Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (289)

Search Parameters:
Keywords = solid-phase extraction acidic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 871 KB  
Article
Content of Fatty Acid and Eicosanoids in Muscle and Intestinal Tissue of C57BL/6 Mice Subjected to Long-Term Caloric Restriction
by Joanna Palma, Karolina Skonieczna-Żydecka, Dominika Maciejewska-Markiewicz, Katarzyna Zgutka, Katarzyna Piotrowska and Ewa Stachowska
Nutrients 2026, 18(3), 518; https://doi.org/10.3390/nu18030518 - 3 Feb 2026
Viewed by 270
Abstract
Background: Caloric restriction (CR) is a dietary intervention based on limiting calories relative to the basic energy needs of the organism, which changes the intensity of metabolism, causes changes in the functioning of the endocrine and sympathetic systems, and influences the expression of [...] Read more.
Background: Caloric restriction (CR) is a dietary intervention based on limiting calories relative to the basic energy needs of the organism, which changes the intensity of metabolism, causes changes in the functioning of the endocrine and sympathetic systems, and influences the expression of genes in muscle, heart, and brain cells. During the use of CR, there is a transition from carbohydrate supply to increased fat metabolism. Fatty acids are more or less susceptible to free radicals, depending on their molecular structure. Oxidation (peroxidation) contributes to the production of metabolites (including hydroxyeicosatetraenoic acid and hydroxyoctadecadienoic acid), some of which are involved in inflammation. Methods: The aim of this study was to evaluate the effects of long-term caloric restriction on the tissue levels of selected fatty acids and fatty acid-derived lipid mediators with pro-inflammatory or anti-inflammatory properties in skeletal muscle and intestinal tissues. The study was carried out on C57BL/6 mice. During the 8-month experiment, the mice in the study group were fed a 30% calorie restricted diet—according to the Every-Other-Day Diet concept. Analyses were performed on intestinal and muscle tissues collected from animals. Fatty acid derivatives were isolated using solid-phase extraction (C-18 columns) columns, and isolation of fatty acids was performed using a modified Folch method. The compounds were analyzed by liquid and gas chromatography. Results: CR induced detectable alterations in both fatty acid profiles and lipid mediator concentrations in a tissue-specific manner. However, most of these changes did not remain statistically significant after multiple testing correction. Conclusions: These findings suggest potential effects of long-term CR on lipid signaling pathways, although the current dataset lacks the statistical power required to draw definitive conclusions. This study highlights the need for further research using larger sample sizes and integrated multiomic approaches to elucidate the molecular mechanisms underlying lipidomic adaptations to prolonged caloric restriction. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

17 pages, 1465 KB  
Article
High-Solids Processing of Palmaria palmata for Feed Applications: Effects of Alkaline Autoclaving and Sequential Enzymatic Treatment
by Catarina Ramos-Oliveira, Marta Ferreira, Isabel Belo, Aires Oliva-Teles and Helena Peres
Phycology 2026, 6(1), 12; https://doi.org/10.3390/phycology6010012 - 8 Jan 2026
Viewed by 534
Abstract
Macroalgae are increasingly recognized as a valuable source of nutrients and bioactive compounds for animal nutrition, including for aquatic species. However, the complex structure of the macroalgal cell wall limits the accessibility of intracellular components, restricting their use in feeds. To overcome this [...] Read more.
Macroalgae are increasingly recognized as a valuable source of nutrients and bioactive compounds for animal nutrition, including for aquatic species. However, the complex structure of the macroalgal cell wall limits the accessibility of intracellular components, restricting their use in feeds. To overcome this limitation, macroalgal hydrolysis using various technological treatments has been tested, often employing a low solid-to-water ratio, which complicates downstream processing due to phase separation. In contrast, high-solids loading hydrolysis has the advantage of producing a single and consolidated fraction, simplifying subsequent processing and application. The present study assessed the effectiveness of high-solids loading water or alkaline (0.5 and 1N NaOH) autoclaving for 30 or 60 min, applied alone or followed by sequential enzymatic hydrolysis, using a xylanase-rich enzymatic complex aimed at promoting cell wall disruption and increasing the extractability of intracellular components in the red macroalga Palmaria palmata with minimal free water. The 1N NaOH treatment for 30 min decreased neutral and acid detergent fiber while increasing Folin–Ciocalteu total phenolic content (GAE) (expressed as gallic acid equivalent) and the water-soluble protein fraction and decreased crude protein, indicating enhanced extractability of these components. Microscopic examination showed relatively mild structural changes on the surface of P. palmata after high-solids loading alkaline (1N NaOH) autoclaving for 30 min. Following alkaline or water treatment, the enzymatic complex hydrolysis further increased the Folin–Ciocalteu total phenolic content (GAE), with minimal effects on NDF, ADF, or crude protein. Overall, these results showed that high-solids loading alkaline autoclaving, with or without subsequent enzymatic hydrolysis, effectively disrupts P. palmata cell walls and induces substantial modifications while simplifying processing by avoiding phase separation. Full article
(This article belongs to the Special Issue Development of Algal Biotechnology)
Show Figures

