Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (800)

Search Parameters:
Keywords = soil media

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3515 KiB  
Article
Biodegradation of Chloroquine by a Fungus from Amazonian Soil, Penicillium guaibinense CBMAI 2758
by Patrícia de Almeida Nóbrega, Samuel Q. Lopes, Lucas S. Sá, Ryan da Silva Ramos, Fabrício H. e Holanda, Inana F. de Araújo, André Luiz M. Porto, Willian G. Birolli and Irlon M. Ferreira
J. Fungi 2025, 11(8), 579; https://doi.org/10.3390/jof11080579 - 4 Aug 2025
Viewed by 171
Abstract
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of [...] Read more.
Concern over the presence of pharmaceutical waste in the environment has prompted research into the management of emerging organic micropollutants (EOMs). In response, sustainable technologies have been applied as alternatives to reduce the effects of these contaminants. This study investigated the capacity of filamentous fungi isolated from iron mine soil in the Amazon region to biodegrade the drug chloroquine diphosphate. An initial screening assessed the growth of four fungal strains on solid media containing chloroquine diphosphate: Trichoderma pseudoasperelloides CBMAI 2752, Penicillium rolfsii CBMAI 2753, Talaromyces verruculosus CBMAI 2754, and Penicillium sp. cf. guaibinense CBMAI 2758. Among them, Penicillium sp. cf. guaibinense CBMAI 2758 was selected for further testing in liquid media. A Box–Behnken factorial design was applied with three variables, pH (5, 7, and 9), incubation time (5, 10, and 15 days), and chloroquine diphosphate concentration (50, 75, and 100 mg·L−1), totaling 15 experiments. The samples were analyzed by gas chromatography–mass spectrometry (GC-MS). The most effective conditions for chloroquine biodegradation were pH 7, 100 mg·L−1 concentration, and 10 days of incubation. Four metabolites were identified: one resulting from N-deethylation M1 (N4-(7-chloroquinolin-4-yl)-N1-ethylpentane-1,4-diamine), two from carbon–carbon bond cleavage M2 (7-chloro-N-ethylquinolin-4-amine) and M3 (N1,N1-diethylpentane-1,4-diamine), and one from aromatic deamination M4 (N1-ethylbutane-1,4-diamine) by enzymatic reactions. The toxicity analysis showed that the products obtained from the biodegradation of chloroquine were less toxic than the commercial formulation of this compound. These findings highlight the biotechnological potential of Amazonian fungi for drug biodegradation and decontamination. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application 3.0)
Show Figures

Graphical abstract

15 pages, 1019 KiB  
Article
Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC
by Janhvi Mishra Rawat, Mrinalini Agarwal, Shivani Negi, Jigisha Anand, Prabhakar Semwal, Balwant Rawat, Rajneesh Bhardwaj and Debasis Mitra
Bacteria 2025, 4(3), 38; https://doi.org/10.3390/bacteria4030038 - 1 Aug 2025
Viewed by 106
Abstract
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In [...] Read more.
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In this study, a simple, reproducible protocol for in vitro propagation of N. jatamansi was established using shoot tip explants, cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators, including N6-benzylaminopurine, thidiazuron (TDZ), and naphthalene acetic acid (NAA). MS media supplemented with 2.0 μM TDZ and 0.5 µM NAA created a significant shoot induction with an average of 6.2 shoots per explant. These aseptically excised individual shoots produced roots on MS medium supplemented with Indole Butyric Acid or NAA within 14 days of the transfer. The PGPR, viz., Bacillus subtilis and Pseudomonas corrugata, inoculation resulted in improved growth, higher chlorophyll content, and survival of in vitro-rooted plants (94.6%) after transfer to the soil. Moreover, the PGPRs depicted a two-fold higher total phenolics (45.87 mg GAE/g DW) in plants. These results clearly demonstrate the beneficial effects of P. corrugata and B. subtilis on the growth, survival, and phytochemical content of N. jatamansi. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 950 KiB  
Article
Survey of Weed Flora Diversity as a Starting Point for the Development of a Weed Management Strategy for Medicinal Crops in Pančevo, Serbia
by Dragana Božić, Ana Dragumilo, Tatjana Marković, Urban Šilc, Svetlana Aćić, Teodora Tojić, Miloš Rajković and Sava Vrbničanin
Horticulturae 2025, 11(8), 882; https://doi.org/10.3390/horticulturae11080882 (registering DOI) - 31 Jul 2025
Viewed by 158
Abstract
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for [...] Read more.
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for developing effective, site-specific weed management strategies in medicinal crop production. Weeds in five medicinal crops (lemon balm, fennel, peppermint, ribwort plantain, German chamomile), were surveyed based on the agro-phytosociological method between 2019 and 2024, and across 59 plots. A total of 109 weed species were recorded, belonging to 29 families and 88 genera. Among them, 75 were annuals and 34 perennials, including 93 broadleaved species, 10 grasses, and one parasitic species. All surveyed plots were heavily infested with perennial weeds such as Elymus repens, Cirsium arvense, Convolvulus arvensis, Lepidium draba, Rumex crispus, Sorghum halepense, Taraxacum officinale, etc. Also, several annual species were found in high abundance and frequency, including Amaranthus retroflexus, Chenopodium album, Galium aparine, Lactuca serriola, Lamium amplexicaule, L. purpureum, Papaver rhoeas, Stellaria media, Veronica hederifolia, V. persica, etc. The most important ecological factors influencing the composition of weed vegetation in investigated medicinal crops were temperature and light for fennel and peppermint plots, soil reaction for lemon balm and ribwort plantain plots, and nutrient content for German chamomile plots. A perspective for exploitation of these results is the development of effective weed control programs tailored to this specific cropping system. Weed control strategies should consider such information, targeting the control of the most frequent, abundant, and dominant species existing in a crops or locality. Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
Show Figures

