Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (677)

Search Parameters:
Keywords = solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2769 KiB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Viewed by 192
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

12 pages, 2107 KiB  
Article
The Impact of Harvest Season on Oolong Tea Aroma Profile and Quality
by Chao Zheng, Shuilian Gao, Xiaxia Wang, Zhenbiao Yang, Junling Zhou and Ying Liu
Plants 2025, 14(15), 2378; https://doi.org/10.3390/plants14152378 - 1 Aug 2025
Viewed by 135
Abstract
The impact of seasonality on the aroma quality of tea has been documented in various tea types, but not specifically in oolong tea. This study is the first to explore the complex relationships between seasonality, volatile compounds, and aroma quality in oolong tea. [...] Read more.
The impact of seasonality on the aroma quality of tea has been documented in various tea types, but not specifically in oolong tea. This study is the first to explore the complex relationships between seasonality, volatile compounds, and aroma quality in oolong tea. Using Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry (HS-SPME-GC-MS)-based untargeted metabolomics, we analyzed 266 samples of Tieguanyin oolong tea. The data identified linalool, linalool oxides (trans-linalool oxide (furanoid) and trans-linalool oxide (pyranoid)), and their metabolites (diendiol I; hotrienol) as key seasonal discriminants. Four out of the top ten key differential compounds for distinguishing aroma scores were metabolites from fatty acid degradation, namely trans-3-hexenyl butyrate, trans-2-hexenyl hexanoate, hexyl hexanoate, and hexyl 2-methyl butyrate. Approximately one-fifth of the seasonal discriminant volatile compounds were significant in influencing aroma quality. Overall, the impact of seasonality on the aroma quality of finished Tieguanyin oolong tea is marginal. These findings enhance our understanding of the interplay between seasonal variations, volatile composition, and aroma quality in oolong tea. Full article
(This article belongs to the Special Issue Production, Quality and Function of Tea)
Show Figures

Figure 1

27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 303
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

15 pages, 1565 KiB  
Article
Volatile Compounds Profiling of Fresh R. alba L. Blossom by Headspace—Solid Phase Microextraction and Gas Chromatography
by Daniela Antonova-Nedeltcheva, Ana Dobreva, Kamelia Gechovska and Liudmil Antonov
Molecules 2025, 30(15), 3102; https://doi.org/10.3390/molecules30153102 - 24 Jul 2025
Viewed by 277
Abstract
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for [...] Read more.
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for new aromatic alternatives. Therefore, the purpose of the current research is to evaluate the volatile compounds profile of fresh R. alba L. flowers using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS). More than 75 individual compounds were identified and quantified using HS-SPME-GC/MS. The study revealed that the aroma-bearing fraction of rose volatiles consists mainly of monoterpene alcohols; 2-phenylethanol was the most abundant component (8.4–33.9%), followed by geraniol (12.8–32.5%) and citronellol + nerol (17.7–26.5%). Linalool, α-pinene, β-myrcene, and rose oxides were also observed in low concentrations. The stearopten fraction in the HS phase was observed in low concentration, with main representatives nonadecane + nonadecene, heptadecane, heneicosane, and tricosane. The HS-GC profile of the R. alba fresh flowers shows distinct differences in relative abundance of the components between the two studied clones of the population, as well as between volatiles in petals and in the whole blossom. The absence of some undesirable components, such as allergenic and potentially carcinogenic methyl eugenol in fresh R. alba blossom, makes white oil-bearing rose a promising alternative to R. damascena in perfumery, natural cosmetics, and aromatherapy. Full article
Show Figures

