From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay
Abstract
1. Introduction
2. Results
2.1. HS-SPME-GC-MS Analysis of Volatile Compounds in Propolis
2.2. Volatile Pprofile of Eurasian Samples (Romania, Poland, Turkey)
2.3. Unique Profiles of Propolis from Australia and Uruguay
2.4. Comparative Overview and Candidate Geographic Volatile Markers
2.5. Antibacterial Activity
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Propolis Samples
4.3. GC-MS Analysis
4.4. Extraction Procedure
4.5. Preparation of Test Solutions
4.6. Bacterial Strains and Media
4.7. Antibacterial Assay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasote, D.; Bankova, V.; Viljoen, A.M. Propolis: Chemical Diversity and Challenges in Quality Control. Phytochem. Rev. 2022, 21, 1887–1911. [Google Scholar] [CrossRef] [PubMed]
- Zullkiflee, N.; Taha, H.; Usman, A. Propolis: Its Role and Efficacy in Human Health and Diseases. Molecules 2022, 27, 6120. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, P.P.; Hudz, N.; Yezerska, O.; Horčinová-Sedláčková, V.; Shanaida, M.; Korytniuk, O.; Jasicka-Misiak, I. Chemical Variability and Pharmacological Potential of Propolis as a Source for the Development of New Pharmaceutical Products. Molecules 2022, 27, 1600. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, F.; Barattini, D.F.; Martinucci, V.; Bordea, M.M.; Barattini, L.; Rosu, S. The Effectiveness of a Dietary Supplement with Honey, Propolis, Pelargonium Sidoides Extract, and Zinc in Children Affected by Acute Tonsillopharyngitis: An Open, Randomized, and Controlled Trial. Pharmaceuticals 2024, 17, 804. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants 2022, 11, 1203. [Google Scholar] [CrossRef]
- AL-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef]
- Miłek, M.; Ciszkowicz, E.; Tomczyk, M.; Sidor, E.; Zaguła, G.; Lecka-Szlachta, K.; Pasternakiewicz, A.; Dżugan, M. The Study of Chemical Profile and Antioxidant Properties of Poplar-Type Polish Propolis Considering Local Flora Diversity in Relation to Antibacterial and Anticancer Activities in Human Breast Cancer Cells. Molecules 2022, 27, 725. [Google Scholar] [CrossRef]
- Woźniak, M.; Sip, A.; Mrówczyńska, L.; Broniarczyk, J.; Waśkiewicz, A.; Ratajczak, I. Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. Molecules 2022, 28, 141. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Kara, Y.; Pokajewicz, K.; Ben Hammouda, I.; Wieczorek, P.P.; Marciniak, D.; Balwierz, R.; Kłósek, M.; Czuba, Z.P.; Kolaylı, S. Phenolic Content, Volatile Compounds and Antioxidant Activity in Pooled Propolis Samples from Turkey and Poland. Eur. Food Res. Technol. 2025, 251, 2199–2210. [Google Scholar] [CrossRef]
- Aru, B.; Güzelmeric, E.; Akgül, A.; Demirel, G.Y.; Kırmızıbekmez, H. Antiproliferative Activity of Chemically Characterized Propolis from Turkey and Its Mechanisms of Action. Chem. Biodivers. 2019, 16, e1900189. [Google Scholar] [CrossRef]
