers Re18.8, they tend to solidify in CCP. The transition between the two patterns is primarily governed by Re, with Ste exerting a secondary influence. For example, when droplets have Re=9.9 and Ste=5.9, they tend to solidify in a convex pattern, whereas at Re=19.8 and Ste=5.9, they tend to solidify in a concave pattern. Also, the solidification state of the first droplet greatly influences the subsequent spreading and solidification of the second droplet. A parametric study on CCP cases with varying vertical and horizontal offsets shows that larger vertical offsets accelerate solidification and reduce the maximum spreading factor. For small vertical distances, the solidification time increases with horizontal offset by more than 29%; for large vertical distances the change is minor. These results clarify how droplet interactions govern coating morphology and thermal evolution during thermal spraying. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

21 pages, 266 KB  
Proceeding Paper
Metal Oxide Nanomaterials for Energy Density Improvement in Lithium-Ion and Solid-State Batteries
by Partha Protim Borthakur, Pranjal Sarmah, Madhurjya Saikia, Tamanna Afruja Hussain and Nayan Medhi
Mater. Proc. 2025, 25(1), 17; https://doi.org/10.3390/materproc2025025017 - 7 Jan 2026
Viewed by 207
Abstract
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation [...] Read more.
Metal oxide nanomaterials have emerged as transformative materials in the quest to enhance the energy density and overall performance of lithium-ion batteries (LIBs) and solid-state batteries (SSBs). Their unique properties—including their large surface areas and short ion diffusion pathways—make them ideal for next-generation energy storage technologies. In LIBs, the high surface-to-volume ratio of metal oxide nanomaterials significantly enlarges the active interfacial area and shortens the lithium-ion diffusion paths, leading to an improved high-rate performance and enhanced energy density. Transition metal oxides (TMOs) such as nickel oxide (NiO), copper oxide (CuO), and zinc oxide (ZnO) have demonstrated significant theoretical capacities, while binary systems like NiCuO offer further improvements in cycling stability and energy output. Additionally, layered lithium-based TMOs, particularly those incorporating nickel, cobalt, and manganese, have shown remarkable promise in achieving high specific capacities and long-term stability. The synergistic integration of metal oxides with carbon-based nanostructures, such as carbon nanotubes (CNTs), enhances the electrical conductivity and structural durability further, leading to a superior electrochemical performance in LIBs. In SSBs, the use of oxide-based solid electrolytes like garnet-type Li7La3Zr2O12 (LLZO) and sulfide-based electrolytes has facilitated the development of high-energy-density systems with excellent ionic conductivity and chemical stability. However, challenges such as high interfacial resistance at the electrode–electrolyte interface persist. Strategies like the application of lithium niobate (LiNbO3) coatings have been employed to enhance interfacial stability and maintain electrochemical integrity. Furthermore, two-dimensional (2D) metal oxide nanomaterials, owing to their high active surface areas and rapid ion transport, have demonstrated considerable potential to boost the performance of SSBs. Despite these advancements, several challenges remain. Morphological optimization of nanomaterials, improved interface engineering to reduce the interfacial resistance, and solutions to address dendrite formation and mechanical degradation are critical to achieving the full potential of these materials. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
18 pages, 4303 KB  
Article
Characterization and Spectroscopic Studies of the Morin-Zinc Complex in Solution and in PMMA Solid Matrix
by Malgorzata Sypniewska, Beata Jędrzejewska, Marek Pietrzak, Marek Trzcinski, Robert Szczęsny, Mateusz Chorobinski and Lukasz Skowronski
Appl. Sci. 2026, 16(1), 91; https://doi.org/10.3390/app16010091 - 21 Dec 2025
Viewed by 314
Abstract
Flavonoids, natural organic compounds from the polyphenolic group with broad bioactive and pharmaceutical properties, are strong ligands for many metal ions. This work describes the formation of the complex between Zn(II) and morin. The synthesized compound is characterized using three analytical techniques, i.e., [...] Read more.
Flavonoids, natural organic compounds from the polyphenolic group with broad bioactive and pharmaceutical properties, are strong ligands for many metal ions. This work describes the formation of the complex between Zn(II) and morin. The synthesized compound is characterized using three analytical techniques, i.e., 1H NMR, IR, and thermal gravimetric analysis. Importantly, the complex was successfully obtained in the form of a solid, which enables its further physicochemical and structural characterization. Physicochemical characterization of the Morin-Zn complex was performed by steady-state and time-resolved spectroscopy. The absorption spectrum of the complex contains two main bands at ca. 407–415 nm and ca. 265 nm, and the complex emits yellow-green light with higher intensity than the free ligand. In the next step, morin and zinc complex were dispersed in a PMMA (poly (methyl methacrylate)) polymer matrix, and respective thin layers were produced. The studied thin films were deposited on silicon substrates by using the spin-coating method and characterized by X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy (AFM), Spectroscopic Ellipsometry (SE), UV-VIS spectroscopy, and photoluminescence (PL). The absorption of thin layers showed, similarly to solutions, the presence of two transitions: π→π* and n→π*, and a bathochromic shift for the morin-zinc complex compared to morin. The photoluminescence of the complex thin film showed two bands, the first in the range of 380–440 nm corresponding to PMMA, and the second with a maximum at 490 nm, derived from the synthesized compound. Full article
Show Figures

