Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = solar dehydration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3882 KiB  
Article
Energy-Saving-Targeted Solar Photothermal Dehydration and Confined Catalytic Pyrolysis of Oily Sludge Using Wood Sponge Loaded with Carbon Dots
by Chujun Luan, Huiyi Mao, Fawei Lin and Hongyun Yao
Catalysts 2025, 15(8), 764; https://doi.org/10.3390/catal15080764 - 9 Aug 2025
Viewed by 302
Abstract
Pyrolysis of oily sludge (OS) faces two significant challenges, dehydration in emulsion and coke formation, which cause extra energy consumption. Targeting energy saving, this paper first reported on solar photothermal dehydration and confined catalytic pyrolysis of OS using a single material. A wood [...] Read more.
Pyrolysis of oily sludge (OS) faces two significant challenges, dehydration in emulsion and coke formation, which cause extra energy consumption. Targeting energy saving, this paper first reported on solar photothermal dehydration and confined catalytic pyrolysis of OS using a single material. A wood sponge loaded with carbon dots (CM-CDs) can generate heat by absorbing solar energy and promote rapid phase separation and water transport via capillary action of oil–water emulsion in OS under sunlight. Almost all free water in OS with varied content can be removed after 3 h. Hydrocarbons entered the internal space of CM-CDs instead of contacting with soil minerals, contributed to the subsequent confined catalytic pyrolysis, led to a reduction in Ea (35.61 kJ/mol), inhibited coking and caking, and yielded higher oil recovery efficiency. In addition, CDs can form hotspots to enhance pyrolytic behaviors in local regions. When the ratio of OS to CM-CDs reached 10:0.6, the recovery rate of the oil fraction through combined pyrolysis was as high as 89%, which was 17% higher than that of OS pyrolysis alone. This discovery provides a new way to solve the bottleneck problems of OS pyrolysis in the industry. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

22 pages, 5644 KiB  
Article
Analysis of the Impact of the Drying Process and the Effects of Corn Race on the Physicochemical Characteristics, Fingerprint, and Cognitive-Sensory Characteristics of Mexican Consumers of Artisanal Tostadas
by Oliver Salas-Valdez, Emmanuel de Jesús Ramírez-Rivera, Adán Cabal-Prieto, Jesús Rodríguez-Miranda, José Manuel Juárez-Barrientos, Gregorio Hernández-Salinas, José Andrés Herrera-Corredor, Jesús Sebastián Rodríguez-Girón, Humberto Marín-Vega, Susana Isabel Castillo-Martínez, Jasiel Valdivia-Sánchez, Fernando Uribe-Cuauhtzihua and Víctor Hugo Montané-Jiménez
Processes 2025, 13(7), 2243; https://doi.org/10.3390/pr13072243 - 14 Jul 2025
Viewed by 938
Abstract
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated [...] Read more.
The objective of this study was to analyze the impact of solar and hybrid dryers on the physicochemical characteristics, fingerprints, and cognitive-sensory perceptions of Mexican consumers of traditional tostadas made with corn of different races. Corn tostadas from different native races were evaluated with solar and hybrid (solar-photovoltaic solar panels) dehydration methods. Proximal chemical quantification, instrumental analysis (color, texture), fingerprint by Fourier transform infrared spectroscopy (FTIR), and sensory-cognitive profile (emotions and memories) and its relationship with the level of pleasure were carried out. The data were evaluated using analysis of variance models, Cochran Q, and an external preference map (PREFMAP). The results showed that the drying method and corn race significantly (p < 0.05) affected only moisture content, lipids, carbohydrates, and water activity. Instrumental color was influenced by the corn race effect, and the dehydration type influenced the fracturability effect. FTIR fingerprinting results revealed that hybrid samples exhibited higher intensities, particularly associated with higher lime concentrations, indicating a greater exposure of glycosidic or protein structures. Race and dehydration type effects impacted the intensity of sensory attributes, emotions, and memories. PREFMAP vector model results revealed that consumers preferred tostadas from the Solar-Chiquito, Hybrid-Pepitilla, Hybrid-Cónico, and Hybrid-Chiquito races for their higher protein content, moisture, high fracturability, crunchiness, porousness, sweetness, doughy flavor, corn flavor, and burnt flavor, while images of these tostadas evoked positive emotions (tame, adventurous, free). In contrast, the Solar-Pepitilla tostada had a lower preference because it was perceived as sour and lime-flavored, and its tostada images evoked more negative emotions and memories (worried, accident, hurt, pain, wild) and fewer positive cognitive aspects (joyful, warm, rainy weather, summer, and interested). However, the tostadas of the Solar-Cónico race were the ones that were most rejected due to their high hardness and yellow to blue tones and for evoking negative emotions (nostalgic and bored). Full article
(This article belongs to the Special Issue Applications of Ultrasound and Other Technologies in Food Processing)
Show Figures