- Uddin, S.; Brooks, P.R.; Tran, T.D. Chemical Characterization, α-Glucosidase, α-Amylase and Lipase Inhibitory Properties of the Australian Honey Bee Propolis. Foods 2022, 11, 1964. [Google Scholar] [CrossRef]
- Massaro, C.F.; Katouli, M.; Grkovic, T.; Vu, H.; Quinn, R.J.; Heard, T.A.; Carvalho, C.; Manley-Harris, M.; Wallace, H.M.; Brooks, P. Anti-Staphylococcal Activity of C-Methyl Flavanones from Propolis of Australian Stingless Bees (Tetragonula carbonaria) and Fruit Resins of Corymbia torelliana (Myrtaceae). Fitoterapia 2014, 95, 247–257. [Google Scholar] [CrossRef]
- Sniderman, J.M.K.; Matley, K.A.; Haberle, S.G.; Cantrill, D.J. Pollen Analysis of Australian Honey. PLoS ONE 2018, 13, e0197545. [Google Scholar] [CrossRef]
- Aminimoghadamfarouj, N.; Nematollahi, A. Structure Elucidation and Botanical Characterization of Diterpenes from a Specific Type of Bee Glue. Molecules 2017, 22, 1185. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Genta, G.; Möller, M.N.; Masner, M.; Thomson, L.; Romero, N.; Radi, R.; Fernandes, D.C.; Laurindo, F.R.M.; Heinzen, H.; et al. Antioxidant Activity of Uruguayan Propolis. In Vitro and Cellular Assays. J. Agric. Food Chem. 2011, 59, 6430–6437. [Google Scholar] [CrossRef] [PubMed]
- Mărghitaş, L.A.; Dezmirean, D.S.; Bobiş, O. Important Developments in Romanian Propolis Research. Evid.-Based Complement. Altern. Med. 2013, 2013, 159392. [Google Scholar] [CrossRef] [PubMed]
- Vică, M.L.; Glevitzky, M.; Heghedűş-Mîndru, R.C.; Glevitzky, I.; Matei, H.V.; Balici, S.; Popa, M.; Teodoru, C.A. Potential Effects of Romanian Propolis Extracts against Pathogen Strains. Int. J. Environ. Res. Public Health 2022, 19, 2640. [Google Scholar] [CrossRef]
- Ebner, D.W.; Woods, D.C.; Tran, T.D. Bioactive Polyphenolic Compounds from Propolis of Tetragonula carbonaria in the Gibberagee Region, New South Wales, Australia. Foods 2025, 14, 965. [Google Scholar] [CrossRef]
- Woods, D.C.; Olsson, M.A.; Heard, T.A.; Wallace, H.M.; Tran, T.D. Quality Assessment and Chemical Diversity of Australian Propolis from Tetragonula carbonaria and Tetragonula hockingsi Stingless Bees. Sci. Rep. 2025, 15, 17928. [Google Scholar] [CrossRef]
- Braakhuis, A. Evidence on the Health Benefits of Supplemental Propolis. Nutrients 2019, 11, 2705. [Google Scholar] [CrossRef]
- Cracco, P.; Cabrera, M.C.; Gallieta, G.; Saadoun, A. Polifenoles y Minerales En Propóleos de Diferentes Agrorregiones de Uruguay. Agrociencia Urug. 2024, 28, e1240. [Google Scholar] [CrossRef]
- Bankova, V. Chemical Diversity of Propolis and the Problem of Standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, C.-P.; Wang, K.; Li, G.; Hu, F.-L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [PubMed]