Figure 1

18 pages, 5209 KB  
Article
Indium Recovery from ITO in LCD Glass Using Magnetic Separation and Sulfuric Acid: Influence of Fractions and Process Conditions
by Joanna Willner, Iva Janakova, Magdalena Jablonska-Czapla, George Yandem, David Hrecin and Jana Sedlakova-Kadukova
Processes 2025, 13(12), 3917; https://doi.org/10.3390/pr13123917 - 4 Dec 2025
Viewed by 478
Abstract
This study emphasizes the role of magnetic separation as a novel pretreatment strategy for the recovery of indium from ITO coatings in LCD screen glass. Previous studies have primarily focused on the magnetic separation of leaching residues. In this work, a reverse approach [...] Read more.
This study emphasizes the role of magnetic separation as a novel pretreatment strategy for the recovery of indium from ITO coatings in LCD screen glass. Previous studies have primarily focused on the magnetic separation of leaching residues. In this work, a reverse approach is proposed, and for the first time, magnetic separation was systematically applied prior to leaching. Our results demonstrate that indium accumulates in the ferromagnetic fraction, indicating its association with Fe-rich phases. In addition to Fe, the behavior of Sr and Si was also evaluated, providing a broader understanding of elemental distribution within LCD glass. This finding offers new insights into the distribution and mobility of indium during hydrometallurgical processing and highlights magnetic separation as a valuable step for improving recovery efficiency. To establish optimal leaching conditions, preliminary experiments were performed on ground LCD glass using sulfuric acid at three concentrations (0.1, 1, and 5 M) and two temperatures (21 °C and 65 °C) for both coarse (>1 mm) and fine (<1 mm) particle fractions. All residues and solid-state analyses were performed using the XRF method. Acid molarity was found to be the dominant factor controlling indium dissolution, with 5 M H2SO4 selected as the most effective leaching medium. Statistical evaluation further clarified the dissolution trends of these elements and confirmed the significance of magnetic separation in enhancing the efficiency of indium recovery. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

16 pages, 2519 KB  
Article
Optical Limiting in a Novel Photonic Material—DNA Biopolymer Functionalized with the Spirulina Natural Dye
by Petronela Gheorghe and Adrian Petris
Molecules 2025, 30(23), 4577; https://doi.org/10.3390/molecules30234577 - 28 Nov 2025
Viewed by 314
Abstract
The results of an experimental comparative study on absorptive nonlinear optical properties of deoxyribonucleic acid (DNA)–cetyltrimethylammonium chloride (CTMA) biopolymer functionalized with spirulina natural dye, as solutions in butanol, and on the same nonlinear optical properties of similar solutions with spirulina only, are presented. [...] Read more.
The results of an experimental comparative study on absorptive nonlinear optical properties of deoxyribonucleic acid (DNA)–cetyltrimethylammonium chloride (CTMA) biopolymer functionalized with spirulina natural dye, as solutions in butanol, and on the same nonlinear optical properties of similar solutions with spirulina only, are presented. The spectroscopic characterisation of the investigated complexes is performed by Ultraviolet–Visible-Near-Infrared (UV-VIS-NIR) spectroscopy and Attenuated Total Reflection Fourier-transform Infrared (ATR-FTIR) spectroscopy. Their optical limiting functionality is experimentally demonstrated at the wavelength of 1550 nm (an important telecommunication wavelength) using ultrashort laser pulses (~120 fs). Important parameters that characterise the optical limiting (nonlinear absorption coefficient β, and saturation intensity, Isat) are determined by the Intensity-scan (I-scan) method in the investigated materials. The results of our experimental investigation reveal, for the first time to the best of our knowledge, a significant absorptive nonlinear optical response of spirulina natural dye and its potential for optical limiting. The favourable effect of the DNA biopolymer on the nonlinear optical response of the investigated solutions, resulting in the enhancement of their nonlinear optical properties, is demonstrated. Thus, the investigated DNA–CTMA–spirulina liquid compound is a promising novel “green” material for passive optical limiting devices to protect sensitive optical and optoelectronic devices from high-intensity near-infrared laser beams. Also, from dye-doped DNA compounds as solutions it is possible to obtain, by different methods (e.g., spin-coating, drop casting), thin films as the base of all-optical solid-state limiting devices. Full article
Show Figures

