Sinter-Bonding Characteristics in Air of Decomposable Sheet Material Containing Bimodal-Sized Cu@Ag Particles for Die Attachment in High-Heat-Flux Devices
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of Bimodal Cu@Ag Particles
2.2. Fabrication of the Bonding Sheet
2.3. Thermal Properties of the Bonding Sheet and Compression Sinter-Bonding Process
3. Results and Discussion
3.1. Characteristics of the Bimodal Cu@Ag Particles
3.2. Thermal Properties of the Bonding Sheet
3.3. Sinter-Bonding Properties of the Bonding Sheet
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knoerr, M.; Kraft, S.; Schletz, A. Reliability assessment of sintered nano-silver die attachment for power semiconductors. In Proceedings of the 12th Electronics Packaging Technology Conference, Singapore, 8–10 December 2010; pp. 56–61. [Google Scholar]
- Jakubowska, M.; Jarosz, M.; Kiełbasinski, K.; Młożniak, A. New conductive thick-film paste based on silver nanopowder for high power and high temperature applications. Microelectron. Reliab. 2011, 51, 1235–1240. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, C.; Suetake, A.; Hsieh, M.-C.; Suganuma, K. Reliability of Ag sinter-joining die attach under harsh thermal cycling and power cycling tests. J. Electron. Mater. 2021, 50, 6597–6606. [Google Scholar] [CrossRef]
- Tobita, M.; Yasuda, Y.; Ide, E.; Ushio, J.; Morita, T. Optimal design of coating material for nanoparticles and its application for low-temperature interconnection. J. Nanopart. Res. 2010, 12, 2135–2144. [Google Scholar] [CrossRef]
- Bai, J.G.; Lu, G.-Q. Thermomechanical reliability of low-temperature sintered silver die-attachment. In Proceedings of the IEEE Transactions on Device and Materials Reliability, Chicago, IL, USA, 26–28 September 2006. [Google Scholar]
- Siow, K.S.; Lin, Y.T. Identifying the development state of sintered silver (Ag) as a bonding material in the microelectronic packaging via a patent landscape study. J. Electron. Packag. 2016, 138, 020804. [Google Scholar] [CrossRef]
- Wan, M.F.; Chiew, Y.H.; Tey, Y.Y. Detailed analysis of conductive die attach film in miniature package. In Proceedings of the 2022 IEEE 39th International Electronics Manufacturing Technology Conference (IEMT), Kuala Lumpur, Putrajaya, Malaysia, 19–21 October 2022. [Google Scholar]
- Seng, A.L.W.; Yu, L.; Shyan, P.H.; Murali, S.; Kumar, B.S.; Kang, S.S. Non-pressure Ag sinter paste without residual bleed-out: Studied on different Au based substrates. In Proceedings of the 2022 IEEE 24th Electronics Packaging Technology Conference (EPTC), Singapore, 7–9 December 2022. [Google Scholar]
- Wang, X.; Liu, L.; Liu, J.; Zhang, J.; Du, X.; Zhang, Z. Optical measurement for the alarming height of silver paste overflow surrounding APD chip in optical component packaging. IEEE Trans. Instrum. Meas. 2025, 74, 5012310. [Google Scholar] [CrossRef]
- Yan, H.; Mei, Y.; Li, X.; Li, H.; Lu, G.-Q. Effect of as-printed bondline thickness on assembling high power laser diodes by sintering of nanosilver paste. In Proceedings of the 17th International Conference on Electronic Packaging Technology (ICEPT), Wuhan, China, 16–19 August 2016. [Google Scholar]
- Dai, J.; Li, J.; Agyakwa, P.; Corfield, M.; Johnson, C.M. Shear strength of die attachments prepared using dry nanosilver film by a time-reduced sintering process. Microelectron. Reliab. 2020, 111, 113740. [Google Scholar] [CrossRef]
- Yamagishi, M.; Ishii, Y.; Kirihata, T.; Miyawaki, M. A novel ultra-thin dicing die attach film for various dicing processes. In Proceedings of the 2024 IEEE 10th Electronics System-Integration Technology Conference (ESTC), Berlin, Germany, 11–13 September 2024. [Google Scholar]
- Le Henaff, F.; Greca, G.; Salerno, P.; Mathieu, O.; Reger, M.; Khaselev, O. Reliability of double side silver sintered devices with various substrate metallization. In Proceedings of the PCIM Europe; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 10–12 May 2016. [Google Scholar]
- Khazaka, R.; Thollin, B.; Mendizabal, L.; Henry, D.; Khazaka, R.; Hanna, R. Characterization of nanosilver dry films for high-temperature applications. IEEE Trans. Device Mater. Reliab. 2015, 15, 149–155. [Google Scholar] [CrossRef]
