Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = solar-assisted heat pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3470 KiB  
Article
Performance Analysis of Multi-Source Heat Pumps: A Regression-Based Approach to Energy Performance Estimation
by Reza Alijani and Fabrizio Leonforte
Sustainability 2025, 17(15), 6804; https://doi.org/10.3390/su17156804 - 26 Jul 2025
Viewed by 313
Abstract
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for [...] Read more.
The growing demand for energy-efficient heating, ventilation, and air conditioning (HVAC) systems has increased interest in multi-source heat pumps as a sustainable solution. While extensive research has been conducted on heat pump performance prediction, there is still a lack of practical tools for early-stage system evaluation. This study addresses that gap by developing regression-based models to estimate the performance of various heat pump configurations, including air-source, ground-source, and dual-source systems. A simplified performance estimation model was created, capable of delivering results with accuracy levels comparable to TRNSYS simulation outputs, making it a valuable and accessible tool for system evaluation. The analysis was conducted across nine climatic zones in Italy, considering key environmental factors such as air temperature, ground temperature, and solar irradiance. Among the tested configurations, hybrid systems like Solar-Assisted Ground-Source Heat Pumps (SAGSHP) achieved the highest performance, with SCOP values up to 4.68 in Palermo and SEER values up to 5.33 in Milan. Regression analysis confirmed strong predictive accuracy (R2 = 0.80–0.95) and statistical significance (p < 0.05), emphasizing the models’ reliability across different configurations and climatic conditions. By offering easy-to-use regression formulas, this study enables engineers and policymakers to estimate heat pump performance without relying on complex simulations. Full article
(This article belongs to the Special Issue Sustainability and Energy Performance of Buildings)
Show Figures

Figure 1

29 pages, 2457 KiB  
Article
Energy and Exergy Analysis of a Photovoltaic-Thermal Geothermal Heat Pump Coupled with Radiant Ceiling and Fresh Air System
by Yaolin Lin, Zhenyan Bu, Wei Yang, Melissa Chan, Lin Tian and Mingqi Dai
Energies 2025, 18(11), 2715; https://doi.org/10.3390/en18112715 - 23 May 2025
Viewed by 385
Abstract
This paper presents energy and exergy studies on a photovoltaic-thermal solar-assisted geothermal heat pump coupled with a radiant ceiling system. The system utilizes renewable solar and geothermal energy. It has an independent fresh air unit that provides clean air to the space. The [...] Read more.
This paper presents energy and exergy studies on a photovoltaic-thermal solar-assisted geothermal heat pump coupled with a radiant ceiling system. The system utilizes renewable solar and geothermal energy. It has an independent fresh air unit that provides clean air to the space. The computer model of the system was developed under the TRNSYST environment and validated with experimental results from open literature. Distribution of the energy consumption and exergy loss of the system were analyzed. It was found that the heat pump unit consumes the largest amount of energy while the transmission and distribution system has the highest exergy loss. Under optimized operating conditions, i.e., both demand side circulation flow and source side circulation flow are maintained at 65% of the design flow rate (design loop water temperature difference of 7.0 °C), the average exergy efficiency of the whole system was found to be 37.56%, which achieves an accumulative exergy loss reduction of 16.5% compared with 100% design flow rate condition during cooling season. The optimal bearing load ratio of the ground source heat pump vs. photovoltaic-thermal system in the heating season was found to be 67%. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

