Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (426)

Search Parameters:
Keywords = soil water erosion assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 15216 KiB  
Article
Leveraging Soil Geography for Land Use Planning: Assessing and Mapping Soil Ecosystem Services Indicators in Emilia-Romagna, NE Italy
by Fabrizio Ungaro, Paola Tarocco and Costanza Calzolari
Geographies 2025, 5(3), 39; https://doi.org/10.3390/geographies5030039 - 1 Aug 2025
Viewed by 296
Abstract
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services [...] Read more.
An indicator-based approach was implemented to assess the contributions of soils in supplying ecosystem services, providing a scalable tool for modeling the spatial heterogeneity of soil functions at regional and local scales. The method consisted of (i) the definition of soil-based ecosystem services (SESs), using available point data and thematic maps; (ii) the definition of appropriate SES indicators; (iii) the assessment and mapping of potential SESs provision for the Emilia-Romagna region (22.510 km2) in NE Italy. Depending on data availability and on the role played by terrain features and soil geography and its complexity, maps of basic soil characteristics (textural fractions, organic C content, and pH) covering the entire regional territory were produced at a 1 ha resolution using digital soil mapping techniques and geostatistical simulations to explicitly consider spatial variability. Soil physical properties such as bulk density, porosity, and hydraulic conductivity at saturation were derived using pedotransfer functions calibrated using local data and integrated with supplementary information such as land capability and remote sensing indices to derive the inputs for SES assessment. Eight SESs were mapped at 1:50,000 reference scale: buffering capacity, carbon sequestration, erosion control, food provision, biomass provision, water regulation, water storage, and habitat for soil biodiversity. The results are discussed and compared for the different pedolandscapes, identifying clear spatial patterns of soil functions and potential SES supply. Full article
Show Figures

Figure 1

22 pages, 6699 KiB  
Article
Research on Grain Production Services in the Hexi Corridor Based on the Link Relationship of “Water–Soil–Carbon–Grain”
by Baiyang Li, Fuping Zhang, Qi Feng, Yongfen Wei, Guangwen Li and Zhiyuan Song
Land 2025, 14(8), 1542; https://doi.org/10.3390/land14081542 - 27 Jul 2025
Viewed by 354
Abstract
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout [...] Read more.
Elucidating the trade-offs and synergies among ecosystem services is crucial for effective ecosystem management and the promotion of sustainable development in specific regions. The Hexi Corridor, a vital agricultural hub in Northwest China, is instrumental in both ecological conservation and socioeconomic advancement throughout the area. Utilizing an integrated “water–soil–carbon–grain” framework, this study conducted a quantitative assessment of four essential ecosystem services within the Hexi Corridor from 2000 to 2020: water yield, soil conservation, vegetation carbon sequestration, and grain production. Our research thoroughly explores the equilibrium and synergistic interactions between grain production and other ecosystem services, while also exploring potential strategies to boost grain yields through the precise management of these services. The insights garnered are invaluable for strategic regional development and will contribute to the revitalization efforts in Northwest China. Key findings include the following: (1) between 2000 and 2020, grain production exhibited a steady increase, alongside rising trends in water yields, soil conservation, and carbon sequestration, all of which demonstrated significant synergies with agricultural productivity; (2) in areas identified as grain production hotspots, there were stronger positive correlations between grain output and carbon sequestration services, soil conservation, and water yields than the regional averages, suggesting more pronounced mutual benefits; (3) the implementation of strategic initiatives such as controlling soil erosion, expanding afforestation efforts, and enhancing water-saving irrigation infrastructure could simultaneously boost ecological services and agricultural productivity. These results significantly enhance our comprehension of the interplay between ecosystem services in the Hexi Corridor and present practical approaches for the optimization of regional agricultural systems. Full article
Show Figures