- Contieri, L.S.; de Souza Mesquita, L.M.; Sanches, V.L.; Viganó, J.; Martinez, J.; da Cunha, D.T.; Rostagno, M.A. Standardization Proposal to Quality Control of Propolis Extracts Commercialized in Brazil: A Fingerprinting Methodology Using a UHPLC-PDA-MS/MS Approach. Food Res. Int. 2022, 161, 111846. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.; Bertelli, D.; Borba, R.; Conti, B.J.; da Silva Cunha, I.B.; Danert, C.; Eberlin, M.N.; Falcão, S.I.; Isla, M.I.; Moreno, M.I.N.; et al. Standard Methods for Apis mellifera Propolis Research. J. Apic. Res. 2019, 58, 1–49. [Google Scholar] [CrossRef]
- Mohiuddin, I.; Kumar, T.R.; Zargar, M.I.; Wani, S.U.D.; Mahdi, W.A.; Alshehri, S.; Alam, P.; Shakeel, F. GC-MS Analysis, Phytochemical Screening, and Antibacterial Activity of Cerana indica Propolis from Kashmir Region. Separations 2022, 9, 363. [Google Scholar] [CrossRef]
- Pavlovic, R.; Borgonovo, G.; Leoni, V.; Giupponi, L.; Ceciliani, G.; Sala, S.; Bassoli, A.; Giorgi, A. Effectiveness of Different Analytical Methods for the Characterization of Propolis: A Case of Study in Northern Italy. Molecules 2020, 25, 504. [Google Scholar] [CrossRef]
- de Oliveira, M.S.; Cruz, J.N.; Ferreira, O.O.; Pereira, D.S.; Pereira, N.S.; Oliveira, M.E.C.; Venturieri, G.C.; Guilhon, G.M.S.P.; Souza Filho, A.P.d.S.; Andrade, E.H.d.A. Chemical Composition of Volatile Compounds in Apis Mellifera Propolis from the Northeast Region of Pará State, Brazil. Molecules 2021, 26, 3462. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis Volatile Compounds: Chemical Diversity and Biological Activity: A Review. Chem. Cent. J. 2014, 8, 28. [Google Scholar] [CrossRef]
- Xu, W.; Lu, H.; Yuan, Y.; Deng, Z.; Zheng, L.; Li, H. The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-ΚB Pathways. Foods 2022, 11, 2439. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef]
- Murtaza, G.; Karim, S.; Akram, M.R.; Khan, S.A.; Azhar, S.; Mumtaz, A.; Bin Asad, M.H.H. Caffeic Acid Phenethyl Ester and Therapeutic Potentials. Biomed. Res. Int. 2014, 2014, 145342. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Giannopoulou, E.; Skalicka-Woźniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bęben, K.; Antosiewicz, B.; et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Sevgiler, Y.; Güven, C.; Murathan, Z.T.; Erbil, N.; Yıldırım, D.; Büyükleyla, M.; Karadaş, Ş.; Çelik, R.; Rencüzoğulları, E. Chemical and Biological Characteristics of Propolis from Apis mellifera caucasica from the Ardahan and Erzurum Provinces of Turkey: A Comparative Study. Arch. Ind. Hyg. Toxicol. 2021, 72, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Kartal, M.; Kaya, S.; Kurucu, S. GC-MS Analysis of Propolis Samples from Two Different Regions of Turkey. Z. Für Naturforschung C 2002, 57, 905–909. [Google Scholar] [CrossRef]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of Membrane Toxicity of Hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef]