Figure 1

30 pages, 3268 KiB  
Article
Solar Dehydration of Mangoes as an Alternative for System Sustainability, Food and Nutritional Security, and Energy Transition
by Maria Cristina García-Muñoz, Yajaira Romero-Barrera, Luis Fernando Amortegui-Sánchez, Edwin Villagrán, John Javier Espitia-González and Kelly Johana Pedroza-Berrío
Sustainability 2025, 17(12), 5313; https://doi.org/10.3390/su17125313 - 9 Jun 2025
Viewed by 1341
Abstract
Food losses in developing countries occur predominantly during harvest and post-harvest stages due to inadequate infrastructure for processing agricultural produce into value-added products with an extended shelf life. Dehydration represents an effective method for preserving and enhancing the value of fruits and vegetables; [...] Read more.
Food losses in developing countries occur predominantly during harvest and post-harvest stages due to inadequate infrastructure for processing agricultural produce into value-added products with an extended shelf life. Dehydration represents an effective method for preserving and enhancing the value of fruits and vegetables; however, conventional techniques entail significant energy expenditure, necessitating research into more sustainable and efficient processes. Solar dehydration emerges as a particularly suitable method due to its ability to utilize renewable energy resources, despite persistent technical constraints limiting its widespread implementation. This study presents the design, construction, and performance evaluation of a novel solar dryer incorporating both a drying chamber and an integrated photovoltaic system. The photovoltaic component powers a mechanical system that facilitates the removal of exhaust air, the introduction of fresh air, and homogeneous air circulation through the induction of turbulent flow patterns within the chamber. The results demonstrate that the optimal drying efficiency in solar dehydration systems is primarily contingent upon effective air homogenization and the systematic removal of moisture-laden air. The findings suggest that optimized solar dehydration technology can be considered as a technically viable and economically beneficial approach to mitigating post-harvest losses while simultaneously enhancing agricultural economic sustainability in developing regions. Full article
(This article belongs to the Special Issue Food Security, Food Recovery, Food Quality, and Food Safety)
Show Figures

Figure 1

21 pages, 2131 KiB  
Article
From Sun to Snack: Different Drying Methods and Their Impact on Crispiness and Consumer Acceptance of Royal Gala Apple Snacks
by Lisete Fernandes, Pedro B. Tavares and Carla Gonçalves
Horticulturae 2025, 11(6), 610; https://doi.org/10.3390/horticulturae11060610 - 29 May 2025
Viewed by 527
Abstract
This study explores the acoustic, mechanical and sensory characteristics of Royal Gala dried apples, with a special focus on the potential of solar drying as a sustainable processing method. Apple samples were subjected to different drying techniques, being solar dried (SDA) or oven [...] Read more.
This study explores the acoustic, mechanical and sensory characteristics of Royal Gala dried apples, with a special focus on the potential of solar drying as a sustainable processing method. Apple samples were subjected to different drying techniques, being solar dried (SDA) or oven dried (ODA), with two industrially processed commercial products (CCA—commercial apples C and CFA—commercial apples F) included. The samples were analyzed using acoustic measurements, X-ray diffraction (XRD) and sensory evaluation to assess textural properties and consumer perception. Acoustic analysis revealed that crispier samples produced louder and higher-frequency sounds upon fracture, showing strong alignment with sensory assessments. X-ray diffraction indicated an increase in crystallinity during dehydration, with a shift in the amorphous peak toward lower angles, and reduced intensity, reflecting progressive water removal. Sensory evaluation showed varying degrees of crispiness among the samples, in the following order: CFA > SDA > CCA > ODA. Consumer testing highlighted greater acceptance and consensus for SDA and ODA samples in terms of texture and overall appeal, whereas CCA and CFA received more polarized opinions. These findings demonstrate how different drying methods influence the structural and textural properties of dried apples. Solar drying was shown to be a promising sustainable alternative; as it uses a renewable energy source, it has a low operating cost and simple maintenance. It allows farmers and small producers to process their own food, adding value and reducing post-harvest losses, preserving desirable textural attributes and achieving high consumer acceptance. Full article
Show Figures

