Exploring the Relationship of Antioxidant Characteristics and Fatty Acids with Volatile Flavor Compounds (VOCs) by GC-IMS and GC-O-MS in Different Breeds of Pigs
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Chemical Reagents
2.2. Analysis of VOCs
2.2.1. HS-GC-IMS Analysis in Different Varieties of Pork
2.2.2. SPME-GC-O-MS Analysis
2.3. Analysis of Intramuscular Fat
2.4. Analysis of Fatty Acids
2.5. Analysis of Antioxidant Index
2.5.1. Antioxidant Capacity Characterization Value Analysis
2.5.2. Endogenous Antioxidant Factor Analysis
Extraction and Activity Determination of Antioxidant Enzymes
Total Phenol Content (TPC) Analysis
Determination of Vitamin C and Vitamin E Content
2.6. Data Analysis
3. Results and Discussion
3.1. Analysis of VOCs in Different Varieties of Pork
3.1.1. VOCs Identified by GC-IMS in Different Varieties of Pork
3.1.2. VOCs Identified by GC-O-MS
3.2. Analysis of Intramuscular Fat and Fatty Acid Spectrometry in Different Pork Varieties
3.3. Analysis of Antioxidant Capacity Characterization Value and Endogenous Antioxidant Factors
3.4. Relationship of Antioxidant Factors and Fatty Acids with VOCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arshad, M.S.; Sohaib, M.; Ahmad, R.S.; Nadeem, M.T.; Imran, A.; Arshad, M.U.; Kwon, J.H.; Amjad, Z. Ruminant meat flavor influenced by different factors with special reference to fatty acids. Lipids Health Dis. 2018, 17, 223. [Google Scholar] [CrossRef] [PubMed]
- Ngapo, T.M.; Gariépy, C. Factors affecting the eating quality of pork. Crit. Rev. Food Sci. Nutr. 2008, 48, 599–633. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cai, W.; Li, R.; Zhao, W.; Zhang, J.; Rong, X.; Zhang, T.; Yang, Y.; Li, B.; Guo, X. Molecular mechanism of nano-vitamin A-mediated regulation of intramuscular fat deposition involving noncoding RNAs in pigs. BMC Genom. 2025, 26, 716. [Google Scholar] [CrossRef]
- Li, X.; Huang, Q.; Meng, F.; Hong, C.; Li, B.; Yang, Y.; Qu, Z.; Wu, J.; Li, F.; Xin, H.; et al. Analysis of Transcriptome Differences Between Subcutaneous and Intramuscular Adipose Tissue of Tibetan Pigs. Genes 2025, 16, 246. [Google Scholar] [CrossRef]
- Wang, Q.; Gao, H.; Fu, Y.W.; Chen, Y.; Song, G.; Jin, Z.; Zhang, Y.B.; Yin, J.; Yin, Y.L.; Xu, K. Comprehensive characterization of the differences in metabolites, lipids, and volatile flavor compounds between ningxiang and berkshire pigs using multi-omics techniques. Food Chem. 2024, 457, 139807. [Google Scholar] [CrossRef]
- Lu, P.; Li, D.F.; Yin, J.D.; Zhang, L.Y.; Wang, Z.G. Flavour differences of cooked longissimus muscle from Chinese indigenous pig breeds and hybrid pig breed (Duroc × Landrace × Large White). Food Chem. 2008, 107, 1529–1537. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Meinert, L. Meat flavour in pork and beef—From animal to meal. Meat Sci. 2017, 132, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.H.; Cao, S.Y.; Yang, L.; Li, Z.L. Flavor formation based on lipid in meat and meat products: A review. J. Food Biochem. 2022, 46, 20. [Google Scholar] [CrossRef]