Figure 1

27 pages, 9610 KB  
Article
Wear Performance of a Physical Vapour Deposition-Coated, Spark Plasma Sintered TiB2/Ti Composite Lubricated with Externally Introduced hBN at Temperatures up to 900 °C
by Remigiusz Michalczewski, Maciej Łuszcz, Marek Kalbarczyk, Zbigniew Słomka, Edyta Osuch-Słomka, Jarosław Molenda, Le Liu, Maksim Antonov, Irina Hussainova and Manel Rodríguez Ripoll
Materials 2025, 18(23), 5274; https://doi.org/10.3390/ma18235274 - 21 Nov 2025
Viewed by 632
Abstract
In this paper, the achieved state-of-the-art understanding regarding the wear behaviour of various PVD (physical vapour deposition) coatings deposited on TiB2/Ti composites produced by SPS (spark plasma sintering) is presented. The objective of this paper is to investigate the wear behaviour [...] Read more.
In this paper, the achieved state-of-the-art understanding regarding the wear behaviour of various PVD (physical vapour deposition) coatings deposited on TiB2/Ti composites produced by SPS (spark plasma sintering) is presented. The objective of this paper is to investigate the wear behaviour of various PVD coatings deposited on TiB2/Ti composites manufactured by SPS, when lubricated with hexagonal boron nitride (hBN) as an external solid lubricant in the range from room temperature up to 900 °C in friction contacts under extreme pressure and with oscillation relative motion. Four multicomponent and multilayer coatings were investigated based on AlCrN and TiCrN coatings with TiCrN-AlCrN/AlCrTiN/Si3N4 interlayers and various external layers (AlCrN, Si3N4, AlCrTiSiN, and AlCrTiSiN gradient with increasing oxygen gradient replacing nitrogen). The wear tests were performed by means of a ball-on-disc SRV friction and wear tester using reciprocating motion of the Si3N4 ball sliding against a coated disc from room temperature up to 900 °C. The best protection against wear and oxidation at higher temperatures (even up to 900 °C) was achieved for coatings with AlCrN and AlTiCrN external layers, and hBN lubricant was used simultaneously. Full article
Show Figures