Figure 1

24 pages, 21306 KiB  
Article
Bee Bread Drying Process Intensification in Combs Using Solar Energy
by Daulet Toibazar, Baydaulet Urmashev, Aliya Tursynzhanova, Vladimir Nekrashevich, Indira Daurenova, Adilkhan Niyazbayev, Kanat Khazimov, Francesco Pegna and Marat Khazimov
Energies 2025, 18(9), 2226; https://doi.org/10.3390/en18092226 - 27 Apr 2025
Viewed by 383
Abstract
This study presents the development and evaluation of a stand-alone solar dryer designed to improve the efficiency of bee bread dehydration. Unlike the electric prototype powered by conventional energy sources, the proposed system operates autonomously, utilizing solar energy as the primary drying agent. [...] Read more.
This study presents the development and evaluation of a stand-alone solar dryer designed to improve the efficiency of bee bread dehydration. Unlike the electric prototype powered by conventional energy sources, the proposed system operates autonomously, utilizing solar energy as the primary drying agent. The drying chamber is equipped with solar collectors located in its lower section, which ensure convective heating of the product. Active convection is generated by a set of fans powered by photovoltaic panels, maintaining the drying agent’s temperature near 42 °C. The research methodology integrates both numerical simulation and experimental investigation. Simulations focus on the variations in temperature (288–315 K) and relative humidity (1–1.5%) within the honeycomb structure under convective airflow. Experimental trials examine the relationship between moisture content and variables such as bee bread mass, airflow rate, number of frames (5–11 units), and drying time (2–11 h). A statistically grounded analysis based on an experimental design method was conducted, revealing a reduction in moisture content from 16.2–18.26% to 14.1–15.1% under optimized conditions. Linear regression models were derived to describe these dependencies. A comparative assessment using enthalpy–humidity (I–d) diagrams demonstrated the enhanced drying performance of the solar dryer, which is attributed to its cyclic operation mode. The results confirm the potential of the developed system for sustainable and energy-efficient drying of bee bread in decentralized conditions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 3782 KiB  
Article
Thermal Performance and Cost Assessment Analysis of a Double-Pass V-Trough Solar Air Heater
by Eduardo Venegas-Reyes, Naghelli Ortega-Avila, Yuridiana Rocio Galindo-Luna, Jonathan Ibarra-Bahena, Erick Cesar López-Vidaña and Ulises Dehesa-Carrasco
Clean Technol. 2025, 7(1), 27; https://doi.org/10.3390/cleantechnol7010027 - 18 Mar 2025
Cited by 1 | Viewed by 1230
Abstract
Solar air heating systems offer an effective alternative for reducing greenhouse gas emissions at a profitable cost. This work details the design, construction, and experimental evaluation of a novel double-pass V-trough solar air heater with semicircular receivers, which was built with low-cost materials [...] Read more.
Solar air heating systems offer an effective alternative for reducing greenhouse gas emissions at a profitable cost. This work details the design, construction, and experimental evaluation of a novel double-pass V-trough solar air heater with semicircular receivers, which was built with low-cost materials readily available in the Mexican market. Thermal performance tests were conducted in accordance with the ANSI-ASHRAE 93-2010 standard. The results indicated a peak collector efficiency of 0.4461 and total heat losses of 8.8793 W/(m2 °C), with an air mass flow rate of 0.0174 kg/s. The instantaneous thermal efficiency varied between 0.2603 and 0.5633 with different air flow rates and an inlet air temperature close to the ambient temperature. The outlet air temperature reached 70 °C, making it suitable for dehydrating fruits or vegetables at competitive operating costs. Additionally, a second-law analysis was carried out, and the exergy efficiency was between 0.0037 and 0.0407. Finally, a Levelized Cost of Energy analysis was performed, and the result was USD 0.079/kWh, which was 31% lower than that of a conventional electric air heater system. Full article
Show Figures