Figure 1

18 pages, 2424 KB  
Article
Development and Validation of an LC–MS/MS Method for Quantifying Phytohormones Related to Tomato Shelf Life
by Muhammad K. Hakeem, Haneen Abufarajallah, Maryam Abushahab, Gamilah Abdulgabar, Hind Alneyadi, Shaikha Alnaqbi, Sampathkumar Elangovan and Iltaf Shah
Foods 2025, 14(23), 4040; https://doi.org/10.3390/foods14234040 - 25 Nov 2025
Viewed by 1155
Abstract
Phytohormones are key signaling molecules that regulate plant growth, stress adaptation, and fruit ripening. However, their low abundance and structural diversity complicate accurate quantification in food matrices. This study presents a validated LC–MS/MS method for the simultaneous detection of seven phytohormones in tomato [...] Read more.
Phytohormones are key signaling molecules that regulate plant growth, stress adaptation, and fruit ripening. However, their low abundance and structural diversity complicate accurate quantification in food matrices. This study presents a validated LC–MS/MS method for the simultaneous detection of seven phytohormones in tomato fruit, including two synthetic analogs that mimic natural auxins and cytokinins. Method optimization focused on extraction efficiency, solid-phase cleanup, and mobile phase composition, achieving high recovery (85–95%) and reduced matrix effects. Chromatographic separation was performed on a C18 column, with detection by triple quadrupole mass spectrometry in MRM mode. The method demonstrated excellent linearity (R2 > 0.98), precision, and robustness, with detection limits as low as 0.05 ng/mL for abscisic acid and 6-benzylaminopurine. Validation followed US-FDA and EC 2021/808 guidelines, ensuring regulatory compliance and analytical reliability. Analysis of tomato samples from five geographic origins revealed significant differences in phytohormone profiles, particularly in abscisic and salicylic acids, highlighting the method’s ability to capture biologically and agriculturally relevant variation. This workflow offers a sensitive, transferable platform for monitoring bioactive compounds in tomatoes and other food crops, supporting post-harvest quality assessment and food metabolomics research. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