- Kulkarni, A.P. Lipoxygenase—A versatile biocatalyst for biotransformation of endobiotics and xenobiotics. Cell. Mol. Life Sci. Cmls 2001, 58, 1805–1825. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. Lipid oxidation and its implications to meat quality and human health. Food Sci. Biotechnol. 2019, 28, 1275–1285. [Google Scholar] [CrossRef]
- Zhu, B.Q.; Gao, H.; Yang, F.; Li, Y.Y.; Yang, Q.Y.; Liao, Y.C.; Guo, H.M.; Xu, K.; Tang, Z.Q.; Gao, N.; et al. Comparative Characterization of Volatile Compounds of Ningxiang Pig, Duroc and Their Crosses (Duroc × Ningxiang) by Using SPME-GC-MS. Foods 2023, 12, 1059. [Google Scholar] [CrossRef]
- Wang, S.Q.; Chen, H.T.; Sun, B.G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Pirman, D.A.; Reich, R.F.; Kiss, A.; Heeren, R.M.A.; Yost, R.A. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal. Chem. 2013, 85, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Yan, E.; Guo, J.; Yin, J. Nutritional regulation of skeletal muscle energy metabolism, lipid accumulation and meat quality in pigs. Anim. Nutr. 2023, 14, 185–192. [Google Scholar] [CrossRef]
- Yi, W.; Huang, Q.; Wang, Y.; Shan, T. Lipo-nutritional quality of pork: The lipid composition, regulation, and molecular mechanisms of fatty acid deposition. Anim. Nutr. 2023, 13, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Rao, L.; Cui, D.; Tang, X.; Xiao, S. Effects of carcass weight, sex and breed composition on meat cuts and carcass trait in finishing pigs. J. Integr. Agric. 2023, 22, 1489–1501. [Google Scholar] [CrossRef]
- Standard’s GB/T 19479-2004; Good Manufacturing Practice for Pig Slaughting. Standards Press of China: Beijing, China, 2004.
- Wu, W.; Zhan, J.; Tang, X.; Li, T.; Duan, S. Characterization and identification of pork flavor compounds and their precursors in Chinese indigenous pig breeds by volatile profiling and multivariate analysis. Food Chem. 2022, 385, 132543. [Google Scholar] [CrossRef]
- Standard’s GB 5009.06-2016; National Food Safety Standards Determination of Fat in Foods. Standards Press of China: Beijing, China, 2016.
- Standard’s GB 5009.168-2016; National Food Safety Standard Determination of Fatty Acids in Food. Standards Press of China: Beijing, China, 2016.
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Liu, D.Y.; Zhou, G.H.; Xu, X.L. “ROAV” Method: A new method for determining key flavor compounds in food. Food Sci. 2008, 29, 370–374. [Google Scholar]