Figure 1

18 pages, 4455 KiB  
Article
Design, Fabrication, and Performance Evaluation of a Food Solar Dryer
by Md. Suman Rana, A. N. M. Arifur Rahman, Rakib Ahmed, Md. Pallob Hossain, Md. Salim Shadman, Pranta Kumar Majumdar, Kh. Shafiqul Islam and Jonathan Colton
AgriEngineering 2024, 6(4), 4506-4523; https://doi.org/10.3390/agriengineering6040257 - 28 Nov 2024
Cited by 3 | Viewed by 3721
Abstract
One of the oldest techniques for preserving food is drying. Dehydrating foods reduces their moisture content and increases their shelf life by preventing microbiological activity. Food placed on the ground to dry in the sun is a common sight in rural areas of [...] Read more.
One of the oldest techniques for preserving food is drying. Dehydrating foods reduces their moisture content and increases their shelf life by preventing microbiological activity. Food placed on the ground to dry in the sun is a common sight in rural areas of low- and middle-income countries but requires a large amount of land and can lead to food degradation by overexposure to the sun, insects, and vermin. This study designed, fabricated, and evaluated the performance of a solar dryer in comparison to direct sun drying for efficiency and product quality, utilizing bananas and potatoes as representative foods. The dryer was produced and tested within the context of Bangladesh, unlike other commercial devices. With its mild steel frame, fan, solar collector, and DC battery, the dryer achieved a drying efficiency of 49.2% by reaching a drying chamber temperature of 71 °C, which is 30 °C higher than ambient. Drying times were decreased, and samples of potatoes and bananas reached equilibrium moisture content in 6 h as opposed to 9 h for direct sun drying. The moisture content of solar-dried foods was between 12 and 13 percent, making them appropriate for long-term storage. Bioactive substances such as phenolic content and DPPH scavenging activity were reduced by 18% and 21%, respectively, in comparison to direct sun drying. Quality assessments showed that there was little loss in color and nutrients for solar-dried samples. With a one-year payback period, an economic attribute of 3.26, and a life cycle benefit of BDT 310,651 (USD 2597.68), economics show the dryer’s feasibility. The solar dryer functioned faster than direct sun drying due to its significantly higher heat generation. The solar dryer was more efficient, effective, and economic within the context of Bangladesh and other low- and middle-income countries. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

12 pages, 821 KiB  
Review
Sun Protection as a Strategy for Managing Heat Stress in Avocado Trees
by Francisco José Domingues Neto, Débora Cavalcante dos Santos Carneiro, Marcelo de Souza Silva, Marco Antonio Tecchio, Sarita Leonel, Adilson Pimentel Junior, Elizabeth Orika Ono and João Domingos Rodrigues
Plants 2024, 13(20), 2854; https://doi.org/10.3390/plants13202854 - 11 Oct 2024
Cited by 1 | Viewed by 2388
Abstract
The increasing incidence of heat stress due to global climate change poses a significant challenge to avocado (Persea americana) cultivation, particularly in regions with intense solar radiation. This review evaluates sun protection strategies, focusing on the efficacy of different sunscreen products [...] Read more.
The increasing incidence of heat stress due to global climate change poses a significant challenge to avocado (Persea americana) cultivation, particularly in regions with intense solar radiation. This review evaluates sun protection strategies, focusing on the efficacy of different sunscreen products such as kaolin, titanium dioxide, and calcium oxide in mitigating thermal stress in avocado trees. The application of these materials was shown to reduce leaf and fruit surface temperatures, improve photosynthetic efficiency, and enhance fruit quality by preventing sunburn and dehydration. Despite these benefits, challenges remain, including the optimal timing and dosage of application, and the potential residue impacts on fruit marketability. The review emphasizes the need for ongoing research to develop more effective formulations and to integrate these sun protection strategies with other agronomic practices. The role of extension services in educating producers about the proper use of these technologies is also highlighted as crucial for the successful adoption of sun protection measures in avocado farming. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