Figure 1

20 pages, 10098 KiB  
Article
Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms
by Qunchao Ma, Kangyu Wang, Qiang Li and Yuting Zhang
Materials 2025, 18(14), 3408; https://doi.org/10.3390/ma18143408 - 21 Jul 2025
Viewed by 316
Abstract
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement [...] Read more.
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement partially replaced by silica fume (i.e., 0%, 4%, 8%, and 12%), and quicklime activation under three water–solid ratios (WSR, i.e., 0.525, 0.55, and 0.575). Experimental assessments included flowability tests, unconfined compressive strength, direct shear tests, and microstructural analysis via XRD and SEM. The results indicate that SF substitution significantly mitigates flowability loss during the 90–120 min interval, thereby extending the operational period. Moreover, the greatest enhancement in mechanical performance was achieved at an 8% SF replacement: at WSR = 0.55, the 3-day UCS increased by 22.78%, while the 7-day cohesion and internal friction angle rose by 13.97% and 2.59%, respectively. Microscopic analyses also confirmed that SF’s pozzolanic reaction generated additional C-S-H gel. However, the SF substitution exhibits a pronounced threshold effect, with levels above 8% introducing unreacted particles that disrupt the cementitious network. These results underscore the critical balance between flowability and early-age strength for stable marine pile scour repair, with WSR = 0.525 and 8% SF substitution identified as the optimal mix. Full article
Show Figures

Figure 1

22 pages, 2022 KiB  
Article
Impact of Slow-Forming Terraces on Erosion Control and Landscape Restoration in Central Africa’s Steep Slopes
by Jean Marie Vianney Nsabiyumva, Ciro Apollonio, Giulio Castelli, Elena Bresci, Andrea Petroselli, Mohamed Sabir, Cyrille Hicintuka and Federico Preti
Land 2025, 14(7), 1419; https://doi.org/10.3390/land14071419 - 6 Jul 2025
Viewed by 770
Abstract
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface [...] Read more.
Large-scale land restoration projects require on-the-ground monitoring and evidence-based evaluation. This study, part of the World Bank Burundi Landscape Restoration and Resilience Project (in French: Projet de Restauration et de Résilience du Paysage du Burundi-PRRPB), examines the impact of slow-forming terraces on surface conditions and erosion in Isare (Mumirwa) and Buhinyuza (Eastern Depressions), Burundi. Slow-forming, or progressive, terraces were installed on 16 December 2022 (Isare) and 30 December 2022 (Buhinyuza), featuring ditches and soil bunds to enhance soil and water conservation. Twelve plots were established, with 132 measurement pins, of which 72 were in non-terraced plots (n_PT) and 60 were in terraced plots (PT). Monthly measurements, conducted until May 2023, assessed erosion reduction, surface conditions, roughness, and soil thickness. Terracing reduced soil loss by 54% in Isare and 9% in Buhinyuza, though sediment accumulation in ditches was excessive, especially in n_PT. Anti-erosion ditches improved surface stability by reducing slope length, lowering erosion and runoff. Covered Surface (CoS%) exceeded 95%, while Opened Surface (OS%) and Bare Surface (BS%) declined significantly. At Isare, OS% dropped from 97% to 80%, and BS% from 96% to 3% in PT. Similar trends appeared in Buhinyuza. Findings highlight PRRPB effectiveness in this short-term timeframe, and provide insights for soil conservation in steep-slope regions of Central Africa. Full article
Show Figures