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between Essential Oil Components and Antibiotics: A Review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Pokajewicz, K. Enhancing Terpene and Other Plant Volatiles Analysis—A Free Spreadsheet Tool “Retentify” for GC–MS Data Processing. Microchem. J. 2023, 193, 108977. [Google Scholar] [CrossRef]
- Skurnik, M. Lack of Correlation between the Presence of Plasmids and Fimbriae in Yersinia enterocolitica and Yersinia pseudotuberculosis. J. Appl. Bacteriol. 1984, 56, 355–363. [Google Scholar] [CrossRef]
No. | Compound | Linear Retention Index | Sample Origin and Sample Code ID | |||||
---|---|---|---|---|---|---|---|---|
Literature [9] | Original Results | |||||||
Poland | Turkey | Romania | Australia | Uruguay | ||||
LRI exp | LRI ref | 01 | 02 | 03 | 04 | 06 | ||
1 | ethanol | nd | 427–459 | 0.48 | 0.40 | 0.54 | 0.73 | |
2 | acetone | nd | 475–509 | 0.31 | 0.19 | 0.50 | 0.37 | |
3 | methylene chloride | nd | 528–531 | 1.44 | 0.49 | 0.48 | ||
4 | hexane | nd | 600 | 5.03 | 1.77 | 1.43 | 2.98 | |
5 | ethyl acetate | 609 | 611 | pr | 1.22 | 0.91 | 0.06 | |
6 | acetic acid | 612–630 | 622 | 1.48 | 5.39 | 1.75 | 4.57 | tr |
7 | ethyl propanoate | 691 | 691 | |||||
8 | 3-methyl-3-buten-1-ol | 712 | 716 | 0.29 | 0.77 | 0.31 | ||
9 | methyl isobutyl ketone | 723 | 730 | 0.01 | ||||
10 | ethyl isobutyrate | 748 | 750 | |||||
11 | toluene | 759 | 761 | 0.04 | tr | 0.38 | ||
12 | propanoic acid, 2-methyl- | 758 | 758 | tr | 0.05 | |||
13 | 2-buten-1-ol 2-methyl- | 767 | 766 | 0.43 | 0.26 | 0.06 | ||
14 | 2-buten-1-ol, 3-methyl- (=prenol) | 769 | 775 | 0.48 | 1.21 | 0.27 | ||
15 | 3-methyl-2-butenal | 781 | 783 | 0.36 | 0.18 | 0.27 | 0.07 | |
16 | 3-pentanone, 2,4-dimethyl- | 794 | 793 | 4.91 | ||||
17 | hexanal | 800 | 800 | 0.34 | 0.32 | 0.37 | 0.32 | |
18 | ethyl butanoate | 802 | 799 | |||||
19 | butyl acetate | 815 | 809 | tr | 0.04 | |||
20 | furfural | 835 | 835 | 0.08 | 0.08 | 0.03 | 0.37 | |
21 | butanoic acid, 2-methyl-, ethyl ester | 851 | 849 | |||||
22 | trans-2-hexenal | 854 | 853 | 0.11 | 0.03 | 0.05 | ||
23 | furfuryl alcohol | 858 | 863 | 0.08 | ||||
24 | butanoic acid,2-methyl -(=2-methyl butyric acid) | 863 | 862 | 0.21 | 0.31 | 0.18 | tr | |
25 | p-xylene | 871 | 872 | 0.07 | tr | 0.17 | ||
26 | 3-methyl-3-buten-1-ol, acetate | 886 | 883 | 0.11 | 0.58 | 0.03 | ||
27 | styrene | 893 | 891 | 0.21 | 0.32 | 0.23 | 0.94 | 0.08 |
28 | nonane | 900 | 900 | 0.09 | tr | 0.10 | ||
29 | heptanal | 902 | 902 | 0.10 | tr | 0.06 | 0.14 | |
30 | 2-buten-1-ol, 3-methyl-, acetate (=prenyl acetate) | 924 | 925 | 0.30 | 1.26 | 0.07 | ||
31 | α-thujene | 929 | 928 | 0.06 | 0.04 | 0.19 | 0.09 | |
32 | α-pinene | 937 | 936 | 0.44 | 1.14 | 0.18 | 12.09 | 28.89 |
33 | α-fenchene | 951 | 949 | 0.58 | 0.50 | |||
34 | camphene | 952 | 950 | 0.14 | 0.21 | 0.30 | 0.82 | |
35 | 4-methyl-2-pentenolide * | 956 | 952 | |||||
36 | thuja-2,4(10)-diene | 958 | 956 | 0.51 | tr | 1.86 | ||