17 pages, 6043 KiB  
Article
Experimental Study on Heat Recovery in a CaO/Ca(OH)2-Based Mechanical Fluidized Bed Thermochemical Energy Storage Reactor
by Viktor Kühl, Marc Linder and Matthias Schmidt
Energies 2024, 17(19), 4770; https://doi.org/10.3390/en17194770 - 24 Sep 2024
Viewed by 1262
Abstract
Long-term storage of seasonally available solar energy and its provision to balance heating energy demand can contribute significantly to the sustainable use of energy resources. Thermochemical energy storage is a suitable process for this purpose, offering the possibility of loss-free long-term energy storing [...] Read more.
Long-term storage of seasonally available solar energy and its provision to balance heating energy demand can contribute significantly to the sustainable use of energy resources. Thermochemical energy storage is a suitable process for this purpose, offering the possibility of loss-free long-term energy storing and heat supply. In order to develop suitable technical solutions for the use of this technology, novel reactor concepts and scientific questions regarding material and technology development are being investigated. In this publication, the energy storage process of a long-term energy storage system based on a ploughshare reactor is experimentally investigated under various technically relevant operating conditions. One specific aspect of this technology is related to the release of water vapour during the charging process. Therefore, this work focusses, in particular, on the possibility of technically utilizing the latent heat of the released water vapour in the range of 45 °C to 80 °C, which covers the operating requirements of common heating systems in households. The experiments have shown that the dehydration process enables the separation of two heat fluxes: the chemically bound energy for long-term storage and the physically (sensible and latent) stored energy for short-term applications. However, the limitation of gas transport was also identified as the most important influencing parameter for optimising the performance of the process. Full article
(This article belongs to the Special Issue Thermal Energy Storage Systems Modeling and Experimentation)
Show Figures

Figure 1

15 pages, 2029 KiB  
Article
Exploring the Effects of Drying Method and Temperature on the Quality of Dried Basil (Ocimum basilicum L.) Leaves: A Sustainable and Eco-Friendly Drying Solution
by Farah Naz Akbar, Shahid Mahmood, Ghulam Mueen-ud-din, Muhammad Yamin and Mian Anjum Murtaza
Resources 2024, 13(9), 121; https://doi.org/10.3390/resources13090121 - 30 Aug 2024
Cited by 2 | Viewed by 2452
Abstract
The purpose of this study was to investigate the effects of solar drying and oven drying methods on the quality parameters of dried basil (Ocimum basilicum L.) leaves. The dried basil leaves were dehydrated at three different levels of temperature (T1 [...] Read more.
The purpose of this study was to investigate the effects of solar drying and oven drying methods on the quality parameters of dried basil (Ocimum basilicum L.) leaves. The dried basil leaves were dehydrated at three different levels of temperature (T1, T2, and T3 = 50 °C, 55 °C, and 60 °C) using a solar tunnel dryer and an electrical oven dryer. Drying time, energy consumption, dehydration ratio, rehydration ratio, pH, and reducing sugar were observed after drying the basil leaves. The results showed that solar drying at 55 °C required the least energy (0.431 kWh) and took the shortest amount of time (110 min) to complete, whereas oven drying consumed more energy. Additionally, oven drying maintained a low pH (4.30) and reducing sugar level (2.24), extending the shelf life of the dried basil leaves, compared to solar drying. Based on energy consumption, drying time, and mineral contents, the solar drying using a solar tunnel dryer was deemed more suitable than oven drying. The best temperature for drying was determined to be 55 °C, which provided a short drying time, the least energy consumption and a statistically non-significant loss of mineral contents and dehydration ratio. Moreover, solar drying demonstrated a significantly higher speed, with a 6.7-times higher drying rate compared to oven drying, with significantly less energy consumption. Full article
Show Figures