Figure 1

33 pages, 25988 KiB  
Article
Erosion Resistance Assessment of Grass-Covered Embankments: Insights from In Situ Overflow Tests at the Living Lab Hedwige-Prosper Polder
by Davy Depreiter, Jeroen Vercruysse, Kristof Verelst and Patrik Peeters
Water 2025, 17(13), 2016; https://doi.org/10.3390/w17132016 - 4 Jul 2025
Viewed by 272
Abstract
Grass-covered levees commonly protect river and estuarine areas against flooding. Climate-induced water level changes may increasingly expose these levees to overflow events. This study investigates whether grass-covered levees can withstand such events, and under what conditions failure may occur. Between 2020 and 2022, [...] Read more.
Grass-covered levees commonly protect river and estuarine areas against flooding. Climate-induced water level changes may increasingly expose these levees to overflow events. This study investigates whether grass-covered levees can withstand such events, and under what conditions failure may occur. Between 2020 and 2022, full-scale overflow tests were conducted at the Living Lab Hedwige-Prosperpolder along the Dutch–Belgian Scheldt Estuary to assess erosion resistance under varying hydraulic conditions and vegetation states. A custom-built overflow generator was used, with instrumentation capturing flow velocity, water levels, and erosion progression. The results show that well-maintained levees with intact grass cover endured overflow durations up to 30 h despite high terminal flow velocities (4.9–7.7 m/s), without structural damage. In contrast, levee sections with pre-existing surface anomalies, such as animal burrows, slope irregularities, surface damage, or reed-covered soft soils, failed rapidly, often within one to two hours. Animal burrows facilitated subsurface flow and internal erosion, initiating fast, retrograde failure. These findings highlight the importance of preventive maintenance, particularly the timely detection and repair of anomalies. Once slope failure begins, the process unfolds rapidly, leaving no practical window for intervention. Full article
Show Figures

Figure 1

25 pages, 7171 KiB  
Article
CFD–DEM Analysis of Internal Soil Erosion Induced by Infiltration into Defective Buried Pipes
by Jun Xu, Fei Wang and Bryce Vaughan
Geosciences 2025, 15(7), 253; https://doi.org/10.3390/geosciences15070253 - 3 Jul 2025
Viewed by 449
Abstract
Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the [...] Read more.
Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the detachment, transport, and redistribution of soil particles under varying infiltration pressures and pipe defect geometries. Using ANSYS Fluent (CFD) and Rocky (DEM), the simulation resolves both the fluid flow field and granular particle dynamics, capturing erosion cavity formation, void evolution, and soil particle transport in three dimensions. The results reveal that increased infiltration pressure and defect size in the buried pipe significantly accelerate the process of erosion and sinkhole formation, leading to potentially unstable subsurface conditions. Visualization of particle migration, sinkhole development, and soil velocity distributions provides insight into the mechanisms driving localized failure. The findings highlight the importance of considering fluid–particle interactions and defect characteristics in the design and maintenance of buried structures, offering a predictive basis for assessing erosion risk and infrastructure vulnerability. Full article
Show Figures

Figure 1

38 pages, 6025 KiB  
Article
Integrating UAV Photogrammetry and GIS to Assess Terrace Landscapes in Mountainous Northeastern Türkiye for Sustainable Land Management
by Ayşe Karahan, Oğuz Gökçe, Neslihan Demircan, Mustafa Özgeriş and Faris Karahan
Sustainability 2025, 17(13), 5855; https://doi.org/10.3390/su17135855 - 25 Jun 2025
Viewed by 1201
Abstract
Agricultural terraces are critical landscape elements that promote sustainable rural development by enhancing water retention, mitigating soil erosion, and conserving cultural heritage. In northeastern Türkiye, particularly in the mountainous Erikli neighborhood of Uzundere, traditional terraces face growing threats due to land abandonment, topographic [...] Read more.
Agricultural terraces are critical landscape elements that promote sustainable rural development by enhancing water retention, mitigating soil erosion, and conserving cultural heritage. In northeastern Türkiye, particularly in the mountainous Erikli neighborhood of Uzundere, traditional terraces face growing threats due to land abandonment, topographic fragility, and socio–economic decline. This study applies a spatial–functional assessment framework that integrates UAV–based photogrammetry, GIS analysis, terrain modeling, and DBSCAN clustering to evaluate terrace conditions. UAVs provided high–resolution topographic data, which supported the delineation of terrace boundaries and morphometric classification using an adapted ALPTER model. A combined Terrace Density Index (TDI) and Functional Status Index (FSI) approach identified zones where terraces are structurally intact but functionally degraded. Results indicate that 76.4% of terraces fall within the meso and macro classes, yet 58% show partial or complete degradation. Cohesive terrace clusters are located near settlements, while isolated units in peripheral zones display higher vulnerability. This integrated approach demonstrates the analytical potential of drone–supported spatial diagnostics for monitoring landscape degradation. The method is scalable and adaptable to other terraced regions, offering practical tools for site–specific land use planning, heritage conservation, and resilience–based restoration strategies. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