26 pages, 8225 KiB  
Article
Dynamic Simulation of Solar-Assisted Medium-Depth Ground Heat Exchanger Direct Heating System
by Le Chang, Lingjun Kong, Yangyang Jing, Wenshuo Zhang, Sifang Fu, Xueming Lu, Haiqing Yao, Xiaona Xie and Ping Cui
Buildings 2025, 15(10), 1690; https://doi.org/10.3390/buildings15101690 - 16 May 2025
Viewed by 313
Abstract
The global challenges of rising energy consumption and carbon emissions underscore the urgent need for efficient and sustainable heating solutions in the building sector. The implementation of high-performance buildings that envelope insulation and the increasing adoption of low-temperature radiant heating systems have significantly [...] Read more.
The global challenges of rising energy consumption and carbon emissions underscore the urgent need for efficient and sustainable heating solutions in the building sector. The implementation of high-performance buildings that envelope insulation and the increasing adoption of low-temperature radiant heating systems have significantly reduced the water temperature required from heat sources, enabling greater compatibility with renewable energy systems. In this study, we propose a renewable energy heating system incorporating a solar-assisted medium-depth ground heat exchanger (MDGHE). A dynamic simulation model of the solar-assisted MDGHE system was developed in TRNSYS, featuring a novel MDGHE module specifically developed to improve simulation accuracy. A case study of a residential building in China was conducted to evaluate the performance of the proposed system. The simulation results demonstrate that while the standalone MDGHE covers 71.9% of the building’s heating demand, integrating solar collectors with the MDGHE can increase this coverage to 99.9%, enabling full compliance with heating requirements without relying on conventional heat pumps. The results revealed that the system’s COP reached 9.26. Compared with the traditional medium-depth ground source heat pump system with the COP of 4.84, the energy efficiency of this system has been enhanced by 47.7%. A static payback period of 7 years has been obtained compared with the cost of central heating service for residential buildings. These findings highlight the potential of solar-geothermal hybrid systems as a sustainable alternative to traditional heating methods. Full article
Show Figures

Figure 1

29 pages, 4243 KiB  
Article
Sustainable Heating Analysis and Energy Model Development of a Community Building in Kuujjuaq, Nunavik
by Alice Cavalerie, Jasmin Raymond, Louis Gosselin, Jean Rouleau and Ali Hakkaki-Fard
Thermo 2025, 5(2), 14; https://doi.org/10.3390/thermo5020014 - 29 Apr 2025
Viewed by 968
Abstract
Energy transition is a challenge for remote northern communities mainly relying on diesel for electricity generation and space heating. Solar-assisted ground-coupled heat pump (SAGCHP) systems represent an alternative that was investigated in this study for the Kuujjuaq Forum, a multi-activity facility in Nunavik, [...] Read more.
Energy transition is a challenge for remote northern communities mainly relying on diesel for electricity generation and space heating. Solar-assisted ground-coupled heat pump (SAGCHP) systems represent an alternative that was investigated in this study for the Kuujjuaq Forum, a multi-activity facility in Nunavik, Canada. The energy requirements of community buildings facing a subarctic climate are poorly known. Based on energy bills, technical documents, and site visits, this study provided an opportunity to better document the energy consumption of such building, especially considering the recent solar photovoltaic (PV) system installed on part of the roof. A comprehensive model was developed to analyze the building’s heating demand and simulate the performance of a ground-source heat pump (GSHP) coupled with PV panels. The air preheating load, accounting for 268,200 kWh and 47% of the total heating demand, was identified as an interesting and realistic load that could be met by SAGCHP. The GSHP system would require a total length of at least 8000 m, with boreholes at depths between 170 and 200 m to meet this demand. Additional PV panels covering the entire roof could supply 30% of the heat pump’s annual energy demand on average, with seasonal variations from 22% in winter to 53% in spring. Economic and environmental analysis suggest potential annual savings of CAD 164,960 and 176.7 tCO2eq emissions reduction, including benefits from exporting solar energy surplus to the local grid. This study provides valuable insights on non-residential building energy consumption in subarctic conditions and demonstrates the technical viability of SAGCHP systems for large-scale applications in remote communities. Full article
(This article belongs to the Special Issue Innovative Technologies to Optimize Building Energy Performance)
Show Figures