37 | benzaldehyde | 965 | 963 | 5.93 | 2.41 | 2.71 | 1.36 | 0.75 |
38 | 1-heptanol | 972 | 969 | 0.18 | ||||
39 | β-pinene | 980 | 978 | 0.12 | 0.13 | 0.08 | 7.15 | 4.54 |
40 | 6-methyl-5-hepten-2-one | 988 | 986 | 0.46 | 0.11 | 0.16 | 0.38 | 0.10 |
41 | myrcene | 992 | 989 | 0.38 | 0.10 | 0.18 | 0.13 | 0.24 |
42 | ethyl hexanoate | 999 | 997 | 0.43 | 0.06 | |||
43 | decane | 1003 | 1000 | 0.21 | ||||
44 | octanal | 1003 | 1003 | 0.27 | 0.35 | 0.29 | 0.34 | |
45 | α-phellandrene | 1007 | 1004 | tr | 0.08 | 0.10 | ||
46 | 3-carene | 1013 | 1011 | 0.13 | 0.10 | 0.05 | ||
47 | α-terpinene | 1020 | 1017 | 0.06 | 0.09 | 0.03 | 0.22 | 0.06 |
48 | m-cymene | 1025 | 1022 | tr | 0.08 | |||
49 | p-cymene | 1028 | 1024 | 0.29 | 0.89 | 0.25 | 1.27 | 1.28 |
50 | limonene | 1033 | 1030 | 0.65 | 5.32 | 1.98 | 3.93 | 3.62 |
51 | 1,8-cineole | 1036 | 1032 | 0.26 | 0.22 | 0.40 | 0.98 | |
52 | cis-β-ocimene | 1040 | 1038 | 0.67 | 0.06 | |||
53 | o-cymene | 1040 | 1038 | 0.16 | ||||
54 | benzyl alcohol | 1042 | 1037 | 9.39 | 4.17 | 5.76 | tr | 0.30 |
55 | trans-β-ocimene | 1050 | 1048 | 0.21 | 0.14 | 0.15 | ||
56 | γ-caprolactone (=ethyldihydro-2(3H)-furanone) | 1059 | 1055 | 0.07 | 0.21 | 0.11 | ||
57 | trans-2-octenal | 1060 | 1060 | 0.08 | 0.06 | 0.13 | 0.02 | |
58 | γ-terpinene | 1063 | 1060 | 0.13 | 0.23 | 0.32 | 0.06 | |
59 | acetophenone | 1072 | 1067 | 0.31 | 0.33 | 0.24 | 0.25 | |
60 | cis-linalool oxide, (furanoid) | 1077 | 1075 | 0.40 | 0.24 | 0.41 | 0.34 | 0.05 |
61 | benzyl formate | 1082 | 1082 | 0.10 | 0.20 | 0.12 | 0.03 | |
62 | m-cymenene | 1087 | 1085 | 0.05 | ||||
63 | trans-linalool oxide, (furanoid) | 1092 | 1083 | 0.16 | 0.25 | 0.30 | ||
64 | p-cymemene | 1094 | 1089 | 0.32 | 0.54 | 0.23 | 1.66 | 1.09 |
65 | heptanoic acid, ethyl ester | 1098 | 1093 | 0.06 | ||||
66 | methyl benzoate | 1100 | 1094 | 0.44 | 0.16 | 0.43 | 0.05 | |
67 | linalool | 1102 | 1099 | 0.64 | 1.42 | 0.96 | 0.81 | |
68 | perillene (=furan, 3-(4-methyl-3-pentenyl)-) | 1105 | 1099 | 0.59 | ||||
69 | nonanal | 1106 | 1103 | 0.59 | 0.16 | 0.69 | 0.65 | |
70 | 1,3,8-p-menthatriene | 1117 | 1112 | 0.04 | ||||
71 | phenyl ethyl alcohol | 1121 | 1115 | 3.20 | 3.30 | 1.97 | tr | 0.13 |
72 | methyl octanoate | 1125 | 1128 | 0.11 | 0.06 | 0.01 | tr | 0.13 |
73 | α-campholenal | 1133 | 1124 | 0.08 | 0.78 | |||
74 | nopinone | 1146 | 1136 | 0.36 | 0.12 | |||
75 | trans-pinocarveol | 1147 | 1140 | 0.28 | 0.06 | 1.69 | ||
76 | camphor (with silane coellution) | 1153 | 1143 | 2.51 | 1.06 | 1.52 | 1.75 | pr |
77 | (E,E)-2,6-nonadienal | 1156 | 1153 | 0.04 | 0.05 | |||
78 | unidentified | 1158 | na | 0.10 | 0.26 | 0.12 | 2.69 | |
79 | menthone <iso> | 1160 | 1151 | 0.05 | 2.35 | 0.34 | ||
80 | trans-2-nonenal | 1162 | 1162 | 0.08 | 0.11 | |||
81 | benzyl acetate | 1168 | 1166 | 1.29 | 1.16 | 0.54 | 0.09 | |
82 | unidentified | 1171 | na | 1.82 | 0.37 | 2.98 | 0.65 | |