Figure 1

14 pages, 1840 KiB  
Article
Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes
by Gonçalo Jasmins, Tânia Azevedo, José S. Câmara and Rosa Perestrelo
Separations 2025, 12(8), 188; https://doi.org/10.3390/separations12080188 - 22 Jul 2025
Viewed by 202
Abstract
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum [...] Read more.
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum var. cerasiforme, and S. betaceum—encompassing six distinct varieties, through the application of headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS). A total of 55 volatile organic compounds (VOCs) spanning multiple chemical classes were identified, of which only 28 were ubiquitously present across all varieties examined. Carbonyl compounds constituted the predominant chemical family, with hexanal and (E)-2-hexenal emerging as putative key contributors to the characteristic green and fresh olfactory notes. Notably, esters were found to dominate the unique volatile fingerprint of cherry tomatoes, particularly methyl 2-hydroxybenzoate, while Kumato and Roma varieties exhibited elevated levels of furanic compounds. Multivariate statistical analyses, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), demonstrated clear varietal discrimination and identified potential aroma-associated biomarkers such as phenylethyl alcohol, 3-methyl-1-butanol, hexanal, (E)-2-octenal, (E)-2-nonenal, and heptanal. Collectively, these findings underscore the utility of volatilomic fingerprint as a robust tool for varietal identification and quality control within the food industry. Full article
Show Figures

Graphical abstract

69 pages, 837 KiB  
Review
Analytical Approaches Using GC-MS for the Detection of Pollutants in Wastewater Towards Environmental and Human Health Benefits: A Comprehensive Review
by Gonçalo Catarro, Rodrigo Pelixo, Mariana Feijó, Tiago Rosado, Sílvia Socorro, André R. T. S. Araújo and Eugenia Gallardo
Chemosensors 2025, 13(7), 253; https://doi.org/10.3390/chemosensors13070253 - 12 Jul 2025
Viewed by 524
Abstract
The analysis of wastewater is essential in environmental chemistry, particularly for monitoring emerging contaminants and assessing ecological impacts. In this context, hyphenated chromatographic techniques are widely used, with liquid chromatography being one of the most common. However, gas chromatography coupled with mass spectrometry [...] Read more.
The analysis of wastewater is essential in environmental chemistry, particularly for monitoring emerging contaminants and assessing ecological impacts. In this context, hyphenated chromatographic techniques are widely used, with liquid chromatography being one of the most common. However, gas chromatography coupled with mass spectrometry (GC-MS) remains a valuable tool in this field due to its sensitivity, selectivity, and widespread availability in most laboratories. This review examines the application of validated methods for wastewater analysis using GC-MS (MS), highlighting its relevance in identifying micropollutants such as pharmaceuticals, drugs of abuse, pesticides, hormones, and industrial by-products. The validation of analytical methods is crucial to ensuring the reliability and reproducibility of data and the accurate monitoring of contaminants. Key parameters, including sample volume, recovery efficiency, and detection and quantification limits, are discussed, evaluating different approaches to optimising the identification of different classes of contaminants. Additionally, this study explores advances in sample preparation techniques, such as solid-phase microextraction (SPME), dispersive liquid–liquid microextraction (DLLME), and solid-phase extraction (SPE), which enhance efficiency and minimise interferences in the analysis. Finally, future perspectives are discussed, including the integration of emerging technologies such as high-resolution mass spectrometry, the miniaturisation of GC systems, and the development of faster and more sustainable analytical methods. Full article
Show Figures

Figure 1

16 pages, 2353 KiB  
Article
New Contributions to Deepen the Quality-Based Safety Assessment in the Consumption of Edible Nasturtium Flowers—The Role of Volatilome
by Rosa Perestrelo, Maria da Graça Lopes, Alda Pereira da Silva, Maria do Céu Costa and José S. Câmara
Life 2025, 15(7), 1053; https://doi.org/10.3390/life15071053 - 30 Jun 2025
Viewed by 636
Abstract
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high [...] Read more.
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high acceptability and dietary safety, we conducted a comprehensive volatilomic and phytochemical analysis of T. majus flowers and their juice. Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was employed to establish the volatilomic fingerprint of floral tissues and juice. Our analysis revealed a striking dominance of benzyl isothiocyanate and benzonitrile, which together accounted for 88% of the total volatile organic metabolites (VOMs) in the juice, 67% and 21%, respectively. In the floral tissues, benzyl isothiocyanate was even more prevalent, representing 95% of the total volatile profile. Complementary in vitro assays confirmed a substantial total phenolic content and strong antioxidant activity in the flowers. These findings provide a robust chemical rationale for the potential health-promoting attributes of T. majus, while identifying key volatilomic markers that could support future functional and safety claims. In parallel, a benefit–risk assessment framework is discussed in accordance with the European Food Safety Authority (EFSA) guidelines for the Qualified Presumption of Safety (QPS) of edible flowers. Given that both benzyl isothiocyanate and benzonitrile are classified as Cramer Class III substances, a conservative intake threshold of 1.5 μg/kg body weight per day is proposed. To enable quantitative exposure modeling and support the derivation of a tolerable daily intake (TDI), future studies should integrate organic solvent-based extraction methodologies to estimate the total volatile load per gram of floral biomass. This would align risk–benefit assessments with the EFSA’s evolving framework for novel foods and functional ingredients. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