29 pages, 3444 KB  
Article
Robust LC–MS/MS Methodology for Low-Level PFAS in Sludge Matrices
by Luoana Florentina Pascu, Valentina Andreea Petre, Vasile Ion Iancu, Ioana Antonia Cimpean and Florentina Laura Chiriac
Analytica 2025, 6(4), 49; https://doi.org/10.3390/analytica6040049 - 17 Nov 2025
Cited by 1 | Viewed by 1450
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that tend to accumulate in solid matrices such as sewage sludge, raising concerns regarding their fate and potential ecological risks. This study aimed to develop and validate a robust analytical method for the accurate [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants that tend to accumulate in solid matrices such as sewage sludge, raising concerns regarding their fate and potential ecological risks. This study aimed to develop and validate a robust analytical method for the accurate determination of PFAS in dehydrated sludge. A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was optimized for 28 PFAS, including perfluoroalkyl carboxylic acids (PFCAs) and sulfonic acids (PFSAs). Solid–liquid extraction with basic methanol was followed by cleanup using a cartridge packed with ferrite and sodium sulfate to remove moisture and particulate interferences. Chromatographic separation was performed with an Avantor® ACE® PFAS Delay column coupled to an Agilent triple quadrupole MS operating in negative electrospray ionization mode. The method achieved excellent sensitivity (MDL < 0.02 µg/g dry weight for most compounds), satisfactory precision (RSD < 15%), and recoveries between 80–118%. Optimization of mobile phase additives, gradient conditions, and MS parameters enhanced chromatographic resolution and signal-to-noise ratio. The validated method demonstrates high reliability for PFAS determination in complex solid matrices and can be applied as a valuable tool for environmental monitoring and risk assessment of sludge management practices. Full article
Show Figures

Figure 1

21 pages, 7819 KB  
Article
Multiway Analysis of the Electrochemical Oxidation Pathway of a Lignin Using Chemometrics
by Gobind Sah, John A. Staser and Peter B. Harrington
Molecules 2025, 30(21), 4305; https://doi.org/10.3390/molecules30214305 - 5 Nov 2025
Viewed by 713
Abstract
The electrochemical oxidation mechanism of biopolymer lignin is challenging to characterize due to its complex structure. Controlling the oxidation process is crucial for ensuring the economic feasibility of electrochemical depolymerization of lignin, as it often generates numerous undesirable compounds. Regulating the depolymerization process [...] Read more.
The electrochemical oxidation mechanism of biopolymer lignin is challenging to characterize due to its complex structure. Controlling the oxidation process is crucial for ensuring the economic feasibility of electrochemical depolymerization of lignin, as it often generates numerous undesirable compounds. Regulating the depolymerization process can lead to the production of high-yield aromatic compounds, such as phenols and carboxylic acids. In addition to the depolymerization of lignin by the electrocatalyst, hydroxyl radicals (OH) during the electrochemical oxidation could also depolymerize lignin. Previous studies have reported that OH forms during electrochemical oxidation; however, it is still uncertain whether these radicals or electrocatalysts are responsible for depolymerizing lignin. This study investigates the pivotal issue of whether the depolymerization process is driven by OH or by a direct electrochemical route. In this study, lignin compounds were electrochemically oxidized using a nickel-cobalt (Ni-Co) electrocatalyst at several electrode potentials, and the oxidized products were analyzed using headspace solid-phase micro-extraction gas chromatography–mass spectrometry (SPME-GC-MS) and factor analysis (FA). Electrochemical depolymerization of lignin yielded mainly phenolic compounds (e.g., tert-butyl phenols), phthalate esters (e.g., dibutyl phthalate, bis(2-methylpropyl) phthalate), furan derivatives (e.g., 2-butyltetrahydrofuran), and short-chain carboxylic acid esters. This work has successfully predicted that both electrocatalyst and OH radicals contribute to the electrochemical depolymerization of lignin. Radical-mediated depolymerization yielded a broader range of products. Full article
(This article belongs to the Topic Advanced Bioenergy and Biofuel Technologies)
Show Figures