- Zhu, Y.F.; Chen, J.; Chen, X.J.; Chen, D.Z.; Deng, S.G. Use of relative odor activity value (ROAV) to link aroma profiles to volatile compounds: Application to fresh and dried eel (Muraenesox cinereus). Int. J. Food Prop. 2020, 23, 2257–2270. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, M.; Hou, X.H.; Hou, R.D.; Wang, L.G.; Shi, L.J.; Zhao, F.P.; Liu, X.; Meng, Q.S.; Wang, L.X.; et al. Characterization and difference of lipids and metabolites from Jianhe White Xiang and Large White pork by high-performance liquid chromatography-tandem mass spectrometry. Food Res. Int. 2022, 162, 111946. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Cui, C.J.; Zhang, S.H.; Zhu, J.J.; Peng, C.Y.; Cai, H.M.; Yang, X.G.; Hou, R.Y. Use of Headspace GC/MS Combined with Chemometric Analysis to Identify the Geographic Origins of Black Tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef]
- Su, D.; He, J.F.; Zhou, Y.Z.; Li, Y.L.; Zhou, H.J. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chem. 2022, 373, 131587. [Google Scholar] [CrossRef]
- Guo, X.; Lu, S.L.; Wang, Y.Q.; Dong, J.; Ji, H.; Wang, Q.L. Correlations among flavor compounds, lipid oxidation indices, and endogenous enzyme activity during the processing of Xinjiang dry-cured mutton ham. J. Food Process. Preserv. 2019, 43, 15. [Google Scholar] [CrossRef]
- Aheto, J.H.; Huang, X.; Tian, X.; Lv, R.; Dai, C.; Bonah, E.; Chang, X. Evaluation of lipid oxidation and volatile compounds of traditional dry-cured pork belly: The hyperspectral imaging and multi-gas-sensory approaches. J. Food Process Eng. 2019, 43, e13092. [Google Scholar] [CrossRef]
- Zou, Y.; Kang, D.; Liu, R.; Qi, J.; Zhou, G.; Zhang, W. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef. Ultrason. Sonochem. 2018, 46, 36–45. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, C.; Wang, C.Z.; Chen, H.; Liu, Y.W.; Li, S.Q.; Lin, D.R.; Wu, D.T.; Qin, W. Evaluation of the non-aldehyde volatile compounds formed during deep-fat frying process. Food Chem. 2018, 243, 151–161. [Google Scholar] [CrossRef]
- Górska-Horczyczak, E.; Wojtasik-Kalinowska, I.; Wierzbicka, A. Supplemental linseed oil and antioxidants affect fatty acid composition, oxidation and colour stability of frozen pork. S. Afr. J. Anim. Sci. 2020, 50, 253–263. [Google Scholar] [CrossRef]
- Jo, C.; Ahn, D.U. Volatiles and oxidative changes in irradiated pork sausage with different fatty acid composition and tocopherol content. J. Food Sci. 2000, 65, 270–275. [Google Scholar] [CrossRef]
- Xu, Y.S.; Li, L.; Regenstein, J.M.; Gao, P.; Zang, J.H.; Xia, W.S.; Jiang, Q.X. The contribution of autochthonous microflora on free fatty acids release and flavor development in low-salt fermented fish. Food Chem. 2018, 256, 259–267. [Google Scholar] [CrossRef]
- Farmer, L.J.; Mottram, D.S. Interaction of lipid in the maillard reaction between cysteine and ribose: The effect of a triglyceride and three phospholipids on the volatile products. J. Sci. Food Agric. 1990, 53, 505–525. [Google Scholar] [CrossRef]