Figure 1

28 pages, 7715 KB  
Article
Functional pH-Responsive Nanoparticles for Immune Reprogramming in MSS Colorectal Cancer via ER Stress-Induced Proteostasis Disruption, PD-L1-Targeting miRNA, and TLR7 Activation
by Yu-Li Lo, Hua-Ching Lin, Ching-Yao Li, Bryant Huang, Ching-Ping Yang, Hui-Yen Chuang and Tsui-Fen Chou
Pharmaceutics 2025, 17(11), 1503; https://doi.org/10.3390/pharmaceutics17111503 - 20 Nov 2025
Viewed by 1007
Abstract
Background: Colorectal cancer (CRC), particularly the microsatellite-stable (MSS) subtype, remains largely unresponsive to immune checkpoint inhibitors (ICIs) due to immune escape, tumor-associated macrophage (TAM) enrichment, and cytokine-driven suppression that sustain a TAM-dominant tumor microenvironment (TME). To overcome these barriers, a pH-responsive solid lipid [...] Read more.
Background: Colorectal cancer (CRC), particularly the microsatellite-stable (MSS) subtype, remains largely unresponsive to immune checkpoint inhibitors (ICIs) due to immune escape, tumor-associated macrophage (TAM) enrichment, and cytokine-driven suppression that sustain a TAM-dominant tumor microenvironment (TME). To overcome these barriers, a pH-responsive solid lipid nanoparticle (SLN) system was engineered to co-deliver CB-5083 (a VCP/p97 inhibitor), miR-142 (a PD-L1-targeting microRNA), and imiquimod (R, a TLR7 agonist) for spatially confined induction of endoplasmic reticulum stress (ERS) and immune reprogramming in MSS CRC. Methods: The SLNs were coated with PEG–PGA for pH-triggered de-shielding and functionalized with PD-L1- and EGFR-binding peptides plus an ER-homing peptide, enabling tumor-selective and subcellular targeting. Results: The nanoplatform displayed acid-triggered PEG–PGA detachment, selective CRC/TAM uptake, and ER localization. CB-mediated VCP inhibition activated IRE1α/XBP1s/LC3II, PERK/eIF2α/ATF4/CHOP, and JNK/Beclin signaling, driving apoptosis and autophagy, while miR-142 suppressed PD-L1 expression and epithelial–mesenchymal transition markers. R facilitated dendritic cell maturation and M1 polarization. Combined CB + miR + R/SLN-CSW suppressed IL-17, G-CSF, and CXCL1, increased infiltration of CD4+ and CD8+ T cells, reduced Tregs and M2-TAMs, and inhibited tumor growth in CT-26 bearing mice. The treatment induced immunogenic cell death, reprogramming the TME into a T cell-permissive state and conferring resistance to tumor rechallenge. Biodistribution analysis confirmed tumor-preferential accumulation with minimal off-target exposure, and biosafety profiling demonstrated low systemic toxicity. Conclusions: This TME-responsive nanoplatform therefore integrates ERS induction, checkpoint modulation, and cytokine suppression to overcome immune exclusion in MSS CRC, representing a clinically translatable strategy for chemo-immunotherapy in immune-refractory tumors. Full article
Show Figures

Graphical abstract

8 pages, 1559 KB  
Proceeding Paper
Chiral DPP Thin Films: Unlocking Circularly Polarized Light for Next-Gen Optoelectronics
by Alessia Arrigoni, Simone Molinaro, Federico Turco, Eleonora Sofia Cama, Chiara Botta, Umberto Giovanella, Benedetta Maria Squeo and Mariacecilia Pasini
Chem. Proc. 2025, 18(1), 31; https://doi.org/10.3390/ecsoc-29-26916 - 13 Nov 2025
Viewed by 277
Abstract
We report the synthesis and characterization of the two enantiomeric forms of a thienyl-substituted diketopyrrolopyrrole (DPP) derivative bearing chiral alkyl chains. Thin films were prepared either by spin-coating and drop-casting and analyzed by UV–Visible absorption, electronic circular dichroism (ECD), and circularly polarized (CP) [...] Read more.
We report the synthesis and characterization of the two enantiomeric forms of a thienyl-substituted diketopyrrolopyrrole (DPP) derivative bearing chiral alkyl chains. Thin films were prepared either by spin-coating and drop-casting and analyzed by UV–Visible absorption, electronic circular dichroism (ECD), and circularly polarized (CP) luminescence (CPL). ECD spectra confirmed the opposite chirality of the (R) and (S) isomers, while CPL measurements of the S enantiomer demonstrated solid-state chiroptical activity. Preliminary device tests showed promising optoelectronic behavior, highlighting these chiral DPP materials as potential candidates for CP organic light-emitting diodes (CP-OLEDs) applications, combining strong chiroptical response with good film quality. Full article
Show Figures