Graphical abstract

16 pages, 3137 KB  
Article
Exploring the Relationship of Antioxidant Characteristics and Fatty Acids with Volatile Flavor Compounds (VOCs) by GC-IMS and GC-O-MS in Different Breeds of Pigs
by Xinyuan Huang, Hui Liu, Xiaoyan Tang, Yuhui Zhang and Yaxuan Li
Foods 2025, 14(20), 3580; https://doi.org/10.3390/foods14203580 - 21 Oct 2025
Cited by 1 | Viewed by 820
Abstract
The volatile organic compounds (VOCs) are the main flavor constituents of different pig breeds, which have positive effects on the quality evaluation of pork. This study aimed to clarify the effects of lipid oxidation on characteristic VOCs in different breeds of pigs. The [...] Read more.
The volatile organic compounds (VOCs) are the main flavor constituents of different pig breeds, which have positive effects on the quality evaluation of pork. This study aimed to clarify the effects of lipid oxidation on characteristic VOCs in different breeds of pigs. The fatty acid composition and antioxidant characteristics of the Ningxiang (NX) pig, Rongchang (RC) pig, Duroc × Wujin (DW) pig, and Duroc × Landrace × Yorkshire (DLY) pig were determined. The VOCs from these four pig breeds were analyzed by gas chromatography–ion migration spectrometry (GC-IMS) and solid-phase micro-extraction–gas chromatography–olfactory mass spectrometry (SPME-GC-O-MS). A total of 49 volatile compounds were identified by GC-IMS, whereas GC-O-MS detected 97 volatile components, including aldehydes, alcohols, ketones, acids, and esters. Among these, aldehydes and alcohols were the predominant categories. The results showed that RC breed pork had the highest fatty acid content, whereas NX breed pork exhibited the highest antioxidant activity. Among the VOCs from these four pig breeds, tridecanal showed a strong positive correlation with antioxidant capacity (T-AOC) and vitamin E, which was mainly reflected in NX. Furthermore, the key VOCs across the different pig breeds were mainly related to unsaturated fatty acids, such as C20:3n6, C18:1n9c, and C18:2n6c. In conclusion, the antioxidant characteristics of NX pigs are closely associated with their unique volatile flavor profile, while the characteristic flavor compounds across different pig breeds are primarily influenced by the composition and oxidation of unsaturated fatty acids. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

45 pages, 1031 KB  
Review
Current Developments in Analytical Methods for Advanced Glycation End Products in Foods
by Hiroyuki Kataoka
Molecules 2025, 30(20), 4095; https://doi.org/10.3390/molecules30204095 - 15 Oct 2025
Cited by 1 | Viewed by 2454
Abstract
Advanced glycation end products (AGEs) derived from food are compounds readily formed during heating and processing through non-enzymatic glycation reactions such as the Maillard reaction. Since a variety and quantity of AGEs are formed within shorter times in food than in the body, [...] Read more.
Advanced glycation end products (AGEs) derived from food are compounds readily formed during heating and processing through non-enzymatic glycation reactions such as the Maillard reaction. Since a variety and quantity of AGEs are formed within shorter times in food than in the body, their long-term excessive intake is a growing concern as a contributing factor to the onset of various diseases, including diabetes and age-related diseases. Therefore, investigating the formation and presence of AGEs in food and understanding their contribution to health risks has become critically important. Since AGEs with different characteristics exist in various forms in foods, it is essential to develop efficient sample preparation and sensitive and accurate analytical methods. Generally, analysis of free AGEs requires deproteinization, and bound AGEs are hydrolyzed using hydrochloric acid or enzymes to form free AGEs, which are then purified by defatting, reduction, and solid-phase extraction. While immunological techniques and instrumental analytical methods such as chromatography have been developed for the detection and analysis of AGEs, liquid chromatography-tandem mass spectrometry is widely used due to its high sensitivity, specificity, and operability. This review summarizes trends and challenges in sample preparation and analytical techniques for analyzing AGE formation and presence in food, based on papers reported over the past 20 years. Full article
(This article belongs to the Special Issue Stress-Related Biomarkers: Analytical Methods and Their Applications)
Show Figures