83 | ethyl benzoate | 1176 | 1171 | 0.93 | 1.11 | 0.60 | ||
84 | menthol | 1179 | 1167 | 5.95 y | 0.46 | 0.28 | ||
85 | diethyl succinate | 1181 | 1178 | pr | ||||
86 | terpinen-4-ol | 1185 | 1177 | tr | 1.29 | 0.74 | 2.30 | 0.10 |
87 | verbenyl ethyl ether | 1188 | 1186 | 1.07 | ||||
88 | p-cymen-8-ol | 1192 | 1184 | 1.35 | tr | 0.14 | 0.08 | |
89 | ethyl octanoate | 1197 | 1196 | 0.94 | 0.07 | tr | ||
90 | α-terpineol | 1198 | 1190 | tr | 1.21 | 2.48 x | tr | |
91 | dodecane | 1200 | 1199 | 2.55 | 0.90 | tr | 0.63 | |
92 | methyl salicylate | 1202 | 1193 | 3.22 | 1.38 | 1.02 | 0.40 | |
93 | benzoic acid | 1201–1236 | 1191 | 25.11 | 10.55 | 31.43 | pr | |
94 | myrtenal | 1205 | 1192 | tr | 0.21 | 1.26 | ||
95 | decanal | 1207 | 1205 | 4.47 | tr | 1.78 | 0.13 | |
96 | myrtenol | 1212 | 1194 | 0.74 | ||||
97 | pin-2-en-4-one * | 1220 | 1204 | 0.22 | 0.20 | |||
98 | Verbenone * | 1223 | 1206 | 0.11 | 0.12 | 5.78 | ||
99 | carveol, trans- | 1227 | 1217 | 0.12 | 1.01 | |||
100 | β-cyclocitral | 1229 | 1218 | 0.37 | 0.38 | tr | ||
101 | cumin aldehyde | 1251 | 1238 | 0.23 | 0.19 | |||
102 | carvone | 1252 | 1242 | 0.19 | 0.11 | 0.58 | ||
103 | geraniol | 1257 | 1255 | 0.19 | ||||
104 | 2-phenylethyl acetate | 1262 | 1259 | 0.28 | 0.59 | 0.11 | ||
105 | geranial | 1275 | 1270 | 0.03 | 0.13 | |||
106 | trans-cinnamaldehyde | 1280 | 1271 | 0.27 | 0.59 | |||
107 | guaiacol, 4-ethyl-(=phenol, 4-ethyl-2-methoxy-) | 1285 | 1280 | 0.13 | 0.06 | 0.10 | ||
108 | bornyl acetate | 1293 | 1284 | 0.23 | 0.08 | 0.14 | 0.42 | |
109 | nonanoic ethyl ester | 1296 | 1294 | |||||
110 | thymol | 1296 | 1290 | 0.05 | 1.31 | 0.14 | 0.11 | |
111 | menthyl acetate | 1298 | 1294 | 0.39 | ||||
112 | tridecane | 1298 | 1300 | 0.04 | 0.06 | |||
113 | carvacrol | 1306 | 1300 | 0.05 | 1.92 | 0.10 | 0.15 | 0.32 |
114 | 2-propen-1-ol, 3-phenyl- (=trans-cinnamyl alcohol) | 1315 | 1312 | 0.03 | 0.12 | 0.46 | 0.13 | 0.06 |
115 | p-vinyl-guaiacol | 1322 | 1317 | 0.10 | 0.04 | 0.13 | 0.05 | |
116 | myrtenyl acetate | 1333 | 1329 | 0.03 | 0.18 | |||
117 | isobutyl benzoate | 1335 | 1331 | 0.25 | 0.05 | |||
118 | trans-carvyl acetate | 1343 | 1337 | 0.03 | ||||
119 | hydrocinnamic acid, ethyl ester | 1359 | 1353 | 0.36 | 0.06 | |||
120 | α-cubebene | 1359 | 1351 | 0.07 | 0.39 | 1.37 | ||
121 | eugenol | 1365 | 1358 | 0.13 | 1.21 | 0.15 | 0.04 | |
122 | α-ylangene | 1384 | 1370 | 0.06 | 0.11 | 0.14 | 0.37 | 0.16 |
123 | α-copaene | 1388 | 1376 | 0.40 | 0.25 | 0.27 | 12.92 | 2.51 |
124 | decanoic acid, ethyl ester | 1397 | 1391 | tr | ||||
125 | tetradecane | 1399 | 1400 | 0.09 | 0.21 | 0.20 | 0.13 | |
126 | β-bourbonene * | 1400 | 1384 | 1.47 | ||||
127 | β-elemene | 1403 | 1390 | 1.37 | ||||
128 | vanillin | 1411–1414 | 1405 | 1.54 | 0.49 | 3.00 | 0.24 | |
129 | caryophyllene, cis- | 1422 | 1412 | 0.03 | 0.04 | 0.02 | ||
130 | longifolene | 1424 | 1415 | 0.50 | ||||