Figure 1

15 pages, 6711 KB  
Article
Influence of Titanium Content on the Microstructure and Tensile Behavior of Cold-Spray Additively Manufactured Copper-Titanium Composites
by Jia Cheng, Jibo Huang, Haifan Li, Kejie Zhang, Tao Chen, Haiming Lan and Renzhong Huang
Materials 2025, 18(22), 5100; https://doi.org/10.3390/ma18225100 - 10 Nov 2025
Viewed by 482
Abstract
Cold-spray additive manufacturing (CSAM) is an emerging solid-state deposition technology that effectively mitigates common defects associated with conventional thermal processes, such as oxidation, phase transformation, and residual stresses. In this study, copper–titanium (Cu-Ti) composite coatings were fabricated via high-pressure CSAM using mixed powders [...] Read more.
Cold-spray additive manufacturing (CSAM) is an emerging solid-state deposition technology that effectively mitigates common defects associated with conventional thermal processes, such as oxidation, phase transformation, and residual stresses. In this study, copper–titanium (Cu-Ti) composite coatings were fabricated via high-pressure CSAM using mixed powders with Ti contents of 3, 6, and 10 wt.%. The influence of Ti content and post-heat treatment (350–400 °C) on the tensile properties of the composites was systematically investigated. The results indicate that the ultimate tensile strength (UTS) remained consistently within the range of 265–285 MPa under all conditions, showing only a mild positive correlation with Ti content. In contrast, ductility was significantly influenced by Ti addition, with elongation decreasing markedly as the Ti content increased. Notably, the composite with 3 wt.% Ti heat-treated at 400 °C exhibited a well-balanced combination of tensile strength (270 MPa) and ductility (20% elongation). These findings demonstrate that CSAM-fabricated Cu-Ti composites possess attractive mechanical properties, which can be tailored through Ti content and heat treatment. Full article
Show Figures

Figure 1

18 pages, 5120 KB  
Article
Harmonics-Assisted 50-Fold Optical Phase Amplification with a Self-Mixing Thin-Slice Nd:GdVO4 Laser with Wide-Aperture Laser-Diode Pumping
by Kenju Otsuka and Seiichi Sudo
Photonics 2025, 12(11), 1098; https://doi.org/10.3390/photonics12111098 - 7 Nov 2025
Viewed by 453
Abstract
Harmonic-assisted phase amplification was investigated in a 300-µm-thick Nd:GdVO4 laser with coated end mirrors in the self-mixing interference scheme. The key event is the self-induced hybrid skew cosh Gaussian (abbreviated as skew ch-G)-type transverse mode oscillation in a thin-slice solid-state laser with [...] Read more.
Harmonic-assisted phase amplification was investigated in a 300-µm-thick Nd:GdVO4 laser with coated end mirrors in the self-mixing interference scheme. The key event is the self-induced hybrid skew cosh Gaussian (abbreviated as skew ch-G)-type transverse mode oscillation in a thin-slice solid-state laser with wide-aperture laser-diode pumping. The present hybrid skew-chG mode was proved to be formed by the locking of nearly frequency-degenerate TEM00 and annular fields. The resultant modal-interference-induced gain modulation at the beat frequency between the two modal fields, which is far above the relaxation oscillation frequency, increased the experimental self-mixing modulation bandwidth accordingly. Fifty-fold phase amplification was achieved in a strong optical feedback regime. Full article
Show Figures

Figure 1

56 pages, 3273 KB  
Systematic Review
Artificial Intelligence and Machine Learning in Cold Spray Additive Manufacturing: A Systematic Literature Review
by Habib Afsharnia and Javaid Butt
J. Manuf. Mater. Process. 2025, 9(10), 334; https://doi.org/10.3390/jmmp9100334 - 13 Oct 2025
Cited by 1 | Viewed by 2216
Abstract
Due to its unique benefits over conventional subtractive manufacturing, additive manufacturing methods continue to attract interest in both academia and industry. One such method is called Cold Spray Additive Manufacturing (CSAM), a solid-state coating deposition technology to manufacture repair metallic components using a [...] Read more.
Due to its unique benefits over conventional subtractive manufacturing, additive manufacturing methods continue to attract interest in both academia and industry. One such method is called Cold Spray Additive Manufacturing (CSAM), a solid-state coating deposition technology to manufacture repair metallic components using a gas jet and powder particles. CSAM offers low heat input, stable phases, suitability for heat-sensitive substrates, and high deposition rates. However, persistent challenges include porosity control, geometric accuracy near edges and concavities, anisotropy, and cost sensitivities linked to gas selection and nozzle wear. Interdisciplinary research across manufacturing science, materials characterisation, robotics, control, artificial intelligence (AI), and machine learning (ML) is deployed to overcome these issues. ML supports quality prediction, inverse parameter design, in situ monitoring, and surrogate models that couple process physics with data. To demonstrate the impact of AI and ML on CSAM, this study presents a systematic literature review to identify, evaluate, and analyse published studies in this domain. The most relevant studies in the literature are analysed using keyword co-occurrence and clustering. Four themes were identified: design for CSAM, material analytics, real-time monitoring and defect analytics, and deposition and AI-enabled optimisation. Based on this synthesis, core challenges are identified as small and varied datasets, transfer and identifiability limits, and fragmented sensing. Main opportunities are outlined as physics-based surrogates, active learning, uncertainty-aware inversion, and cloud-edge control for reliable and adaptable ML use in CSAM. By systematically mapping the current landscape, this work provides a critical roadmap for researchers to target the most significant challenges and opportunities in applying AI/ML to industrialise CSAM. Full article
Show Figures