Graphical abstract

18 pages, 1916 KB  
Article
Differential Modulation of Maize Silage Odor: Lactiplantibacillus plantarum vs. Lactiplantibacillus buchneri Drive Volatile Compound Change via Strain-Specific Fermentation
by Shuyuan Xue, Jianfeng Wang, Jing Yang, Yunjie Li, Jian He, Jiyu Han, Hongyan Xu, Xun Zhu and Nasi Ai
Agriculture 2025, 15(20), 2109; https://doi.org/10.3390/agriculture15202109 - 10 Oct 2025
Cited by 1 | Viewed by 807
Abstract
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus [...] Read more.
Volatile organic compounds (VOCs) are critical indicators of the metabolic status of whole-plant maize silage (WPMS). However, the impact of inoculating various strains of fermentation agents on VOC changes has not been systematically explored. This study aimed to determine how inoculation with Lactiplantibacillus plantarum and Lentilactobacillus buchneri modulates the VOC profile and odor of WPMS after 90 days. VOCs were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry (HS-SPME-GC-MS). Key VOCs were screened using the variable importance in projection (VIP) and substantiated by relative odor activity values (rOAV) and odor descriptions. A total of 82 compounds were identified, including 22 esters, 19 alcohols, 3 acids, 9 aldehydes, 2 ethers, 6 hydrocarbons, 4 ketones, 10 phenols, and 8 terpenoids. L. plantarum enhanced green/fruity odors while strain L. buchneri significantly reduced undesirable phenolic and aldehydic compounds. Six key VOCs influencing the odor of WPMS were selected: 4-ethyl-2-methoxyphenol and benzaldehyde, which contribute smoky, bacon, and bitter almond aromas, and (E)-3-hexen-1-ol, benzyl alcohol, (E, E)-2,4-heptadienal and methyl salicylate, which impart green, fruity, and nutty aromas. These findings highlight the effects and contributions of various strain additives on VOCs in WPMS, providing new theoretical insights for regulating the flavor profile of WPMS. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

21 pages, 850 KB  
Article
From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay
by Radosław Balwierz, Katarzyna Kasperkiewicz, Martyna Straszak, Daria Siodłak, Katarzyna Pokajewicz, Ibtissem Ben Hammouda, Piotr P. Wieczorek, Anna Kurek-Górecka, Zenon P. Czuba and Tomasz Baj
Molecules 2025, 30(19), 4014; https://doi.org/10.3390/molecules30194014 - 8 Oct 2025
Cited by 2 | Viewed by 972
Abstract
Propolis is a valuable natural product whose chemical composition and bioactivity are strongly dependent on its geographical and botanical origin. This study presents a comprehensive comparative analysis of the volatile profiles and antibacterial properties of propolis from Romania, Australia, and Uruguay, benchmarked against [...] Read more.
Propolis is a valuable natural product whose chemical composition and bioactivity are strongly dependent on its geographical and botanical origin. This study presents a comprehensive comparative analysis of the volatile profiles and antibacterial properties of propolis from Romania, Australia, and Uruguay, benchmarked against previously published data from samples from Poland and Turkey. Volatile compounds were profiled using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The resulting data were interrogated using multivariate chemometric analyses (HCA, PCA), and antibacterial activity was assessed via the disk diffusion method against five bacterial strains. Chemometric analysis revealed a clear demarcation into two primary chemotypes: a European type (Poland, Romania, Turkey) dominated by aromatic compounds such as benzoic acid, and a non-European type (Australia, Uruguay) characterized by a high abundance of terpenes. The Australian propolis exhibited a complex terpene profile rich in α-copaene and pinenes, while the Uruguayan sample was distinguished by an exceptionally high concentration of α-pinene. All active extracts showed selective, concentration-dependent inhibition against Gram-positive Staphylococcus aureus and Streptococcus mutans. The terpene-rich Australian propolis displayed the highest antibacterial potency, particularly against S. mutans. Crucially, Pearson correlation analysis revealed a counter-intuitive relationship: the most abundant terpenes in the non-European samples (e.g., α-pinene, verbenone) were significantly negatively correlated with antibacterial activity (r ≈ −0.99). Conversely, less abundant compounds, including linalool and acetic acid, were identified as strong positive predictors of inhibition (r > 0.90). These findings underscore a complex geography-chemotype-bioactivity relationship, where the overall synergistic effect of a mixed chemical profile, rather than the dominance of a single compound, determines antibacterial potency. The initially proposed markers provide a basis for origin-based standardization and highlight Australian propolis as a promising source of natural antibacterial agents. Full article
(This article belongs to the Special Issue Bee Products: Recent Progress in Health Benefits Studies, 2nd Edition)
Show Figures