131 | α-gurjunene * | 1425 | 1409 | 0.63 | 0.09 | |||
132 | caryophyllene, trans- | 1436 | 1428 | 0.25 | 0.31 | 0.37 | 1.53 | 0.49 |
133 | β-copaene | 1445 | 1433 | 0.30 | 0.34 | |||
134 | methyl butyl benzoate | 1446 | 1438 | 0.57 | ||||
135 | α-bergamotene | 1446 | 1440 | 0.21 | 0.05 | |||
136 | α-guaiene | 1451 | 1440 | 0.58 | 0.47 | 0.07 | ||
137 | cinnamyl acetate | 1452 | 1443 | 0.05 | ||||
138 | unidentified | 1456 | na | 1.09 | 5.53 | |||
139 | β-farnesene | 1461 | 1456 | 0.18 | ||||
140 | cadina-3,5-diene | 1466 | 1458 | 0.21 | 0.16 | |||
141 | α-humulene | 1471 | 1453 | 0.15 | 0.13 | 0.19 | 0.52 | 0.10 |
142 | ethyl cinnamate | 1476 | 1465 | |||||
143 | unidentified | 1476 | na | 0.08 | 0.25 | 0.03 | ||
144 | caryophyllene <9-epi-β-> * | 1479 | 1466 | 0.14 | 0.12 | 0.15 | 0.24 | 0.50 |
145 | γ-muurolene * | 1490 | 1476 | 0.33 | 0.33 | 0.31 | 0.22 | 0.24 |
146 | ar-curcumene | 1491 | 1482 | 0.19 | 0.43 | 0.14 | ||
147 | prenyl benzoate | 1494 | 1485 | 1.67 | ||||
148 | β-selinene | 1506 | 1489 | 0.40 | 0.59 | 0.49 | 0.11 | |
149 | α-muurolene | 1513 | 1509 | 0.59 | 0.52 | 0.34 | ||
150 | β-bisabolene | 1518 | 1505 | 0.16 | ||||
151 | γ-cadinene | 1530 | 1513 | 0.43 | 0.42 | 1.48 | ||
152 | δ-cadinene | 1537 | 1523 | 0.53 | 0.60 | 0.49 | ||
153 | cis-calamenene | 1539 | 1528 | 0.54 | 0.49 | 0.46 | 4.11 | 2.01 |
154 | cadina-1(2),4-diene | 1549 | 1531 | 0.43 | 0.22 | |||
155 | α-cadinene | 1553 | 1533 | 0.19 | 0.64 | 0.18 | ||
156 | α-calacorene | 1555 | 1544 | 0.13 | 0.23 | 0.14 | 0.13 | |
157 | β-calacorene | 1562 | 1564 | 0.03 | 0.05 | 0.40 | ||
158 | trans-nerolidol | 1572 | 1564 | 0.24 | 0.67 | |||
159 | hexadecane | 1600 | 1600 | 0.09 | 0.06 | 0.22 | ||
160 | spathulenol * | 1598 | 1576 | 0.10 | 1.47 | |||
161 | caryophyllene oxide | 1605 | 1581 | 0.10 | 0.05 | 0.36 | 0.10 | 0.39 |
162 | guaiol | 1616 | 1597 | 0.13 | 0.11 | 0.09 | 0.25 | |
163 | 1,10-di-epicubenol * | 1635 | 1618 | 0.06 | 0.08 | 0.08 | 0.15 | |
164 | epi-1-cubenol * | 1648 | 1632 | 0.07 | 0.12 | 0.12 | 0.11 | 0.27 |
165 | γ-eudesmol | 1653 | 1631 | 0.79 | 1.28 | 0.67 | 0.12 | 0.04 |
166 | tau-cadinol (=α-cadinol, epi-) | 1660 | 1648 | 0.48 | 0.58 | 0.49 | ||
167 | α-muurolol | 1665 | 1668 | 0.05 | 0.06 | 0.06 | ||
168 | β-eudesmol | 1674 | 1659 | 1.16 | 2.45 | 1.00 | tr | 0.06 |
169 | α-eudesmol | 1676 | 1657 | 0.76 | 1.08 | 0.48 | tr | 0.25 |
170 | cadalene | 1695 | 1671 | 0.06 | 0.06 | 0.06 | 0.20 | |
171 | α-bisabolol | 1698 | 1683 | 1.01 | ||||
172 | heptadecane | 1701 | 1700 | tr | tr | 0.05 | ||
173 | benzyl benzoate | 1784 | 1766 | 0.21 | 0.03 | 0.42 | tr | 0.04 |
174 | benzyl salicylate | 1847 | 1867 | 0.04 | 0.04 | |||
175 | nonadecane | 1895 | 1900 | 0.02 |
Propolis Origin | Concentration (mg/mL) | S. aureus | S. mutans | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Poland | 200 | 10.22 | 0.27 | 9.47 | 0.29 |
100 | 10.14 | 0.30 | 9.08 | 0.26 | |