28 pages, 2554 KiB  
Article
Design, Calibration, and Performance Evaluation of a High-Fidelity Spraying Rainfall Simulator for Soil Erosion Research
by Vukašin Rončević, Nikola Živanović, Lazar Radulović, Ratko Ristić, Seyed Hamidreza Sadeghi, María Fernández-Raga and Sergio A. Prats
Water 2025, 17(13), 1863; https://doi.org/10.3390/w17131863 - 23 Jun 2025
Viewed by 458
Abstract
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment [...] Read more.
Rainfall simulators are essential tools in soil research, providing a controlled and repeatable approach to studying rainfall-induced erosion. However, the development of high-fidelity rainfall simulators remains a challenge. This study aimed to design, construct, and calibrate a spraying-type rainfall simulator and validate assessment criteria optimized for soil erosion research. The simulator’s design is based on a modified simulator model previously described in the literature and following the defined criteria. The calibration of the simulator was conducted in two phases, on slopes of 0° and 15°, measuring rainfall intensity, drop size, and its spatial distribution, and calculating drop falling velocity, kinetic energy, and momentum. The simulator consists of structural support, a water tank, a water-moving mechanism, a flow regulation system, and sprayers, contributing to its simplicity, cost-effectiveness, durability, rigidity, and stability, ensuring smooth simulator operation. The calibration of the rainfall simulator demonstrated that rainfall intensity increased from 1.4 mm·min−1 to 4.6 mm·min−1 with higher pressure in the hydraulic system (1.0 to 2.0 bar), while spatial uniformity remained within 79–91% across different nozzle configurations. The selected Rain Bird HE-VAN series nozzles proved highly effective in simulating rainfall, achieving drop diameters ranging from 0.8 mm to 1.9 mm, depending on pressure and nozzle type. The rainfall simulator successfully replicates natural rainfall characteristics, offering a controlled environment for investigating soil erosion processes. Drop velocity values varied between 2.5 and 2.9 m·s−1, influencing kinetic energy, which ranged from 0.6 J·min−1·m−2 to 2.9 J·min−1·m−2, and impact momentum, which was measured between 0.005 N·s and 0.032 N·s. The simulator design suggests that it is suitable for future applications in both field and laboratory soil erosion research, ensuring repeatability and adaptability for various experimental conditions. Calibration results emphasized the significance of nozzle selection and water pressure adjustments. These factors significantly affect rainfall intensity, drop size, kinetic energy, and momentum, parameters that are critical for accurate erosion modeling. Full article
Show Figures