14 pages, 4339 KiB  
Article
Discrimination of Smoke-Exposed Pinot Noir Wines by Volatile Phenols and Volatile Phenol-Glycosides
by Armando Alcazar-Magana, Ruiwen Yang, Michael C. Qian and Yanping L. Qian
Molecules 2025, 30(13), 2719; https://doi.org/10.3390/molecules30132719 - 24 Jun 2025
Viewed by 335
Abstract
This study investigated the correlation between five primary volatile phenols (VPs) and their glycosides in smoke-exposed and non-smoke-exposed Pinot noir wines to assess and identify potential markers for smoke taint. The results showed that all putative VP-glycosides in smoke-exposed wines were higher than [...] Read more.
This study investigated the correlation between five primary volatile phenols (VPs) and their glycosides in smoke-exposed and non-smoke-exposed Pinot noir wines to assess and identify potential markers for smoke taint. The results showed that all putative VP-glycosides in smoke-exposed wines were higher than in non-smoke-exposed wines, with a fold change ranging from 2.11 to 31.88 for the top fifteen differentiations. VP-glycosides showed strong positive correlations among themselves, with correlation coefficients of 0.94 for hexose-guaiacol vs. pentose (P)-hexose (H)-cresol and 0.92 for syringyl-β-D-glucopyranoside vs. H-P-4-methylguaiacol. VP-glycosides also showed relatively high correlations with free and strong acid-hydrolyzed VPs. The correlation coefficient between H-P-guaiacol and free-form guaiacol is 0.71, and between H-P-guaiacol and total guaiacol is 0.78. The strong correlation suggests that these compounds are interconnected and regulated by the severity of smoke exposure. Multivariate analysis effectively differentiated smoke-exposed wines from non-smoke-exposed ones. However, more research is needed to fill the gaps in understanding smoke-derived compounds. Full article
Show Figures

Figure 1

14 pages, 2626 KiB  
Article
Aroma-Driven Differentiation of Wuyi Shuixian Tea Grades: The Pivotal Role of Linalool Revealed by OAV and Multivariate Analysis
by Mengzhen Zhang, Ying Zhang, Yeyun Lin, Yuhua Wang, Jishuang Zou, Miaoen Qiu, Qingxu Zhang, Jianghua Ye, Xiaoli Jia, Haibin He, Haibin Wang and Qi Zhang
Foods 2025, 14(13), 2169; https://doi.org/10.3390/foods14132169 - 21 Jun 2025
Viewed by 349
Abstract
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, [...] Read more.
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, and Non-award SD) using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) analysis, and multivariate statistical methods. A total of 159 volatile compounds were identified, with similar compound categories but distinct concentration gradients between grades. OAV-splitting analysis (based on OAV ≥ 1 as the threshold for aroma activity) identified β-ionone (fruity), octanal (fatty), and linalool (floral) as core aroma-active contributors, as their OAV values significantly exceeded 10 in awarded grades (SA, SB, SC), indicating dominant roles in sensory perception. Notably, linalool, a floral marker, showed a concentration gradient (SA > SB > SC) and was absent in SD, serving as a critical determinant of grade differentiation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) further distinguished awarded grades (SA, SB, SC) by balanced fruity, floral, and woody notes, while SD lacked floral traits and exhibited burnt aromas. This classification was supported by hierarchical clustering analysis (HCA) of volatile profiles and principal component analysis (PCA). Electronic nose data validated these findings, showing strong correlations between sensor responses (W5S/W2W) and key compounds like hexanal and β-ionone. This study elucidates the molecular basis of aroma-driven quality grading in Wuyi Shuixian tea, providing a scientific framework for optimizing processing techniques and enhancing quality evaluation standards. The integration of chemical profiling with sensory attributes advances precision in tea industry practices, bridging traditional grading with objective analytical metrics. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