Figure 1

24 pages, 4092 KiB  
Article
The Sensitivity of Polar Mesospheric Clouds to Mesospheric Temperature and Water Vapor
by Jae N. Lee, Dong L. Wu, Brentha Thurairajah, Yuta Hozumi and Takuo Tsuda
Remote Sens. 2024, 16(9), 1563; https://doi.org/10.3390/rs16091563 - 28 Apr 2024
Cited by 1 | Viewed by 1579
Abstract
Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor [...] Read more.
Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor (H2O) are further investigated with data from the Microwave Limb Sounder (MLS). Our analysis shows that PMC onset date and occurrence rate are strongly dependent on the atmospheric environment, i.e., the underlying seasonal behavior of temperature and water vapor. Upper-mesospheric dehydration by PMCs is evident in the MLS water vapor observations. The spatial patterns of the depleted water vapor correspond to the PMC occurrence region over the Arctic and Antarctic during the days after the summer solstice. The year-to-year variabilities in PMC occurrence rates and onset dates are highly correlated with mesospheric temperature and H2O. They show quasi-quadrennial oscillation (QQO) with 4–5-year periods, particularly in the southern hemisphere (SH). The combined influence of mesospheric cooling and the mesospheric H2O increase provides favorable conditions for PMC formation. The global increase in mesospheric H2O during the last decade may explain the increased PMC occurrence in the northern hemisphere (NH). Although mesospheric temperature and H2O exhibit a strong 11-year variation, little solar cycle signatures are found in the PMC occurrence during 2007–2021. Full article
Show Figures

Figure 1

14 pages, 3047 KiB  
Article
Innovative Solar Dryer for Sustainable Aloe Vera Gel Preservation in Colombia
by Oscar Ariza, Ingrid Casallas and Arturo Fajardo
Sustainability 2024, 16(8), 3392; https://doi.org/10.3390/su16083392 - 18 Apr 2024
Viewed by 2350
Abstract
Aloe Barbadensis Miller, commonly known as Aloe vera, has been widely used in different applications, such as medicinal treatments and cosmetic products. However, its transportation and handling present challenges due to oxidation and property loss caused by direct environmental exposure. A strategy [...] Read more.
Aloe Barbadensis Miller, commonly known as Aloe vera, has been widely used in different applications, such as medicinal treatments and cosmetic products. However, its transportation and handling present challenges due to oxidation and property loss caused by direct environmental exposure. A strategy to mitigate these effects is dehydration, where different industrial-scale methods such as freeze-drying, spraying, refractory windows, and convective drying can be applied. Despite their effectiveness, those dehydration techniques are both energetically and economically costly. Solar drying technology offers a cost-effective, lower-energy alternative addressing sustainability, socioeconomic, scientific progress, and integrated sustainable development challenges. Nevertheless, solar drying through direct sunlight exposure has been minimally explored for drying high-water-content products like Aloe vera, potentially due to the inherent challenges of drying under uncontrolled environmental conditions. In response, this paper introduces a methodology for pre-treating and pre-drying Aloe vera gel using a low-cost solar dryer prototype, achieving up to 50% water activity reduction in experimental tests under uncontrolled conditions in Colombia, South America. The proposed prototype features a drying cabinet with energy autonomy and forced convection. The experimental evaluation compares the quality of pre-dried Aloe vera gel with freeze-dried samples, demonstrating comparable attributes under favorable environmental conditions. The results demonstrate the feasibility of pre-drying Aloe vera gel within 13 to 48 h, with a maximum drying rate of 0.38 g/min. During this process, water activity decreased from an initial value of 0.975 to a final value ranging between 0.472 and 0.748. Furthermore, the quality of the dehydrated gel was assessed through color analysis, comparing it with a freeze-dried sample. Subsequent color analysis of the freeze-dried samples revealed minor changes in product quality compared to those dried using the proposed solar drying method. These results demonstrate the effectiveness of the proposed solar dryer in pre-dehydrating Aloe vera gel, yielding characteristics similar to those achieved through conventional methods. Full article
(This article belongs to the Special Issue Agricultural Product Quality Safety and Sustainable Development)
Show Figures