Figure 1

30 pages, 9389 KiB  
Article
Evaluating Coupling Security and Joint Risks in Northeast China Agricultural Systems Based on Copula Functions and the Rel–Cor–Res Framework
by Huanyu Chang, Yong Zhao, Yongqiang Cao, He Ren, Jiaqi Yao, Rong Liu and Wei Li
Agriculture 2025, 15(13), 1338; https://doi.org/10.3390/agriculture15131338 - 21 Jun 2025
Cited by 2 | Viewed by 494
Abstract
Ensuring the security of agricultural systems is essential for achieving national food security and sustainable development. Given that agricultural systems are inherently complex and composed of coupled subsystems—such as water, land, and energy—a comprehensive and multidimensional assessment of system security is necessary. This [...] Read more.
Ensuring the security of agricultural systems is essential for achieving national food security and sustainable development. Given that agricultural systems are inherently complex and composed of coupled subsystems—such as water, land, and energy—a comprehensive and multidimensional assessment of system security is necessary. This study focuses on Northeast China, a major food-producing region, and introduces the concept of agricultural system coupling security, defined as the integrated performance of an agricultural system in terms of resource adequacy, internal coordination, and adaptive resilience under external stress. To operationalize this concept, a coupling security evaluation framework is constructed based on three key dimensions: reliability (Rel), coordination (Cor), and resilience (Res). An Agricultural System Coupling Security Index (AS-CSI) is developed using the entropy weight method, the Criteria Importance Through Intercriteria Correlation (CRITIC) method, and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method, while obstacle factor diagnosis is employed to identify key constraints. Furthermore, bivariate and trivariate Copula models are used to estimate joint risk probabilities. The results show that from 2001 to 2022, the AS-CSI in Northeast China increased from 0.38 to 0.62, indicating a transition from insecurity to relative security. Among the provinces, Jilin exhibited the highest CSI due to balanced performance across all Rel-Cor-Res dimensions, while Liaoning experienced lower Rel, hindering its overall security level. Five indicators, including area under soil erosion control, reservoir storage capacity per capita, pesticide application amount, rural electricity consumption per capita, and proportion of agricultural water use, were identified as critical threats to regional agricultural system security. Copula-based risk analysis revealed that the probability of Rel–Cor reaching the relatively secure threshold (0.8) was the highest at 0.7643, and the probabilities for Rel–Res and Cor–Res to reach the same threshold were lower, at 0.7164 and 0.7318, respectively. The probability of Rel–Cor-Res reaching the relatively secure threshold (0.8) exceeds 0.54, with Jilin exhibiting the highest probability at 0.5538. This study provides valuable insights for transitioning from static assessments to dynamic risk identification and offers a scientific basis for enhancing regional sustainability and economic resilience in agricultural systems. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

15 pages, 2052 KiB  
Article
Assessment of Potential Environmental Risks Posed by Soils of a Deactivated Coal Mining Area in Northern Portugal—Impact of Arsenic and Antimony
by Marcus Monteiro, Patrícia Santos, Jorge Espinha Marques, Deolinda Flores, Manuel Azenha and José A. Ribeiro
Pollutants 2025, 5(2), 15; https://doi.org/10.3390/pollutants5020015 - 18 Jun 2025
Viewed by 1029
Abstract
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of [...] Read more.
Active and abandoned mining sites are significant sources of heavy metals and metalloid pollution, leading to serious environmental issues. This study assessed the environmental risks posed by potentially toxic elements (PTEs), specifically arsenic (As) and antimony (Sb), in the Technosols (mining residues) of the former Pejão coal mine complex in Northern Portugal, a site impacted by forest wildfires in October 2017 that triggered underground combustion within the waste heaps. Our methodology involved determining the “pseudo-total” concentrations of As and Sb in the collected heap samples using microwave digestion with aqua regia (ISO 12914), followed by analysis using hydride generation-atomic absorption spectroscopy (HG-AAS). The concentrations of As an Sb ranging from 31.0 to 68.6 mg kg−1 and 4.8 to 8.3 mg kg−1, respectively, were found to be above the European background values reported in project FOREGS (11.6 mg kg−1 for As and 1.04 mg kg−1 for Sb) and Portuguese Environment Agency (APA) reference values for agricultural soils (11 mg kg−1 for As and 7.5 mg kg−1 for Sb), indicating significant enrichment of these PTEs. Based on average Igeo values, As contamination overall was classified as “unpolluted to moderately polluted” while Sb contamination was classified as “moderately polluted” in the waste pile samples and “unpolluted to moderately polluted” in the downhill soil samples. However, total PTE content alone is insufficient for a comprehensive environmental risk assessment. Therefore, further studies on As and Sb fractionation and speciation were conducted using the Shiowatana sequential extraction procedure (SEP). The results showed that As and Sb levels in the more mobile fractions were not significant. This suggests that the enrichment in the burned (BCW) and unburned (UCW) coal waste areas of the mine is likely due to the stockpiling of lithic fragments, primarily coals hosting arsenian pyrites and stibnite which largely traps these elements within its crystalline structure. The observed enrichment in downhill soils (DS) is attributed to mechanical weathering, rock fragment erosion, and transport processes. Given the strong association of these elements with solid phases, the risk of leaching into surface waters and aquifers is considered low. This work underscores the importance of a holistic approach to environmental risk assessment at former mining sites, contributing to the development of sustainable remediation strategies for long-term environmental protection. Full article
(This article belongs to the Section Soil Pollution)
Show Figures