Figure 1

16 pages, 4514 KB  
Article
LATP-Enhanced Polymer Electrolyte for an Integrated Solid-State Battery
by Xianzheng Liu, Nashrah Hani Jamadon, Liancheng Zheng, Rongji Tang and Xiangjun Ren
Polymers 2025, 17(19), 2673; https://doi.org/10.3390/polym17192673 - 2 Oct 2025
Viewed by 1608
Abstract
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti [...] Read more.
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti1.7(PO4)3 fillers into a polyethylene oxide matrix, effectively reducing crystallinity, enhancing mechanical robustness, and providing additional Li+ transport channels. The PELT electrolyte exhibited an electrochemical stability window of 4.9 V, an ionic conductivity of 1.2 × 10−4 S·cm−1 at 60 °C, and a Li+ transference number (tLi+) of 0.46, supporting stable Li plating/stripping for over 600 h in symmetric batteries. More importantly, to address poor electrode–electrolyte contact in conventional layered cells, we proposed an integrated electrode–electrolyte architecture by in situ coating the PELT precursor directly onto LiFePO4 cathodes. This design minimized interfacial impedance, improved ion transport, and enhanced electrochemical stability. The integrated PELT/LFP battery retained 74% of its capacity after 200 cycles at 1 A·g−1 and showed superior rate capability compared with sandwich-type batteries. These results highlight that coupling LATP-enhanced polymer electrolytes with an integrated architecture is a promising pathway toward high-safety, high-performance solid-state lithium-ion batteries. Full article
Show Figures

Figure 1

11 pages, 6912 KB  
Article
Sinter-Bonding Characteristics in Air of Decomposable Sheet Material Containing Bimodal-Sized Cu@Ag Particles for Die Attachment in High-Heat-Flux Devices
by Hye-Min Lee and Jong-Hyun Lee
Metals 2025, 15(10), 1098; https://doi.org/10.3390/met15101098 - 1 Oct 2025
Cited by 1 | Viewed by 577
Abstract
A sheet-type sinter-bonding material was developed to form thermally stable and highly heat-conductive joints suitable for wide-bandgap (WBG) semiconductor dies and high-heat-flux devices, and its bonding characteristics were investigated. To enhance the cost-competitiveness of the bonding material, Ag-coated Cu (Cu@Ag) particles were employed [...] Read more.
A sheet-type sinter-bonding material was developed to form thermally stable and highly heat-conductive joints suitable for wide-bandgap (WBG) semiconductor dies and high-heat-flux devices, and its bonding characteristics were investigated. To enhance the cost-competitiveness of the bonding material, Ag-coated Cu (Cu@Ag) particles were employed as fillers instead of conventional Ag particles. To facilitate accelerated sintering, a bimodal particle size distribution comprising several micron- and submicron-sized particles was adopted by synthesizing and mixing both size ranges. For sheet fabrication, a decomposable resin was used as the essential binder component, which could be removed during the bonding process via thermal decomposition. This approach enabled the formation of a sintered bond line composed entirely of Cu@Ag particles. Thermogravimetric and differential thermal analyses revealed that the decomposition of the resin in the sheet occurred within the temperature range of 290–340 °C. Consequently, sinter-bonding conducted at 350 °C and 370 °C exhibited significantly superior bondability compared to bonding at 330 °C. In particular, sinter-bonding at 350 °C for just 60 s resulted in a highly densified joint microstructure with a low porosity of 7.6% and high shear strength exceeding 25 MPa. The formation of the bond line was initiated by sintering between the outer Ag shells of the adjacent particles. However, with increasing bonding time or temperature, sintering driven by Cu diffusion from the particle cores to the outer Ag shells, particularly in the submicron-sized particles, was progressively enhanced. These results obtained from the fabricated sheet-type materials demonstrate that, even with the use of resin, rapid solid-state sintering between filler particles combined with the removal of resin through decomposition enables the formation of a metallic bond line with excellent thermal conductivity. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

Back to TopTop