13 pages, 2707 KiB  
Article
Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas
by Rocío De la Peña-Armada, Roberta Ascrizzi, Rocio Alarcon, Michelle Viteri, Guido Flamini and Jose M. Prieto
Beverages 2025, 11(4), 93; https://doi.org/10.3390/beverages11040093 - 20 Jun 2025
Viewed by 565
Abstract
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring [...] Read more.
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring commercial farm using standard practises and a European commercial cacao powdered beverage. The overall metabolite profile of the 70% aq acetone sample cocoa extracts was analysed using high-performance TLC analyses (HPTLC), and the xanthine alkaloids were analysed using quantitative liquid chromatography–UV photodiode array (HPLC-DAD) analyses. The volatile fraction in the headspace of the freshly ground cocoa was subjected to solid phase micro-extraction and analysed by gas chromatography–mass spectrometry (HS-SPME/GC-MS). Total polyphenol content was determined by the Folin–Ciocalteu method. Despite the reduced production of cocoa by the EETP801 cultivar in comparison with the CCN51 cultivar, the obtained produce is significantly richer in theobromine (130 mg vs. 170 mg per g of cacao), with CCN51 having a double concentration of theophylline (12.6 vs. 6.5 mg per g of cacao). Qualitatively, the two Amazonian cocoa samples had a similar polyphenolic composition (per the HPTLC fingerprint). HS-SPME/GC-MS analyses revealed that all the samples show a spontaneous emission profile mainly rich in non-terpene derivatives, of which hydrocarbons and pyrazines are the most abundant groups. The most represented volatile organic compound is n-tridecane for both EETP801 and CCN51. The variability in the artisan fermentation and roasting processes influenced certain aspects of the volatile composition as reflected by the trimethyl pyrazine/tetramethyl pyrazine ratio, which was zero in EETP-801 and lower than 1 in CCN51. Acetic acid was absent in CCN51 but significant (c.a. 5.5.%) in EETP801 and the commercial samples. The cultivar EETP801 is a viable option for a more ecologically conscious sector of the cocoa beverages consumer group. Full article
Show Figures

Figure 1

13 pages, 790 KiB  
Article
Determination of Phthalates in Purified Drinking Water in Italy
by Claudia Lino, Serena Indelicato, David Bongiorno, Fabio D’Agostino, Sergio Indelicato and Giuseppe Avellone
Beverages 2025, 11(3), 92; https://doi.org/10.3390/beverages11030092 - 13 Jun 2025
Viewed by 641
Abstract
This study investigated the presence and concentration of selected phthalates in municipal tap waters and purified waters sourced from domestic water purifiers and municipal reverse osmosis-based supplies. Five target compounds: Diethyl phthalate (DEP), Diisobutyl phthalate (DiBP), Butyl octyl phthalate (BOP), Dibutyl phthalate (DBP), [...] Read more.
This study investigated the presence and concentration of selected phthalates in municipal tap waters and purified waters sourced from domestic water purifiers and municipal reverse osmosis-based supplies. Five target compounds: Diethyl phthalate (DEP), Diisobutyl phthalate (DiBP), Butyl octyl phthalate (BOP), Dibutyl phthalate (DBP), and bis(2-ethylhexyl) phthalate (DEHP) were identified and quantified in the samples using the solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC/MS) method. The analytical protocol demonstrated good sensitivity, precision, and accuracy, with low limits of detection and quantification, making it suitable for routine monitoring applications. Phthalates were detected in all samples, including both inlet and treated water, highlighting their widespread occurrence. The results show a significant percentage of reduction in total phthalate concentrations (from 4% to 53%; 30% on average) in purified water samples compared to untreated inlet water, thereby indicating the potential efficacy of such systems in reducing organic pollutants. Risk assessment based on the EFSA guidelines showed that the estimated daily intakes for all detected phthalates remained well below tolerable daily intake limits for both adults and toddlers. The findings underscore the importance of monitoring phthalates in drinking water and support the implementation of regular maintenance strategies for filtration devices. The analytical approach developed may be adopted as a cost-effective tool for water quality assessment and offers promising potential for broader application in public health and commercial water treatment systems. Full article
Show Figures