Figure 1

23 pages, 3668 KiB  
Review
A Review of Intelligent Methods for Environmental Risk Identification in Polar Drilling and Well Completion
by Ruitong Wei, Song Deng, Xiaopeng Yan, Mingguo Peng, Ke Ke, Lei Wang, Zhiqiang Hu, Kai Yang, Bingzhao Huo and Linglong Cao
Processes 2025, 13(6), 1873; https://doi.org/10.3390/pr13061873 - 13 Jun 2025
Viewed by 464
Abstract
The Arctic region is rich in oil and gas resources and has great potential for development. It has become a new hot spot for international development. However, the harsh climatic and geological conditions and fragile ecosystems in the Arctic region put forward stringent [...] Read more.
The Arctic region is rich in oil and gas resources and has great potential for development. It has become a new hot spot for international development. However, the harsh climatic and geological conditions and fragile ecosystems in the Arctic region put forward stringent technical requirements for oil and gas development. Polar permafrost has an impact on the growth of plant roots and the absorption of water. When drilling activities are carried out, the permafrost layer may be broken, resulting in the erosion of polar soil and disorder of the water balance, thus affecting local vegetation and ecosystems. Moreover, the legal system of polar environmental protection is lacking, and it is necessary to form a perfect risk assessment method to improve the relevant laws and regulations. Therefore, it is very important to study the environmental risk identification technology for polar drilling. For polar drilling, it is necessary to establish a risk source classification and identification method for environmental pollution events. However, at present, it mainly faces the following challenges: poor polar environment, lack of monitoring data, and lack of a legal system for polar environmental protection. By systematically discussing risk identification technology, the application and applicable models of different types of risk evaluation methods are categorized and summarized, the advantages and disadvantages of different types of risk evaluation methods and their application effects are analyzed based on the unique environment of the polar regions, and then the development direction of the future environmental risk identification technology for polar drilling is proposed. In order to accelerate the development of polar drilling environmental risk identification technology, research should be focused on the following three aspects: ① Promoting the multi-dimensional integration of polar drilling environmental pollution index data, to make up for the short board of less relevant data in the polar region. ② Combining the machine modeling algorithm with risk evaluation of polar drilling environmental pollution to improve the scientificity and accuracy of the evaluation results. ③ Establishing a scientific and accurate polar drilling environmental pollution risk identification system to reduce pollution risk. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 1198 KiB  
Article
Soil Erosion by Wind Storms in a Pampean Semi-Arid Region of Argentina: An Environmental Magnetism Approach
by Brenda Alba, Marcos A. E. Chaparro, Andrea A. Bartel, Harald N. Böhnel and Silvia B. Aimar
Soil Syst. 2025, 9(2), 60; https://doi.org/10.3390/soilsystems9020060 - 6 Jun 2025
Viewed by 512
Abstract
Wind storm events are erosive processes in susceptible soil areas, resulting in severe land degradation. Environmental magnetism methods offer a practical approach to assessing soil redistribution by wind and water. In this study, we applied magnetic techniques to analyze soil and wind-transported material [...] Read more.
Wind storm events are erosive processes in susceptible soil areas, resulting in severe land degradation. Environmental magnetism methods offer a practical approach to assessing soil redistribution by wind and water. In this study, we applied magnetic techniques to analyze soil and wind-transported material from nine erosion events recorded in 1995 at two sites in the central Pampean Semi-Arid Region (Argentina) for two representative soils: an Entic Haplustoll S1 and a Typic Ustipsamment S2. Ferrimagnetic minerals (magnetite and maghemite) dominate high-coercivity minerals (hematite), and their sizes are <1 μm for eolian particle collections and soil samples. Mean values of magnetic susceptibility and saturation isothermal remanent magnetization (SIRM) of eolian particle collections exhibit similar patterns across erosion events. These variations appear to be more closely linked to seasonal meteorological conditions, such as rainfall and wind speed, rather than intrinsic soil properties. Correlation analysis between magnetic parameters and erosion indicators reveals a significant correlation between total soil loss (eolian erosion, 547–8754 kg ha−1, S1; and 224–25,472 kg ha−1, S2) and SIRM at both studied sites (Rplot 1 = 0.72 and Rplot 2 = 0.70; p < 0.05). These results suggest that the soil magnetic properties may serve as valuable indicators for studying wind-driven soil erosion. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Graphical abstract