- Alam, A.M.M.N.; Hwang, Y.H.; Samad, A.; Joo, S.T. Meat Quality Traits Using Gelatin–Green Tea Extract Hybrid Electrospun Nanofiber Active Packaging. Foods 2025, 14, 1734. [Google Scholar] [CrossRef]
- Benet, I.; Dolors Guardia, M.; Ibanez, C.; Sola, J.; Arnau, J.; Roura, E. Low intramuscular fat (but high in PUFA) content in cooked cured pork ham decreased Maillard reaction volatiles and pleasing aroma attributes. Food Chem. 2016, 196, 76–82. [Google Scholar] [CrossRef]
- Langourieux, S.; Escher, F. Sulfurous Off-Flavor Formation and Lipid Oxidation in Heat-Sterilized Meat in Trays. J. Food Sci. 2006, 63, 716–720. [Google Scholar] [CrossRef]
- Alonso, V.; Campo, M.D.M.; Espanol, S.; Roncales, P.; Beltran, J.A. Effect of crossbreeding and gender on meat quality and fatty acid composition in pork. Meat Sci. 2009, 81, 209–217. [Google Scholar] [CrossRef]
- Kondracki, S. A note on fatty acid profile of skeletal muscle fat in Pulawska and Polish Large White pigs as affected by feeding level and sex. Anim. Sci. Pap. Rep. 2000, 18, 137–143. [Google Scholar]
- Bosch, L.; Tor, M.; Reixach, J.; Estany, J. Age-related changes in intramuscular and subcutaneous fat content and fatty acid composition in growing pigs using longitudinal data. Meat Sci. 2012, 91, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zeng, Q.F.; Xu, H.P.; Fang, G.F.; Wang, S.D.; Li, C.H.; Wang, Y.D.; HWang, H.; Zeng, Y.Q. Comparison and relationship between meat colour and antioxidant capacity of different pig breeds. Anim. Prod. Sci. 2018, 58, 2152–2157. [Google Scholar] [CrossRef]
- Pastsart, U.; Boever, M.D.; Claeys, E.; Smet, S.D. Effect of muscle and post-mortem rate of pH and temperature fall on antioxidant enzyme activities in beef. Meat Sci. 2013, 93, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Descalzo, A.M.; Sancho, A.M. A review of natural antioxidants and their effects on oxidative status, odor and quality of fresh beef produced in Argentina. Meat Sci. 2008, 79, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Seisonen, S.; Vene, K.; Koppel, K. The current practice in the application of chemometrics for correlation of sensory and gas chromatographic data. Food Chem. 2016, 210, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Wang, Y.; Pan, D.D.; Sun, Y.Y.; Cao, J.X. Study on the volatile compounds generated from lipid oxidation of Chinese bacon (unsmoked) during processing. Eur. J. Lipid Sci. Technol. 2017, 119, 1600512. [Google Scholar] [CrossRef]
- Owusu, M.; Petersen, M.A.; Heimdal, H. Relationship of sensory and instrumental aroma measurements of dark chocolate as influenced by fermentation method, roasting and conching conditions. J. Food Sci. Technol. 2013, 50, 909–917. [Google Scholar] [CrossRef]