Graphical abstract

25 pages, 3789 KiB  
Article
Rhizobium’s Reductase for Chromium Detoxification, Heavy Metal Resistance, and Artificial Neural Network-Based Predictive Modeling
by Mohammad Oves, Majed Ahmed Al-Shaeri, Huda A. Qari and Mohd Shahnawaz Khan
Catalysts 2025, 15(8), 726; https://doi.org/10.3390/catal15080726 - 30 Jul 2025
Viewed by 245
Abstract
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed [...] Read more.
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed a significant tolerance to heavy metals, particularly chromium (900 µg/mL), zinc (700 µg/mL), and copper. In the initial investigation, the bacteria strains were morphologically short-rod, Gram-negative, appeared as light pink colonies on media plates, and were biochemically positive for catalase reaction and the ability to ferment glucose, sucrose, and mannitol. Further, bacterial genomic DNA was isolated and amplified with the 16SrRNA gene and sequencing; the obtained 16S rRNA sequence achieved accession no. HE663761.1 from the NCBI GenBank, and it was confirmed that the strain belongs to the Rhizobium genus by phylogenetic analysis. The strain’s performance was best for high hexavalent chromium [Cr(VI)] reduction at 7–8 pH and a temperature of 30 °C, resulting in a total decrease in 96 h. Additionally, the adsorption isotherm Freundlich and Langmuir models fit best for this study, revealing a large biosorption capacity, with Cr(VI) having the highest affinity. Further bacterial chromium reduction was confirmed by an enzymatic test of nitro reductase and chromate reductase activity in bacterial extract. Further, from the metal biosorption study, an Artificial Neural Network (ANN) model was built to assess the metal reduction capability, considering the variables of pH, temperature, incubation duration, and initial metal concentration. The model attained an excellent expected accuracy (R2 > 0.90). With these features, this bacterial strain is excellent for bioremediation and use for industrial purposes and agricultural sustainability in metal-contaminated agricultural fields. Full article
Show Figures