24 pages, 2856 KiB  
Article
Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau
by Liya Yang, Shaohua Feng, Xusheng Shao, Jinde Zhang, Tianxiang Wang and Shuisheng Xiong
Agronomy 2025, 15(6), 1390; https://doi.org/10.3390/agronomy15061390 - 5 Jun 2025
Viewed by 576
Abstract
This study focuses on the alpine meadow ecosystem of the Qinghai–Tibet Plateau, which plays a vital role in carbon sequestration and water resource protection. However, mining activities have severely damaged the ecosystem, posing challenges for ecological restoration. The study selected the Jiangcang mining [...] Read more.
This study focuses on the alpine meadow ecosystem of the Qinghai–Tibet Plateau, which plays a vital role in carbon sequestration and water resource protection. However, mining activities have severely damaged the ecosystem, posing challenges for ecological restoration. The study selected the Jiangcang mining area and analyzed the physical, chemical, and carbon characteristics and heavy metal content of soil samples from the slag platforms and slopes (0–20 cm), which were restored in 2015 and 2020 to explore the effects of different soil reconstruction methods on soil function and ecological resilience. The results show that the minimum data set (MDS) can effectively replace the total data set (TDS) in assessing soil quality. The assessment indicates good restoration effects in 2020, with some areas rated high in soil quality. Although issues such as high bulk density, high electrical conductivity, low moisture content, nitrogen deficiency, and low organic matter limit ecological restoration, the carbon sequestration capacity of the restored soil is strong. This study provides scientific evidence for ecological restoration in cold mining areas, indicating that capping measures can enhance soil resistance to erosion, nutrient retention, and carbon sink functions. Full article
Show Figures

Figure 1

15 pages, 5388 KiB  
Article
From Data to Action: Rainfall Factor-Based Soil Erosion Assessment in Arid Regions Through Integrated Geospatial Modeling
by Mohamed Elhag, Mohamed Hafedh Hamza, Sarra Ouerghi, Ranya Elsheikh, Lifu Zhang and Khadija Diani
Water 2025, 17(11), 1692; https://doi.org/10.3390/w17111692 - 3 Jun 2025
Viewed by 572
Abstract
Soil erosion poses a significant threat to natural resources and agricultural productivity in arid regions. This study applied the Revised Universal Soil Loss Equation (RUSLE) model to simulate rainfall erosivity and soil erosion risk in the Wadi Allith basin, Saudi Arabia, using rainfall [...] Read more.
Soil erosion poses a significant threat to natural resources and agricultural productivity in arid regions. This study applied the Revised Universal Soil Loss Equation (RUSLE) model to simulate rainfall erosivity and soil erosion risk in the Wadi Allith basin, Saudi Arabia, using rainfall data from 2016 to 2018. The results demonstrated that the basin experienced a predominant slight level of erosion risk, with around 5 tons/ha annually. This study revealed that a very slight erosion risk was predominant in 2016 (97% of the basin area), 2017 (96%), and 2018 (95%), while less than 1% of the study area was exposed to severe erosion risks across all three years. An increasing trend in erosion severity was observed between 2016 and 2018, correlating with rising average annual rainfall amounts of 120 mm, 145 mm, and 155 mm. This underscores the importance of understanding how climatic factors influence soil stability, particularly in arid regions where water scarcity is typically a limiting factor. The successful application of Geographic Information Systems (GISs) and remote sensing tools integrating the various components of the RUSLE model showcases the effectiveness of these technologies in environmental monitoring and risk assessment. These tools facilitate a comprehensive analysis of the factors contributing to soil erosion, enabling researchers and policymakers to visualize erosion risk across the basin and prioritize areas for intervention. This study highlights the importance of ongoing soil erosion monitoring in arid environments such as the Wadi Allith basin, Saudi Arabia. Full article
(This article belongs to the Special Issue Effects of Vegetation on Open Channel Flow and Sediment Transport)
Show Figures