Figure 1

23 pages, 948 KB  
Article
Impact of Hot Water Extraction on the Chemical Composition of Hemp (Cannabis sativa L.)
by Kamil Roman and Monika Marchwicka
Materials 2025, 18(19), 4576; https://doi.org/10.3390/ma18194576 - 2 Oct 2025
Viewed by 703
Abstract
An investigation of the effect of intense Hot Water Extraction (HWE) on the chemical properties and processability of shredded hemp stalks (Cannabis sativa L.) is presented in this study. The chemical composition of untreated hemp was compared to that of hemp subjected [...] Read more.
An investigation of the effect of intense Hot Water Extraction (HWE) on the chemical properties and processability of shredded hemp stalks (Cannabis sativa L.) is presented in this study. The chemical composition of untreated hemp was compared to that of hemp subjected to V and XV successive HWE cycles. This study investigated changes in selected chemical compounds, such as extractives, lignin, cellulose, ash, and monosaccharides such as glucose and xylose. Additionally, post-HWE liquids were analyzed. Lignin content was determined by the UV–VIS spectrophotometry method, whereas monosaccharides (glucose, xylose) and inhibitors (formic acid, acetic acid, levulinic acid, ethanol, 5-(hydroxymethyl)furfural, and furfural) were identified by HPLC. Extractives and ash were effectively removed by the HWE process, decreasing from 3.2 to 2.0% and from 3.9% to 2.7%, respectively. The reduction in acid-soluble lignin was an important finding, indicating a selective modification of the lignin matrix. By the end of V cycles, xylose content in the liquid phase significantly increased from 117.9% to 19.4%, indicating a reduction in hemicelluloses. The cellulose content of the solid material rose from 42.9% to 46.2% at the end of XV cycles. Full article
Show Figures

Figure 1

30 pages, 4423 KB  
Review
Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis
by Gbolahan Alagbe, Klara Urbanova and Olajumoke Alagbe
Processes 2025, 13(8), 2444; https://doi.org/10.3390/pr13082444 - 1 Aug 2025
Viewed by 3457
Abstract
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and [...] Read more.
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and kola nuts. It emphasizes the fatty acid profiles, noting that palmitic acid (C16:0) is the predominant saturated fatty acid, while oleic acid (C18:1) and linoleic acid (C18:2) are the most abundant monounsaturated and polyunsaturated fatty acids, respectively. The review also details various analytical techniques employed for extracting and characterizing bioactive compounds, which are crucial for assessing nut quality and health benefits. Methods such as Soxhlet extraction, solid-phase microextraction (SPME), supercritical fluid extraction (SFE), gas chromatography (GC-FID and GC-MS), and high-performance liquid chromatography (HPLC) are highlighted. Furthermore, it discusses scientific evidence linking nut consumption to antioxidant and anti-inflammatory properties, improved cardiovascular health, and a reduced risk of type 2 diabetes, establishing nuts as important components in a healthy diet. This review underscores the role of nuts as functional foods and calls for standardized methodologies in future lipidomic and volatilomic studies. Full article
Show Figures