Figure 1

14 pages, 1730 KiB  
Article
A Comparative Study Based on HS-SPME-GC-MS of Volatile Compounds in Large Yellow Croaker (Pseudosciaena crocea) During Varied Cold Storage Conditions
by Wenyuchu Chen, Fang Tian, Ailing Cao, Weiliang Guan, Tianyu Liu, Ying Liu and Luyun Cai
Foods 2025, 14(12), 2063; https://doi.org/10.3390/foods14122063 - 11 Jun 2025
Viewed by 762
Abstract
Various volatile compounds are responsible for the odor changes in fish during storage. In this study, a coupled headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS) analytical approach was applied to characterize the volatile compounds in large yellow croaker (Pseudosciaena crocea [...] Read more.
Various volatile compounds are responsible for the odor changes in fish during storage. In this study, a coupled headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS) analytical approach was applied to characterize the volatile compounds in large yellow croaker (Pseudosciaena crocea) during storage under three treatments: cold storage (CS), slurry ice (SI), and crushed ice (CI). A total of 24 volatile substances were identified, including aldehydes, ketones, and alcohols. Multivariate statistical analyses (PCA, PLS-DA, VIP, and cluster heatmap) revealed significant differences in volatile compounds between the treatment groups during storage, and 10 key volatiles along with 5 potential biomarker compounds were identified. The underlying mechanisms of volatile changes were further investigated by analyzing three key pathways: thermal reactions, lipid oxidation, and amino acid degradation. Notably, SI treatment better avoid volatile compound variation in large yellow croaker. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

15 pages, 1354 KiB  
Article
Profiling of Volatile Organic Compounds, Including Halogenated Substances, in Okinawan Red Alga Portieria hornemannii
by Kazuki Tani, Yu Sasaki, Takahiro Ishii and Yonathan Asikin
Molecules 2025, 30(12), 2534; https://doi.org/10.3390/molecules30122534 - 10 Jun 2025
Viewed by 510
Abstract
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) [...] Read more.
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) and halogenated secondary metabolites using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) at various extraction temperatures. HS-SPME-GC-MS analysis revealed 52 VOCs in Okinawan P. hornemannii, including predominant compounds α-pinenyl bromide (IUPAC name: 2-bromomethyl-6,6-dimethylbicyclo [3.1.1]hept-2-ene; halogenated monoterpene), myrcene disulfide (3-(6-methyl-2-methylidenehept-5-enylidene)dithiirane), and 5,6-dimethyl-1H-benzimidazole, the content of which in the extract increased with increasing extraction temperature from 30 to 60 °C. On the other hand, the β-myrcene (7-methyl-3-methyleneocta-1,6-diene) content, which likely contributes majorly to the distinct fresh odour of the algae, declined as the temperature increased. Furthermore, the proportion of β-myrcene obtained using SPME was significantly higher than that extracted using solvent liquid extraction (SLE) (7.20% in SPME at 30 °C vs. 0.09%, respectively). However, SLE-GC-MS provided a different P. hornemannii volatile profile, allowing for the acquisition of more furan-, alcohol-, ester-, and carboxylic acid-containing compounds. These data provide valuable information, such as a systematic analytical framework for volatiles profiling in the marine macroalgae P. hornemannii, with potential applicability in the development of food and fragrance products. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