- Illuri, R.; Kumar, M.; Eyini, M.; Veeramanikandan, V.; Balaji, P. Production, partial purification and characterization of ligninolytic enzymes from selected basidiomycetes mushroom fungi. Saudi J. Biol. Sci. 2021, 28, 7207–7218. [Google Scholar] [CrossRef]
Compounds | Threshold Value | Odor Perception | DLY | NX | RC | DW |
---|---|---|---|---|---|---|
(E)-2-Decenal | 2.7 | Waxy | 1.31 | 0.81 | 0.90 | 0.92 |
Hexanoic acid | 4.8 | Fatty | 1.02 | 0.50 | 0.50 | 0.52 |
1-Octanol | 22 | Fatty | 1.09 | 1.27 | 1.17 | 1.02 |
(E,E)-2,4-Nonadienal | 0.2 | Strong, fatty, floral | 3.44 | 1.51 | 5.98 | 0.00 |
(E)-2-Octenal | 2.7 | Nutty, fatty | 3.39 | 2.70 | 3.62 | 3.05 |
3-phenyl-2-Propenal | 0.081 | Cinnamon odor | 7.18 | 14.71 | 14.24 | 12.48 |
3-Octanone | 1.3 | herbaceous, Fruity warm odor | 2.97 | 0.00 | 0.00 | 0.00 |
(Z,Z,Z)-9,12,15-Octadecatrien-1-ol | 0.08 | Floral | 11.01 | 0.00 | 11.51 | 9.37 |
cis-4-Decenal | 22 | Fatty | 20.33 | 0.00 | 0.00 | 18.32 |
Tridecanal | 10 | Fruity | 0.00 | 30.38 | 0.00 | 0.00 |
1-Octen-3-ol | 1 | Mushroom | 100.00 | 100.00 | 100.00 | 100.00 |
Item | DLY | NX | RC | DW |
---|---|---|---|---|
IMF | 1.42 ± 0.32 c | 3.17 ± 0.56 b | 3.72 ± 0.30 a | 3.15 ± 0.27 b |
C6:0 | 0.47 ± 0.05 b | 0.38 ± 0.07 b | 0.84 ± 0.13 a | 0.54 ± 0.07 b |
C8:0 | ND | 0.01 ± 0.01 ab | 0.01 ± 0.01 b | 0.02 ± 0.01 a |
C10:0 | 0.06 ± 0.01 b | 0.08 ± 0.01 ab | 0.05 ± 0.01 b | 0.09 ± 0.01 a |
C12:0 | 0.01 ± 0.01 b | 0.02 ± 0.01 a | 0.01 ± 0.01 b | 0.02 ± 0.01 a |
C13:0 | 0.09 ± 0.01 a | 0.06 ± 0.01 a | 0.09 ± 0.02 a | 0.08 ± 0.01 a |
C14:0 | 1.28 ± 0.09 ab | 1.47 ± 0.11 a | 1.09 ± 0.04 b | 1.35 ± 0.17 ab |
C15:0 | 0.03 ± 0.01 a | 0.02 ± 0.01 bc | 0.02 ± 0.01 ab | 0.02 ± 0.01 c |
C16:0 | 24.11 ± 0.83 b | 27.22 ± 0.30 a | 23.21 ± 0.37 b | 24.87 ± 0.57 b |
C17:0 | 0.12 ± 0.01 a | 0.11 ± 0.01 a | 0.12 ± 0.02 b | 0.08 ± 0.01 a |
C18:0 | 13.59 ± 0.50 b | 15.61 ± 0.68 a | 11.96 ± 0.22 c | 11.75 ± 0.29 c |
C20:0 | 0.09 ± 0.01 b | 0.06 ± 0.01 c | 0.18 ± 0.01 a | 0.06 ± 0.01 c |
C21:0 | 0.03 ± 0.01 b | 0.01 ± 0.01 b | 0.05 ± 0.01 a | 0.02 ± 0.01 b |
C22:0 | 0.41 ± 0.02 a | 0.30 ± 0.03 b | 0.46 ± 0.01 a | 0.28 ± 0.01 b |
C24:0 | 0.62 ± 0.06 b | 0.51 ± 0.04 b | 0.92 ± 0.07 a | 0.54 ± 0.03 b |
C15:1 | 1.10 ± 0.13 a | 0.79 ± 0.06 a | 1.06 ± 0.11 a | 1.00 ± 0.07 a |
C16:1 | 3.10 ± 0.25 ab | 2.86 ± 0.12 b | 3.01 ± 0.13 ab | 3.49 ± 0.18 a |
C17:1 | 0.39 ± 0.04 b | 0.35 ± 0.05 b | 0.62 ± 0.05 a | 0.39 ± 0.02 b |
C18:1n9t | 0.15 ± 0. 01 a | 0.13 ± 0. 01 b | 0.16 ± 0. 01 a | 0.15 ± 0. 01 a |
C18:1n9c | 38.98 ± 0.89 a | 36.37 ± 1.57 a | 37.30 ± 0.82 a | 39.68 ± 0.75 a |
C24:1 | 0.22 ± 0.01 ab | 0.17 ± 0.02 b | 0.27 ± 0.03 a | 0.17 ± 0.01 b |
C22:1n9 | 0.74 ± 0.07 b | 0.57 ± 0.05 b | 1.08 ± 0.09 a | 0.64 ± 0.04 b |
C18:2n6t | 1.41 ± 0.10 b | 1.31 ± 0.06 b | 1.82 ± 0.15 a | 1.75 ± 0.10 a |
C18:2n6c | 10.86 ± 0.79 b | 9.58 ± 0.85 b | 13.53 ± 0.90 a | 7.26 ± 0.37 c |