Figure 1

15 pages, 1273 KB  
Article
Fungal Pretreatment of Alperujo for Bioproduct Recovery and Detoxification: Comparison of Two White Rot Fungi
by Viviana Benavides, Gustavo Ciudad, Fernanda Pinto-Ibieta, Elisabet Aranda, Victor Ramos-Muñoz, Maria A. Rao and Antonio Serrano
Agronomy 2025, 15(8), 1851; https://doi.org/10.3390/agronomy15081851 - 31 Jul 2025
Viewed by 947
Abstract
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile [...] Read more.
Alperujo, a solid by-product from the two-phase olive oil extraction process, poses significant environmental challenges due to its high organic load, phytotoxicity, and phenolic content. At the same time, it represents a promising feedstock for recovering value-added compounds such as phenols and volatile fatty acids (VFAs). When used as a substrate for white rot fungi (WRF), it also produces ligninolytic enzymes. This study explores the use of two native WRF, Anthracophyllum discolor and Stereum hirsutum, for the biotransformation of alperujo under solid-state fermentation conditions, with and without supplementation of copper and manganese, two cofactors known to enhance fungal enzymatic activity. S. hirsutum stood out for its ability to release high concentrations of phenolic compounds (up to 6001 ± 236 mg gallic acid eq L−1) and VFAs (up to 1627 ± 325 mg L−1) into the aqueous extract, particularly with metal supplementation. In contrast, A. discolor was more effective in degrading phenolic compounds within the solid matrix, achieving a 41% reduction over a 30-day period. However, its ability to accumulate phenolics and VFAs in the extract was limited. Both WRF exhibited increased enzymatic activities (particularly Laccase and Manganese Peroxidase) with the addition of Cu-Mn, highlighting the potential of the aqueous extract as a natural source of biocatalysts. Phytotoxicity assays using Solanum lycopersicum seeds confirmed a partial detoxification of the treated alperujo. However, none of the fungi could entirely eliminate inhibitory effects on their own, suggesting the need for complementary stabilization steps before agricultural reuse. Overall, the results indicate that S. hirsutum, especially when combined with metal supplementation, is better suited for valorizing alperujo through the recovery of bioactive compounds. Meanwhile, A. discolor may be more suitable for detoxifying the solid phase strategies. These findings support the integration of fungal pretreatment into biorefinery schemes that valorize agroindustrial residues while mitigating environmental issues. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

12 pages, 1897 KB  
Article
Enhanced Extraction of Valuable Metals from Copper Slags by Disrupting Fayalite and Spinel Structures Using Sodium Sulfate
by Shafiq Alam, Behzod Tolibov, Madat Akhmedov, Umidjon Khujamov and Sardor Yarlakabov
Minerals 2025, 15(8), 771; https://doi.org/10.3390/min15080771 - 22 Jul 2025
Viewed by 2960
Abstract
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition [...] Read more.
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition rate of 89%, highlighting its effectiveness in liberating valuable metals from the slag matrix. The optimal temperature for maximizing fayalite decomposition is determined to be 900 °C, which significantly enhances reaction kinetics and efficiency. Furthermore, extending the reaction time to 90 min resulted in the highest observed decomposition efficiency. Subsequent leaching experiments in sulfuric acid confirmed that the liberated metal transitioned into the solution phase was very effective, ensuring high metal recovery rates. The treated samples demonstrated metal recovery rates of 97% for copper (Cu), 96% for iron (Fe), and 93% for zinc (Zn). In contrast, the untreated samples exhibited considerably lower recovery rates, with copper at 61%, iron at 59%, and zinc at 65%. Additionally, this approach mitigates filtration challenges by preventing the formation of silica gel. These findings provide key operational parameters for optimizing metal recovery from copper slag and establish a solid foundation for advancing sustainable and efficient resource extraction research. Full article
(This article belongs to the Special Issue Hydrometallurgical Treatments of Copper Ores, By-Products and Waste)
Show Figures