Figure 1

21 pages, 7286 KiB  
Article
Performance Prediction and Analysis of Solar-Assisted Ground-Source Heat Pump Systems in Typical Rural Areas, China
by Ying Cao, Zhibin Zhang, Guosheng Jia, Jianyu Zhai, Jianke Hao, Meng Zhang and Liwen Jin
Energies 2025, 18(9), 2208; https://doi.org/10.3390/en18092208 - 26 Apr 2025
Viewed by 487
Abstract
The increasingly severe energy crisis and associated environmental issues pose new challenges for the efficient and rational utilization of renewable energy. The solar-assisted ground-source heat pump (SAGSHP) system is a novel heating system that effectively combines the advantages of both solar and geothermal [...] Read more.
The increasingly severe energy crisis and associated environmental issues pose new challenges for the efficient and rational utilization of renewable energy. The solar-assisted ground-source heat pump (SAGSHP) system is a novel heating system that effectively combines the advantages of both solar and geothermal energy. In this study, an SAGSHP system was established through TRNSYS simulation software to provide winter heating and year-round domestic hot water for a residential building. By varying the area of solar collectors (A) and the number (n) and the depth (H) of the borehole heat exchangers (BHEs), the system operational performance, including the system energy consumption, ground temperature attenuation, and heat pump efficiency, was investigated. A comparison with a single ground-source heat pump (GSHP) system was also conducted. After 20 years of operation, the parameter optimization resulted in a reduction of approximately 60 MWh and 70 MWh in system energy consumption, equivalent to saving 7.37 t and 8.60 t of standard coal, respectively. At the same time, the total costs over 20 years can be reduced by 48.20% and 33.77%, respectively. The proposed design method and simulation results can serve as the reference for designing and analyzing the performance of the SAGSHP system. Full article
(This article belongs to the Special Issue Geothermal Energy Heating Systems)
Show Figures

Figure 1

22 pages, 5217 KiB  
Article
Performance Evaluation of a Solar-Assisted Multistage Heat Pump Drying System Based on the Optimal Drying Conditions for Solanum lycopersicum L.
by Yimin Tang, Xiaoqiong Li, Peng Xu, Junling Yang, Zhentao Zhang, Ruixiang Wang, Dandan Zhao and Ramadan Elgamal
Foods 2025, 14(7), 1195; https://doi.org/10.3390/foods14071195 - 28 Mar 2025
Cited by 1 | Viewed by 569
Abstract
This study aims to evaluate the drying performance of a multi-stage solar-assisted heat pump drying system for tomatoes. The method involves theoretical calculations based on the optimal drying process and experimental investigations to assess the impact of different drying temperatures and relative humidity [...] Read more.
This study aims to evaluate the drying performance of a multi-stage solar-assisted heat pump drying system for tomatoes. The method involves theoretical calculations based on the optimal drying process and experimental investigations to assess the impact of different drying temperatures and relative humidity on drying characteristics. The results from the theoretical calculations reveal that the multi-stage solar-assisted heat pump drying system outperforms a single-stage system, particularly under lower ambient temperatures or higher fresh air volumes. In spring/autumn, with 25% fresh air, solar energy accounts for 85.12% of the total energy consumption, achieving a performance coefficient of 39.16, a moisture extraction rate of 40.7 kg/kWh, and energy consumption of 0.02 kWh/kg. Carbon dioxide emissions amount to 10.45 kg/year, with a net reduction of 7.88 kg/year. The experimental results indicate that higher relative humidity increases drying time and reduces the diffusion coefficient, which results in higher material temperatures and greater nutrient loss. The optimal drying process is achieved at 70 °C and 20% relative humidity. In conclusion, the multi-stage solar-assisted heat pump drying system demonstrates superior performance in energy efficiency and sustainability compared to single-stage systems. The optimal drying conditions for tomatoes are identified, and the findings contribute to improving drying processes in food preservation while minimizing environmental impact. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

24 pages, 4583 KiB  
Article
Comparative Analysis of Solar Photovoltaic/Thermal Assisted Heat Pump Systems Coupled with PCM Storage and EV Charging with Reference to the UK’s National Carbon Intensity
by Cagri Kutlu, Abdullah Dik, Mehmet Tahir Erdinc, Yuehong Su and Saffa Riffat
Energies 2025, 18(4), 920; https://doi.org/10.3390/en18040920 - 14 Feb 2025
Cited by 1 | Viewed by 988
Abstract
Emerging trends in heat pump (HP) and electric vehicle (EV) adoption within communities aim to reduce carbon emissions in the heating and transportation sectors. However, these technologies rely on grid electricity, whose carbon intensity varies over time. This study explores how the carbon-saving [...] Read more.
Emerging trends in heat pump (HP) and electric vehicle (EV) adoption within communities aim to reduce carbon emissions in the heating and transportation sectors. However, these technologies rely on grid electricity, whose carbon intensity varies over time. This study explores how the carbon-saving potential of these technologies can be further enhanced through demand-shifting operations and renewable energy integration. The research compares photovoltaic–thermal (PV/T) and hybrid solar heat pump systems that integrate EV charging and PCM-enhanced heat storage to improve space heating efficiency under low solar irradiance in the UK while reducing CO2 emissions. The study simulates solar collector configurations and sizes, combining PV modules and heat pumps to enhance system performance. Control systems synchronize operations with periods of low grid CO2 intensity, minimizing the environmental impact. The analysis evaluates PV/T systems, separate PV and thermal collectors, highlighting their energy efficiency and CO2 reduction potential. Control systems further optimize HP operation and EV charging during periods of high renewable energy availability, preventing uncontrolled use that could result in elevated emissions. Using real weather data and a detailed building model, the findings show that a solar-assisted HP with 100% thermal collectors achieves a daily COP of 3.49. Reducing thermal collectors to 60% lowers the COP to 2.57, but PV output compensates, maintaining similar emission levels. The system achieves the lowest emission with high-efficiency evacuated flat plate PV/T collectors. Full article
Show Figures