17 pages, 891 KiB  
Article
Volatile Profiling of Tongcheng Xiaohua Tea from Different Geographical Origins: A Multimethod Investigation Using Sensory Analysis, E-Nose, HS-SPME-GC-MS, and Chemometrics
by Ge Jin, Chenyue Bi, Anqi Ji, Jieyi Hu, Yuanrong Zhang, Lumin Yang, Sunhao Wu, Zhaoyang Shen, Zhou Zhou, Xiao Li, Huaguang Qin, Dan Mu, Ruyan Hou and Yan Wu
Foods 2025, 14(11), 1996; https://doi.org/10.3390/foods14111996 - 5 Jun 2025
Viewed by 588
Abstract
The evaluation of region-specific aroma characteristics in green tea remains critical for quality control. This study systematically analyzed eight Tongcheng Xiaohua tea samples (standard and premium batches) originating from four distinct regions using sensory analysis, electronic nose (E-nose), headspace solid-phase microextraction coupled with [...] Read more.
The evaluation of region-specific aroma characteristics in green tea remains critical for quality control. This study systematically analyzed eight Tongcheng Xiaohua tea samples (standard and premium batches) originating from four distinct regions using sensory analysis, electronic nose (E-nose), headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), and chemometrics. The E-nose results demonstrated that the volatile characteristics of Tongcheng Xiaohua tea exhibit distinct geographical signatures, confirming the regional specificity of its aroma. HS-SPME-GC-MS identified 66 volatile metabolites across samples, with 18 key odorants (OAV > 1) including linalool, geraniol, (Z)-jasmone, and β-ionone driving aroma profiles. The partial least squares–discriminant analysis (PLS-DA) model, combined with variable importance in projection (VIP) scores and OAV, identified seven compounds that effectively differentiate the origins, among which α-pinene and β-cyclocitral emerged as novel markers imparting unique regional characteristics. Further comparative analysis between standard and premium grades revealed 2-methyl butanal, 3-methyl butanal, and dimethyl sulfide as main differential metabolites. Notably, the influence of geographical origin on metabolite profiles was found to be more significant than batch effects. These findings establish a robust analytical framework for origin traceability, quality standardization, and flavor optimization in tea production, providing valuable insights for the tea industry. Full article
(This article belongs to the Special Issue Flavor and Aroma Analysis as an Approach to Quality Control of Foods)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L.
by Gianluca Tripodi, Maria Merlino, Marco Torre, Concetta Condurso, Antonella Verzera and Fabrizio Cincotta
Foods 2025, 14(11), 1978; https://doi.org/10.3390/foods14111978 - 3 Jun 2025
Viewed by 571
Abstract
The increasing scarcity of traditional nectar sources due to climate change has led beekeepers to explore alternative floral sources. This study investigates the volatile profile, sensory characteristics, and consumer acceptability of monofloral honey derived from Capparis spinosa L., a drought-resistant Mediterranean plant. Honey [...] Read more.
The increasing scarcity of traditional nectar sources due to climate change has led beekeepers to explore alternative floral sources. This study investigates the volatile profile, sensory characteristics, and consumer acceptability of monofloral honey derived from Capparis spinosa L., a drought-resistant Mediterranean plant. Honey samples produced by Apis mellifera ssp. sicula on Aeolian Islands (Sicily, Italy) were analyzed. Volatile organic compounds (VOCs) were extracted using headspace solid–phase microextraction (HS-SPME) and identified by gas chromatography–mass spectrometry (GC–MS), revealing 59 compounds, with dimethyl sulfide being the predominant one. Sensory evaluation using quantitative descriptive analysis (QDA) and Time Intensity (TI) analysis identified distinctive descriptors such as sweet-caramel, cabbage/cauliflower, and pungent notes. Statistical analyses confirmed correlations between specific VOCs and sensory perceptions. A consumer acceptability test involving 80 participants showed lower preference scores for caper honey in terms of aroma and overall acceptability compared to commercial multifloral honey, with differences observed across age groups. The unique aromatic profile and consumer feedback suggest that caper honey has strong potential as a niche, high-quality product, particularly within the context of climate-resilient beekeeping, offering valuable opportunities for innovation and diversification in sustainable apiculture. Full article
(This article belongs to the Special Issue Novel Insights into Food Flavor Chemistry and Analysis)
Show Figures

Figure 1

Back to TopTop