Figure 1

14 pages, 992 KB  
Article
On-Line Preconcentration of Selected Kynurenine Pathway Metabolites and Amino Acids in Urine via Pressure-Assisted Electrokinetic Injection in a Mixed Micelle System
by Michał Pieckowski, Ilona Olędzka, Tomasz Bączek and Piotr Kowalski
Int. J. Mol. Sci. 2025, 26(13), 6125; https://doi.org/10.3390/ijms26136125 - 26 Jun 2025
Viewed by 878
Abstract
To enhance the signal intensity of kynurenines, which are present at trace concentrations in biological fluids, a novel analytical approach was developed, combining pressure-assisted electrokinetic injection (PAEKI) with a mixed micelle system based on sodium dodecyl sulfate (SDS) and Brij-35. The method was [...] Read more.
To enhance the signal intensity of kynurenines, which are present at trace concentrations in biological fluids, a novel analytical approach was developed, combining pressure-assisted electrokinetic injection (PAEKI) with a mixed micelle system based on sodium dodecyl sulfate (SDS) and Brij-35. The method was applied to key compounds of the kynurenine pathway, including L-tryptophan, kynurenine, 3-hydroxykynurenine, and kynurenic acid, as well as to the aromatic amino acids (AAs) L-tyrosine and L-phenylalanine. PAEKI was performed by electrokinetic injection for 2 min at −6.5 kV (reversed polarity) and 0.5 psi (3.45 kPa) using a fused silica capillary (50 cm in length, 50 µm inner diameter). The background electrolyte (BGE) consisted of 20 mM Na2B4O7 (pH 9.2), 2 mM Brij-35, 20 mM SDS, and 20% (v/v) methanol (MeOH). The limit of detection (LOD) using a diode array detector (DAD) was 1.2 ng/mL for kynurenine and ranged from 1.5 to 3.0 ng/mL for the other analytes. The application of PAEKI in conjunction with micellar electrokinetic capillary chromatography (MEKC) and solid-phase extraction (SPE) of artificial urine samples resulted in a 146-fold increase in signal intensity for kynurenines compared to that observed using the hydrodynamic injection (HDI) mode. The developed method demonstrates strong potential for determining kynurenine pathway metabolites in complex biological matrices. Full article
Show Figures

Figure 1

13 pages, 2707 KB  
Article
Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas
by Rocío De la Peña-Armada, Roberta Ascrizzi, Rocio Alarcon, Michelle Viteri, Guido Flamini and Jose M. Prieto
Beverages 2025, 11(4), 93; https://doi.org/10.3390/beverages11040093 - 20 Jun 2025
Cited by 1 | Viewed by 1812
Abstract
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring [...] Read more.
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring commercial farm using standard practises and a European commercial cacao powdered beverage. The overall metabolite profile of the 70% aq acetone sample cocoa extracts was analysed using high-performance TLC analyses (HPTLC), and the xanthine alkaloids were analysed using quantitative liquid chromatography–UV photodiode array (HPLC-DAD) analyses. The volatile fraction in the headspace of the freshly ground cocoa was subjected to solid phase micro-extraction and analysed by gas chromatography–mass spectrometry (HS-SPME/GC-MS). Total polyphenol content was determined by the Folin–Ciocalteu method. Despite the reduced production of cocoa by the EETP801 cultivar in comparison with the CCN51 cultivar, the obtained produce is significantly richer in theobromine (130 mg vs. 170 mg per g of cacao), with CCN51 having a double concentration of theophylline (12.6 vs. 6.5 mg per g of cacao). Qualitatively, the two Amazonian cocoa samples had a similar polyphenolic composition (per the HPTLC fingerprint). HS-SPME/GC-MS analyses revealed that all the samples show a spontaneous emission profile mainly rich in non-terpene derivatives, of which hydrocarbons and pyrazines are the most abundant groups. The most represented volatile organic compound is n-tridecane for both EETP801 and CCN51. The variability in the artisan fermentation and roasting processes influenced certain aspects of the volatile composition as reflected by the trimethyl pyrazine/tetramethyl pyrazine ratio, which was zero in EETP-801 and lower than 1 in CCN51. Acetic acid was absent in CCN51 but significant (c.a. 5.5.%) in EETP801 and the commercial samples. The cultivar EETP801 is a viable option for a more ecologically conscious sector of the cocoa beverages consumer group. Full article
Show Figures

Figure 1

Back to TopTop