Figure 1

15 pages, 2638 KiB  
Article
Performance and Optimization of Novel Solar-Assisted Heat Pump System with Hybrid Thermal Energy Storage
by Chaojie Ren, Jie Lin and Nini Guo
Energies 2024, 17(23), 5944; https://doi.org/10.3390/en17235944 - 26 Nov 2024
Cited by 1 | Viewed by 985
Abstract
In this study, a novel solar-assisted heat pump (SAHP) system with hybrid thermal energy storage is proposed. The system can address the problems of large space requirements and the unstable heating of solar heating systems and tackle the energy-efficient degradation of air source [...] Read more.
In this study, a novel solar-assisted heat pump (SAHP) system with hybrid thermal energy storage is proposed. The system can address the problems of large space requirements and the unstable heating of solar heating systems and tackle the energy-efficient degradation of air source heat pumps (ASHPs) in winter. This study utilized TRNSYS18 software to establish a dynamic simulation model of the system, including the system’s model construction and the control scheme’s design. This performance study focused on analyzing the effects of the collector area and thermal energy storage (TES). The results show that with the increase in the collector area, the collector and power generation efficiencies decrease, and the system performance coefficient improves; the rise in the volume of TES leads to the collector and power generation efficiencies first increasing, and then they tend to stabilize, and the performance coefficient shows a trend of firstly increasing, and then decreasing. In terms of parameter optimization, a target optimization scheme and an evaluation model are constructed. The results indicate that the heating demand for a 116-square-meter building in the Tianjin area is met. The equivalent annual cost (EAC) of the system cost is the lowest, which is CNY 3963, when the collector area of the system is 31 square meters, the heat storage tank (HST) volume is 0.4 cubic meters and the phase-change energy storage (PCES) volume is 0.2 cubic meters. The payback period of the system is 10.59 years, which was compared to that of the ASHP. The further comparison of the economic feasibility of the system in the Lhasa, Shenyang, and Tianjin regions shows that the Lhasa region has the lowest EAC and payback period of CNY 1579 and 8.53 years, respectively, while the payback periods of Tianjin and Shenyang are 10.59 and 10.3 years, with EACs of CNY 3963 and CNY 5096, respectively. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 4406 KiB  
Article
Performance Predictions of Solar-Assisted Heat Pumps: Methodological Approach and Comparison Between Various Artificial Intelligence Methods
by Minghui Ma, Oguzhan Pektezel, Vincenzo Ballerini, Paolo Valdiserri and Eugenia Rossi di Schio
Energies 2024, 17(22), 5607; https://doi.org/10.3390/en17225607 - 9 Nov 2024
Cited by 1 | Viewed by 1005
Abstract
The coefficient of performance (COP) is a crucial metric for evaluating the efficiency of heat pump systems. Real-time monitoring of heat pump system performance necessitates continuously collecting and processing data from various components utilizing multiple sensors and controllers. This process is inherently complex [...] Read more.
The coefficient of performance (COP) is a crucial metric for evaluating the efficiency of heat pump systems. Real-time monitoring of heat pump system performance necessitates continuously collecting and processing data from various components utilizing multiple sensors and controllers. This process is inherently complex and presents significant challenges. In recent years, artificial intelligence (AI) models have increasingly been applied in refrigeration, heat pump, and air conditioning systems due to their capability to identify and analyze complex patterns and data relationships, demonstrating higher accuracy and reduced computation time. In this study, multilayer perceptron (MLP), support vector machines (SVM), and random forest (RF) are used to develop COP prediction models for solar-assisted heat pumps. By comparing the predictive accuracy and modeling time of the three models built, the results demonstrate that the random forest model achieves the best prediction performance, with a mean absolute error (MAE) of 2.42% and a root mean squared error (RMSE) of 4.01% on the train set. On the test set, the MAE was 2.35% and the RMSE was 3.84%. The modeling time for the RF model was 6.57 s. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