50 | 9.56 | 0.10 | 8.47 | 0.02 | |
25 | 9.02 | 0.22 | 8.09 | 0.25 | |
12.5 | 8.34 | 0.28 | 0.00 | 0.00 | |
6.25 | 8.13 | 0.21 | 0.00 | 0.00 | |
Turkey | 200 | 12.34 | 0.40 | 10.90 | 0.54 |
100 | 11.73 | 0.41 | 10.12 | 0.37 | |
50 | 10.99 | 0.37 | 9.58 | 0.39 | |
25 | 10.63 | 0.10 | 8.76 | 0.64 | |
12.5 | 10.09 | 0.65 | 8.19 | 0.23 | |
6.25 | 9.18 | 0.26 | 8.07 | 0.15 | |
Romania | 200 | 10.85 | 0.26 | 9.01 | 0.16 |
100 | 10.34 | 0.10 | 8.67 | 0.20 | |
50 | 9.41 | 0.07 | 8.36 | 0.16 | |
25 | 9.09 | 0.50 | 8.14 | 0.12 | |
12.5 | 7.90 | 0.21 | 0.00 | 0.00 | |
6.25 | 7.62 | 0.33 | 0.00 | 0.00 | |
Australia | 200 | 10.89 | 0.98 | 10.56 | 0.47 |
100 | 9.79 | 0.17 | 9.14 | 0.36 | |
50 | 9.48 | 0.12 | 8.50 | 0.11 | |
25 | 9.26 | 0.07 | 8.29 | 0.05 | |
12.5 | 9.05 | 0.09 | 8.23 | 0.10 | |
6.25 | 8.86 | 0.28 | 7.98 | 0.10 | |
Uruguay standardized extract | 200 | 10.72 | 0.09 | 9.32 | 0.23 |
100 | 10.13 | 0.24 | 9.10 | 0.18 | |
50 | 9.36 | 0.06 | 8.39 | 0.09 | |
25 | 8.79 | 0.07 | 8.02 | 0.05 | |
12.5 | 8.25 | 0.17 | 7.94 | 0.10 | |
6.25 | 8.24 | 0.72 | 0.00 | 0.00 | |
Uruguay | 200 | 0.00 | 0.00 | 8.12 | 0.24 |
100 | 0.00 | 0.00 | 7.81 | 0.28 | |
50 | 0.00 | 0.00 | 0.00 | 0.00 | |
25 | 0.00 | 0.00 | 0.00 | 0.00 | |
12.5 | 0.00 | 0.00 | 0.00 | 0.00 | |
6.25 | 0.00 | 0.00 | 0.00 | 0.00 |
Bacterial Strain | Liquid Medium | Solid Medium |
---|---|---|
Escherichia coli ATCC 8739 | MH (Mueller–Hinton) | MHA (Mueller–Hinton Agar) |
Staphylococcus aureus ATCC 6538 | MH | MHA |
Streptococcus mutans ATCC 25175 | BHI (Brain Heart Infusion) | MHA |
Yersinia enterocolitica 6471/76-c (wild-type strain lacking virulence plasmids) | MH | MHA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balwierz, R.; Kasperkiewicz, K.; Straszak, M.; Siodłak, D.; Pokajewicz, K.; Ben Hammouda, I.; Wieczorek, P.P.; Kurek-Górecka, A.; Czuba, Z.P.; Baj, T. From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay. Molecules 2025, 30, 4014. https://doi.org/10.3390/molecules30194014
Balwierz R, Kasperkiewicz K, Straszak M, Siodłak D, Pokajewicz K, Ben Hammouda I, Wieczorek PP, Kurek-Górecka A, Czuba ZP, Baj T. From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay. Molecules. 2025; 30(19):4014. https://doi.org/10.3390/molecules30194014
Chicago/Turabian StyleBalwierz, Radosław, Katarzyna Kasperkiewicz, Martyna Straszak, Daria Siodłak, Katarzyna Pokajewicz, Ibtissem Ben Hammouda, Piotr P. Wieczorek, Anna Kurek-Górecka, Zenon P. Czuba, and Tomasz Baj. 2025. "From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay" Molecules 30, no. 19: 4014. https://doi.org/10.3390/molecules30194014
APA StyleBalwierz, R., Kasperkiewicz, K., Straszak, M., Siodłak, D., Pokajewicz, K., Ben Hammouda, I., Wieczorek, P. P., Kurek-Górecka, A., Czuba, Z. P., & Baj, T. (2025). From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay. Molecules, 30(19), 4014. https://doi.org/10.3390/molecules30194014