C18:3n3 | 0.89 ± 0.05 a | 0.96 ± 0.04 a | 0.59 ± 0.04 b | 0.89 ± 0.01 a |
C20:2 | 0.32 ± 0.01 a | 0.33 ± 0.02 a | 0.34 ± 0.02 a | 0.19 ± 0.01 b |
C20:3n6 | 0.31 ± 0.03 b | 0.26 ± 0.01 b | 0.46 ± 0.03 a | 0.27 ± 0. 01 b |
C20:4n6 | 0.04 ± 0.01 a | 0.02 ± 0.01 ab | 0.03 ± 0.01 a | 0.02 ± 0.01 b |
C22:2 | 0.34 ± 0.03 b | 0.27 ± 0.02 b | 0.50 ± 0.03 a | 0.29 ± 0. 01 b |
C22:6n3 | 0.20 ± 0.01 a | 0.11 ± 0.01 b | 0.25 ± 0.03 a | 0.09 ± 0.01 b |
SFA | 40.96 ± 0.49 b | 45.92 ± 1.49 a | 39.02 ± 0.71 c | 39.73 ± 0.64 bc |
MUFA | 44.67 ± 0.71 a | 41.24 ± 0.78 b | 43.48 ± 0.41 ab | 45.52 ± 0.44 a |
PUFA | 14.39 ± 0.92 b | 12.84 ± 0.90 bc | 17.50 ± 1.05 a | 10.76 ± 0.40 c |
UFA | 59.04 ± 0.71 ab | 54.08 ± 0.78 b | 60.98 ± 0.42 a | 56.28 ± 0.44 b |
Item | DLY | NX | RC | DW |
---|---|---|---|---|
T-AOC/ABTS (mM Trolox) | 0.27 ± 0.01 b | 0.33 ± 0.01 a | 0.28 ± 0.05 b | 0.29 ± 0.02 b |
T-AOC/FRAP (mmol/L FeSO4) | 0.19 ± 0.01 c | 0.33 ± 0.01 a | 0.25 ± 0.02 b | 0.22 ± 0.02 b |
DPPH (mM Trolox) | 1109.30 ± 0.01 c | 1791.22 ± 0.08 a | 1549.18 ± 0.01 b | 1063.06 ± 0.01 c |
OH•− (U/mg prot) | 26.02 ± 1.38 b | 29.10 ± 1.10 b | 29.14 ± 2.21 b | 38.20 ± 3.19 a |
SOD (U/mg prot) | 24.66 ± 0.95 b | 53.06 ± 3.94 a | 44.22 ± 4.12 a | 50.90 ± 2.94 a |
CAT (U/mg prot) | 6.04 ± 1.18 b | 10.39 ± 0.90 b | 8.03 ± 1.07 b | 17.07 ± 1.88 a |
GSH-Px (U/mg prot) | 3.11 ± 0.51 b | 6.56 ± 0.53 a | 5.12 ± 0.52 ab | 3.13 ± 0.96 b |
TPC (mg GAE/g) | 0.73 ± 0.02 a | 0.69 ± 0.02 ab | 0.65 ± 0.02 b | 0.71 ± 0.02 ab |
Vitamin C (μg/g) | 21.80 ± 1.34 b | 28.37 ± 2.34 a | 23.53 ± 1.11 b | 30.63 ± 1.49 a |
Vitamin E (μg/g) | 14.43 ± 0.74 b | 71.28 ± 1.36 a | 5.21 ± 0.25 c | 5.87 ± 0.80 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Liu, H.; Tang, X.; Zhang, Y.; Li, Y. Exploring the Relationship of Antioxidant Characteristics and Fatty Acids with Volatile Flavor Compounds (VOCs) by GC-IMS and GC-O-MS in Different Breeds of Pigs. Foods 2025, 14, 3580. https://doi.org/10.3390/foods14203580
Huang X, Liu H, Tang X, Zhang Y, Li Y. Exploring the Relationship of Antioxidant Characteristics and Fatty Acids with Volatile Flavor Compounds (VOCs) by GC-IMS and GC-O-MS in Different Breeds of Pigs. Foods. 2025; 14(20):3580. https://doi.org/10.3390/foods14203580
Chicago/Turabian StyleHuang, Xinyuan, Hui Liu, Xiaoyan Tang, Yuhui Zhang, and Yaxuan Li. 2025. "Exploring the Relationship of Antioxidant Characteristics and Fatty Acids with Volatile Flavor Compounds (VOCs) by GC-IMS and GC-O-MS in Different Breeds of Pigs" Foods 14, no. 20: 3580. https://doi.org/10.3390/foods14203580
APA StyleHuang, X., Liu, H., Tang, X., Zhang, Y., & Li, Y. (2025). Exploring the Relationship of Antioxidant Characteristics and Fatty Acids with Volatile Flavor Compounds (VOCs) by GC-IMS and GC-O-MS in Different Breeds of Pigs. Foods, 14(20), 3580. https://doi.org/10.3390/foods14203580