32 pages, 17491 KiB  
Article
Net Zero Agrivoltaic Arrays for Agrotunnel Vertical Growing Systems: Energy Analysis and System Sizing
by Nima Asgari, Uzair Jamil and Joshua M. Pearce
Sustainability 2024, 16(14), 6120; https://doi.org/10.3390/su16146120 - 17 Jul 2024
Cited by 7 | Viewed by 2824
Abstract
Local indoor farming plays a significant role in the sustainable food production sector. The operation and energy costs, however, have led to bankruptcy and difficulties in cost management of indoor farming operations. To control the volatility and reduce the electricity costs for indoor [...] Read more.
Local indoor farming plays a significant role in the sustainable food production sector. The operation and energy costs, however, have led to bankruptcy and difficulties in cost management of indoor farming operations. To control the volatility and reduce the electricity costs for indoor farming, the agrivoltaics agrotunnel introduced here uses: (1) high insulation for a building dedicated to vertical growing, (2) high-efficiency light emitting diode (LED) lighting, (3) heat pumps (HPs), and (4) solar photovoltaics (PVs) to provide known electric costs for 25 years. In order to size the PV array, this study develops a thermal model for agrotunnel load calculations and validates it using the Hourly Analysis Program and measured data so the effect of plant evapotranspiration can be included. HPs are sized and plug loads (i.e., water pump energy needed to provide for the hybrid aeroponics/hydroponics system, DC power running the LEDs hung on grow walls, and dehumidifier assisting in moisture condensation in summer) are measured/modeled. Ultimately, all models are combined to establish an annual load profile for an agrotunnel that is then used to model the necessary PV to power the system throughout the year. The results find that agrivoltaics to power an agrotunnel range from 40 to 50 kW and make up an area from 3.2 to 10.48 m2/m2 of an agrotunnel footprint. Net zero agrotunnels are technically viable although future work is needed to deeply explore the economics of localized vertical food growing systems. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