Figure 1

28 pages, 3627 KiB  
Review
A Review on Solar Drying Devices: Heat Transfer, Air Movement and Type of Chambers
by Lisete Fernandes and Pedro B. Tavares
Solar 2024, 4(1), 15-42; https://doi.org/10.3390/solar4010002 - 8 Jan 2024
Cited by 26 | Viewed by 18176
Abstract
Food waste is one of the biggest challenges we are facing nowadays. According to the Food and Agriculture Organization (FAO) of the United Nations, approximately one-third of all food produced in the world is lost at some stage between production and consumption, totaling [...] Read more.
Food waste is one of the biggest challenges we are facing nowadays. According to the Food and Agriculture Organization (FAO) of the United Nations, approximately one-third of all food produced in the world is lost at some stage between production and consumption, totaling 930 million tons of food per year. Meanwhile, 10.5% of humanity suffers from malnutrition, 26% are overweight and greenhouse gases derived from the food industry account for between 25 and 30% of total emissions (8 to 10% referring to food waste), exacerbating the current climate crisis. To address these concerns, there has been a growing inclination to seek alternatives to fossil fuels, including the adoption of solar energy across diverse sectors, including the food industry. Actions are needed in order to change these patterns. This review article aims to provide an overview of recent developments in the field of solar food dehydration and the types of dehydrators that have emerged. Extensive research and bibliographic analysis, including other review articles, have revealed a growing focus on investment in this area to develop solar dehydrators that are increasingly effective but as sustainable as possible. Full article
Show Figures

Figure 1

4 pages, 2039 KiB  
Proceeding Paper
The Design and Development of a Solar Dehydrator for Fruits
by Mohammad Javed Hyder, Muhammad Junaid Khan, Muhammad Abdullah Khan and Salman Saeed
Eng. Proc. 2023, 45(1), 48; https://doi.org/10.3390/engproc2023045048 - 18 Sep 2023
Cited by 3 | Viewed by 5105
Abstract
An active solar dehydrator is designed for dehydrating fruits and vegetables. The solar collector transfers thermal energy to the drying air. The temperature inside the drying chamber is maintained between 45 °C and 50 °C by a feedback control system. The design is [...] Read more.
An active solar dehydrator is designed for dehydrating fruits and vegetables. The solar collector transfers thermal energy to the drying air. The temperature inside the drying chamber is maintained between 45 °C and 50 °C by a feedback control system. The design is based on the December solar irradiance of Islamabad, which is found to be 572 watts per square meter. The energy required to dry one kilogram of apple and banana is 245 watts and 220 watts, respectively. The dried product from the solar dehydrator is better in terms of quality and taste compared to the product produced by ordinary open sun drying. Full article
Show Figures

Figure 1

15 pages, 4665 KiB  
Article
Corn Cobs’ Biochar as Green Host of Salt Hydrates for Enhancing the Water Sorption Kinetics in Thermochemical Heat Storage Systems
by Minh Hoang Nguyen, Mohamed Zbair, Patrick Dutournié, Lionel Limousy and Simona Bennici
Molecules 2023, 28(14), 5381; https://doi.org/10.3390/molecules28145381 - 13 Jul 2023
Cited by 4 | Viewed by 1707
Abstract
Heat storage technologies are essential for increasing the use of solar energy in the household sector. Their development can be achieved by designing new storage materials; one way is to impregnate a porous matrix with hygroscopic salts. In this article, the possibility of [...] Read more.
Heat storage technologies are essential for increasing the use of solar energy in the household sector. Their development can be achieved by designing new storage materials; one way is to impregnate a porous matrix with hygroscopic salts. In this article, the possibility of using biochar-based composite sorbents to develop promising new heat storage materials for efficient thermal storage is explored. Biochar-based composites with defined salt loadings (5, 10, 15, and 20%) were produced by impregnating MgSO4 into a biochar matrix derived from corn cobs. The new materials demonstrated a high water sorption capacity of 0.24 g/g (20MgCC). After six successive charging-discharging cycles (dehydration/dehydration cycles), only a negligible variation of the heat released and the water uptake was measured, confirming the absence of deactivation of 20MgCC upon cycling. The new 20MgCC composite showed an energy storage density of 635 J/g (Tads = 30 °C and RH = 60%), higher than that of other composites containing a similar amount of hydrate salt. The macroporous nature of this biochar increases the available surface for salt deposition. During the hydration step, the water molecules effectively diffuse through a homogeneous layer of salt, as described by the intra-particle model applied in this work. The new efficient biochar-based composites open a low-carbon path for the production of sustainable thermal energy storage materials and applications. Full article
(This article belongs to the Special Issue Research on Green Adsorbents)
Show Figures

Graphical abstract

Back to TopTop