Figure 1

18 pages, 3808 KiB  
Article
Physicochemical Exploration and Computational Analysis of Bone After Subchronic Exposure to Kalach 360 SL in Female Wistar Rats
by Latifa Hamdaoui, Hafedh El Feki, Marwa Ben Amor, Hassane Oudadesse, Riadh Badraoui, Naila Khalil, Faten Brahmi, Saoussen Jilani, Bandar Aloufi, Ibtissem Ben Amara and Tarek Rebai
Toxics 2025, 13(6), 456; https://doi.org/10.3390/toxics13060456 - 29 May 2025
Viewed by 477
Abstract
Glyphosate (N-phosphonomethylglycine) is a widely used organophosphorus herbicide that inhibits the shikimate pathway, a crucial metabolic route responsible for the synthesis of aromatic amino acids in plants and certain microorganisms. Due to its broad-spectrum activity, glyphosate serves as the main active ingredient in [...] Read more.
Glyphosate (N-phosphonomethylglycine) is a widely used organophosphorus herbicide that inhibits the shikimate pathway, a crucial metabolic route responsible for the synthesis of aromatic amino acids in plants and certain microorganisms. Due to its broad-spectrum activity, glyphosate serves as the main active ingredient in various commercial herbicide formulations, including Roundup and Kalach 360 SL (KL). It poses a health hazard to animals and humans due to its persistence in soil, water erosion, and crops. The aim of our study was to continue the previous research to explore the impact of KL on bone using physico-chemical parameters and in silico studies after exposing female wistar rats for 60 days. The in silico study concerned the assessment of binding affinity and molecular interactions using computational modeling approach. The rats were allocated into three experimental groups: group 1 (n = 6) served as controls, while groups 2 and 3 received low and high doses (Dose 1: 126 mg/Kg and Dose 2: 315 mg/Kg) of KL dissolved in water, respectively. All rats were sacrificed after 60 days of exposure. XRD and FTIR spectrum analysis of bone tissues in female rats showed significant histoarchitectural changes associated with bone mineralization disruption. Our results have demonstrated that sub-chronic exposure of adult female rats to KL causes bone rarefaction, as confirmed by a previous histological study. This physico-chemical study has further confirmed the harmful impact of KL on the crystalline fraction of bone tissue, composed of hydroxyapatite crystals. In addition, the computational analyses showed that glyphosate binds to 3 Glu form of osteocalcin (3 Glu-OCN) (4MZZ) and decarboxylated osteocalcin (8I75) with good affinities and strong molecular interactions, which justified and supported the in vivo findings. In conclusion, KL may interfere with hydroxyapatite and osteocalcin and, therefore, impair bone remodeling and metabolism. Full article
(This article belongs to the Special Issue Computational Toxicology: Exposure and Assessment)
Show Figures

Graphical abstract

Back to TopTop