16 pages, 2505 KiB  
Article
TRNSYS Simulation of a Bi-Functional Solar-Thermal-Energy-Storage-Assisted Heat Pump System
by Mingzhen Wang, Eric Hu and Lei Chen
Energies 2024, 17(14), 3376; https://doi.org/10.3390/en17143376 - 10 Jul 2024
Cited by 3 | Viewed by 1602
Abstract
The escalating energy demands in buildings, particularly for heating and cooling demands met by heat pumps, have placed a growing stress on energy resources. The bi-functional thermal diode tank (BTDT) is proposed as thermal energy storage to improve the heating and cooling performances [...] Read more.
The escalating energy demands in buildings, particularly for heating and cooling demands met by heat pumps, have placed a growing stress on energy resources. The bi-functional thermal diode tank (BTDT) is proposed as thermal energy storage to improve the heating and cooling performances of heat pumps in both summer and winter. The BTDT is an insulated water tank with a gravity heat pipe (GHP), which can harvest and store heat passively from sun radiation and the external environment during the daytime. In summer, it harvests and stores cold energy from the air and night sky during the daytime. The performance of the BTDT-assisted heat pump (BTDT-HP) system in Adelaide, Australia, during the 2021–2022 summer and winter seasons was evaluated by conducting a TRNSYS simulation. This study revealed that the BTDT-HP system outperformed the reference ASHP system, where up to 8% energy in heating and 39.75% energy in cooling could be saved. An overall reduction in the energy consumption of 18.89% was achieved. Increasing the BTDT volume and GHP panel area enabled the tank to store more thermal and cold energy across the winter and summer seasons, thereby improving the system’s performance. The maximum ESPs were found to be 31.6% and 41.2% for heating and cooling for the study case under optimal conditions. When the GHP panel area was fixed at 15 m2, the BTDT volume should be at least 28 m3 for the BTDT-HP system, boasting cooling and heating capacities of 40 kW and 43.2 kW, to achieve positive energy savings. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 3403 KiB  
Article
Experimental Study on the Heat Pump Performance Combined with Dual-Purpose Solar Collector
by Kwang-Am Moon, Seong-Bhin Kim, Hwi-Ung Choi and Kwang-Hwan Choi
Energies 2024, 17(12), 3038; https://doi.org/10.3390/en17123038 - 20 Jun 2024
Viewed by 1124
Abstract
In this study, we proposed and experimentally investigated a novel solar-assisted heat pump (SAHP) system integrated with a dual-purpose solar collector (DPSC). The DPSC is a solar collector designed to produce both heated air and hot water, and the proposed configuration of the [...] Read more.
In this study, we proposed and experimentally investigated a novel solar-assisted heat pump (SAHP) system integrated with a dual-purpose solar collector (DPSC). The DPSC is a solar collector designed to produce both heated air and hot water, and the proposed configuration of the SAHP utilizes both heated air and water simultaneously to improve the performance of the heat pump. The experiment was conducted under natural weather conditions on a clear day. The performance of the proposed system was evaluated and compared to that of a conventional air-type SAHP system. The results showed that the coefficient of performance (COP) of the proposed system, which takes into account the performance of the DPSC, heat pump, and the power consumption of both the blower and pump, was 3.14. In contrast, the system COP of the SAHP operated as conventional air-type SAHP was 2.33. This finding clearly demonstrated that the proposed SAHP performed better than the traditional SAHP mode. Additionally, the results of this research are useful as fundamental data related to SAHP combined with DPSC. Full article
(This article belongs to the Special Issue Recent Developments in Solar Thermal Energy)
Show Figures

Figure 1

19 pages, 7929 KiB  
Article
Assessing the Effectiveness of an Innovative Thermal Energy Storage System Installed in a Building in a Moderate Continental Climatic Zone
by Luis Coelho, Maria K. Koukou, John Konstantaras, Michail Gr. Vrachopoulos, Amandio Rebola, Anastasia Benou, Constantine Karytsas, Pavlos Tourou, Constantinos Sourkounis, Heiko Gaich and Johan Goldbrunner
Energies 2024, 17(3), 763; https://doi.org/10.3390/en17030763 - 5 Feb 2024
Cited by 5 | Viewed by 2042
Abstract
In the present work, the operating results from an innovative, renewable, energy-based space-heating and domestic hot water (DHW) system are shown. The system used solar thermal energy as its primary source and was assisted by a shallow geothermal application in order to accommodate [...] Read more.
In the present work, the operating results from an innovative, renewable, energy-based space-heating and domestic hot water (DHW) system are shown. The system used solar thermal energy as its primary source and was assisted by a shallow geothermal application in order to accommodate the space-heating and DHW needs of a domestic building in Austria. The system incorporated phase-change materials (PCMs) in specially designed containers to function as heat-storage modules and provide an energy storage capability for both the space-heating and DHW subsystems. This system was designed, implemented, and tested under real operating conditions in a building for a period of one year. The operating and energy results for the system are demonstrated in this work. The system was compared with a conventional one, and a reduction in the primary energy consumption equal to 84.3% was achieved. The maintenance and operating costs of the system were reduced by 79.7% compared to the conventional system, thus significantly contributing to the NZEB target of the building. The newly proposed system, although presenting an increased operating complexity, utilizes an innovative self-learning control system that manages all of its operations. The combination of a solar thermal energy source with thermal energy storage increases the use of renewable energy by extending the capacity of the system beyond the solar hours and using excess solar energy for space-heating needs. The thermal energy storage unit also increases the energy and economic efficiency of the geothermal heat pump by operating it during the hours of a reduced electricity tariff and using the stored energy during hours of a high electricity demand. The cost for the installation of such a system is higher than a conventional one, but due to the significantly decreased operating costs, the pay-back period was calculated to be 8.7 years. Full article
Show Figures