- Greca, G.; Salerno, P.; Durham, J.; Le Henaff, F.; Harel, J.C.; Hamelink, J. Double side sintered IGBT 650 V/200 A in a TO-247 package for extreme performance and reliability. In Proceedings of the 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC), Singapore, 30 November–3 December 2016. [Google Scholar]
- Choi, E.B.; Lee, J.-H. Submicron Ag-coated Cu particles and characterization methods to evaluate their quality. J. Alloys Compd. 2016, 689, 952–958. [Google Scholar] [CrossRef]
- De Oliveira, G.M.; Barbosa, L.L.; Broggi, R.L.; Carlos, I.A. Voltammetric study of the influence of EDTA on the silver electrodeposition and morphological and structural characterization of silver films. J. Electroanal. Chem. 2005, 578, 151–158. [Google Scholar] [CrossRef]
- Kim, Y.J.; Eom, Y.-S.; Choi, K.-S.; Lee, J.-H. Suppression of Ag dewetting and sinterability improvement of submicron Ag-coated Cu particles as fillers in sintering paste by surface modification with stearic acid. Trans. Nonferrous Met. Soc. China 2025, 35, 2008–2020. [Google Scholar] [CrossRef]
- Kamat, G.A.; Yan, C.; Osowiecki, W.T.; Moreno-Hernandez, I.A.; Ledendecker, M.; Alivisatos, A.P. Self-limiting shell formation in Cu@Ag core–shell nanocrystals during galvanic replacement. J. Phys. Chem. Lett. 2020, 11, 5318–5323. [Google Scholar] [CrossRef] [PubMed]
- Kociołek-Balawejder, E.; Stanisławska, E.; Jacukowicz-Sobala, I.; Mucha, I. Copper rich composite materials based on carboxylic cation exchangers and their thermal transformation. Polymers 2021, 13, 3199. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-G.; Yeh, C.S. The effects of copper oxides on the thermal degradation of bismaleimide triazine prepreg. Polym. Degrad. Stab. 2004, 83, 529–537. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, H.-J.; Kim, J.-H.; Kim, J.-H.; Kang, S.-H.; Ryu, J.-H.; Park, N.-K.; Yun, D.-S.; Bae, J.-W. Noble-metal-based catalytic oxidation technology trends for volatile organic compound (VOC) removal. Catalysts 2022, 12, 63. [Google Scholar] [CrossRef]
- Liu, R.; Wu, H.; Shi, J.; Xu, X.; Zhao, D.; Ng, Y.H.; Zhang, M.; Liu, S.; Ding, H. Recent progress on catalysts for catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. 2022, 12, 6945–6991. [Google Scholar] [CrossRef]
- Nakako, H.; Natori, M.; Ishikawa, D.; Kazuhiko, M.; Matsushima, S. Relationship between the porosity in Cu sintered bonding and thermal cycle reliability. In Proceedings of the PCIM Europe; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nürnberg, Germany, 11–13 June 2024. [Google Scholar]
- Wu, Y.; Zou, G.; Wang, S.; Guo, W.; Zhang, H.; Peng, P.; Feng, B.; Liu, L. Rapid and low temperature sintering bonding using Cu nanoparticle film for power electronic packaging. Appl. Surf. Sci. 2022, 603, 154422. [Google Scholar] [CrossRef]
- Nakako, H.; Natori, M.; Ishikawa, D.; Tanaka, T.; Ejiri, Y. Copper sintering pastes for die bonding. In Proceedings of the PCIM Europe Digital Days 2021, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Online, 3–7 May 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-M.; Lee, J.-H. Sinter-Bonding Characteristics in Air of Decomposable Sheet Material Containing Bimodal-Sized Cu@Ag Particles for Die Attachment in High-Heat-Flux Devices. Metals 2025, 15, 1098. https://doi.org/10.3390/met15101098
Lee H-M, Lee J-H. Sinter-Bonding Characteristics in Air of Decomposable Sheet Material Containing Bimodal-Sized Cu@Ag Particles for Die Attachment in High-Heat-Flux Devices. Metals. 2025; 15(10):1098. https://doi.org/10.3390/met15101098
Chicago/Turabian StyleLee, Hye-Min, and Jong-Hyun Lee. 2025. "Sinter-Bonding Characteristics in Air of Decomposable Sheet Material Containing Bimodal-Sized Cu@Ag Particles for Die Attachment in High-Heat-Flux Devices" Metals 15, no. 10: 1098. https://doi.org/10.3390/met15101098
APA StyleLee, H.-M., & Lee, J.-H. (2025). Sinter-Bonding Characteristics in Air of Decomposable Sheet Material Containing Bimodal-Sized Cu@Ag Particles for Die Attachment in High-Heat-Flux Devices. Metals, 15(10), 1098. https://doi.org/10.3390/met15101098