Figure 1

23 pages, 5003 KiB  
Article
Solar-Assisted Heat Pump with Electric and Thermal Storage: The Role of Appropriate Control Strategies for the Exploitation of the Solar Source
by Stefania Perrella, Fabio Bisegna, Piero Bevilacqua, Daniela Cirone and Roberto Bruno
Buildings 2024, 14(1), 296; https://doi.org/10.3390/buildings14010296 - 22 Jan 2024
Cited by 12 | Viewed by 3156
Abstract
In the EU, the building sector is responsible for 40% of the global energy consumption for final uses and 36% of the carbon dioxide (CO2) emissions. Heat pumps allow for the replacement of conventional systems based on fossil fuels with the [...] Read more.
In the EU, the building sector is responsible for 40% of the global energy consumption for final uses and 36% of the carbon dioxide (CO2) emissions. Heat pumps allow for the replacement of conventional systems based on fossil fuels with the perspective of combining PV and solar thermal collectors. In order to rationalize the use of the solar source, this paper examined the self-consumption electricity share, the CO2 equivalent emissions, and the domestic hot water demand covered by renewable sources which were determined in two opposite climatic conditions. These involved both electric and thermal storage systems and considered two different control strategies. The first is commonly used for the management of air-conditioning systems, the second was specifically conceived to maximize the exploitation of the solar source. Results showed that the latter significantly reduced grid dependence in both locations, determining the direct satisfaction of 76% of the thermal and electric loads through the PV self-consumption, determined by 18 kWp of installed PV and a battery capacity of 24 kWh. In terms of equivalent CO2 emissions, when the two control strategies were compared, a remarkable reduction in emissions was registered for the latter, with percentages ranging between 8% and 36% as a function of PV surface and battery capacity. The analysis of domestic hot water supplies revealed disparities between the two localities: the colder first, relied more on heat pumps for water heating, while the warmer second, benefitted from the large availability of solar radiation. Full article
(This article belongs to the Special Issue Advanced Studies in Nearly Zero-Energy Buildings and Optimal Design)
Show Figures

Figure 1

21 pages, 11373 KiB  
Article
Photovoltaic Thermal Heat Pump Assessment for Power and Domestic Hot Water Generation
by Chao Zhou, Ahmad Riaz, Jingjing Wang, Jili Zhang and Lin Xu
Energies 2023, 16(19), 6984; https://doi.org/10.3390/en16196984 - 7 Oct 2023
Cited by 4 | Viewed by 2026
Abstract
The efficient utilization of solar energy significantly contributes to energy efficiency in buildings. Solar photovoltaic thermal (PVT) heat pumps, a hybrid of photovoltaic and solar-assisted heat pumps, have demonstrated a significant development trend due to their multi-generational capacity for heating, power, and cooling [...] Read more.
The efficient utilization of solar energy significantly contributes to energy efficiency in buildings. Solar photovoltaic thermal (PVT) heat pumps, a hybrid of photovoltaic and solar-assisted heat pumps, have demonstrated a significant development trend due to their multi-generational capacity for heating, power, and cooling with reliable operational performance. This research work presents and investigates a single-stage compression PVT heat pump system, along with the operation principle of the system’s heating and power co-generation throughout the winter and transitional season. The construction of the testing facility, data reduction, error analysis, and performance evaluation indices of the system are all explained theoretically. A continuous experiment research project focusing on system heating and power performance was carried out in Dalian during the transition season (November in this study) and winter season (December in this study) as part of our investigation into the potential uses for space heating, residential hot water, and power supply in northern China. The findings of the experimental research demonstrate that the proposed system can generate electricity and heat at high efficiency during the winter and transitional seasons, with long-term stable performance. The system’s average heating COPt is 5 during the transitional season and 4.4 during the winter season. Meanwhile, the average photovoltaic power efficiency under both weather conditions is 11.9% and 10.2%, with a peak value of 15.7% and 12.0%, respectively. Additionally, the system compression ratio’s variation range is 2 to 3.88, which is lower than the standard heat pump system. As a result, the entire system heating operating process remains constant. Full article
(This article belongs to the Special Issue Advances in Energy Efficiency and Conservation of Green Buildings)
Show Figures

Figure 1

Back to TopTop