Figure 1

19 pages, 6265 KiB  
Article
Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment
by Jiahui Li, Hui Li, Wei Zhang, Xiongguang Li, Xiangke Kong and Min Liu
Sustainability 2025, 17(15), 6908; https://doi.org/10.3390/su17156908 - 30 Jul 2025
Viewed by 244
Abstract
Previous studies have mostly focused on the adsorption behavior of microplastics for antibiotics in soil or aqueous environments. This study explores the adsorption characteristics of microplastics for antibiotics under groundwater environmental conditions and the influence of typical influencing factors of the groundwater environment [...] Read more.
Previous studies have mostly focused on the adsorption behavior of microplastics for antibiotics in soil or aqueous environments. This study explores the adsorption characteristics of microplastics for antibiotics under groundwater environmental conditions and the influence of typical influencing factors of the groundwater environment (pH, pollutant concentration, aquifer media, dissolved organic matter, and ionic strength) on the adsorption process. Polyethylene (PE) and tetracycline (TC) were selected as typical microplastics and antibiotics in the experiment. The study results showed that the adsorption of TC by PE reached equilibrium at 48 h, and the adsorption kinetics fitted pseudo-second-order kinetics models well. The adsorption isotherm was consistent with the Langmuir model. The adsorption capacity of PE for TC was highest under neutral conditions and positively correlated with the initial concentration of TC. The aquifer media exhibited limited effects on the adsorption process. Fulvic acid (FA) significantly suppressed TC adsorption onto PE, attributable to competitive adsorption mechanisms. TC adsorption on PE initially increased then declined with Ca2+ concentration due to Ca2+ bridging and competition. This research elucidates the adsorption mechanisms of PE towards TC, providing theoretical basis and reference for assessing the environmental risk of microplastics and antibiotics in groundwater. Full article
Show Figures

Figure 1

30 pages, 9606 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Viewed by 383
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

16 pages, 2088 KiB  
Article
Research on the Composite Scattering Characteristics of a Rough-Surfaced Vehicle over Stratified Media
by Chenzhao Yan, Xincheng Ren, Jianyu Huang, Yuqing Wang and Xiaomin Zhu
Appl. Sci. 2025, 15(15), 8140; https://doi.org/10.3390/app15158140 - 22 Jul 2025
Viewed by 160
Abstract
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle [...] Read more.
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle surface. Soil complex permittivity was characterized with a four-component mixture model, while snow permittivity was described using a mixed-media dielectric model. The composite electromagnetic scattering from a rough-surfaced vehicle on snow-covered soil was then analyzed with the finite-difference time-domain (FDTD) method. Parametric studies examined how incident angle and frequency, vehicle orientation, vehicle surface root mean square (RMS) height, snow liquid water content and depth, and soil moisture influence the composite scattering coefficient. Results indicate that the coefficient oscillates with scattering angle, producing specular reflection lobes; it increases monotonically with larger incident angles, higher frequencies, greater vehicle RMS roughness, and higher snow liquid water content. By contrast, its dependence on snow thickness, vehicle orientation, and soil moisture is complex and shows no clear trend. Full article
Show Figures

Figure 1

21 pages, 6746 KiB  
Article
Harnessing Wild Jackfruit Extract for Chitosan Production by Aspergillus versicolor AD07: Application in Antibacterial Biodegradable Sheets
by Adhithya Sankar Santhosh and Mridul Umesh
Appl. Microbiol. 2025, 5(3), 71; https://doi.org/10.3390/applmicrobiol5030071 - 20 Jul 2025
Viewed by 404
Abstract
A fungal strain with comparably high chitosan yield was isolated from the Shivaganga hills and identified as Aspergillus versicolor AD07 through molecular characterization. Later, the strain was cultivated on Sabouraud Dextrose Broth (SDB) and wild jackfruit-based media to evaluate its potential for chitosan [...] Read more.
A fungal strain with comparably high chitosan yield was isolated from the Shivaganga hills and identified as Aspergillus versicolor AD07 through molecular characterization. Later, the strain was cultivated on Sabouraud Dextrose Broth (SDB) and wild jackfruit-based media to evaluate its potential for chitosan production. Among the various media formulations, the highest chitosan yield (178.40 ± 1.76 mg/L) was obtained from the jackfruit extract medium with added peptone and dextrose. The extracted chitosan was characterized through FTIR, XRD (reported a crystallinity index of 55%), TGA/DTG, and DSC analysis, confirming the presence of key functional groups and high thermal resistance. The extracted chitosan was fabricated into a sheet incorporated with 1% lemongrass oil; the sheet exhibited strong antibacterial activity against Escherichia coli (30 mm) and Bacillus megaterium (48 mm). The biodegradation studies reported a weight loss of 38.93 ± 0.51% after 50 days of soil burial. Further, the chitosan film was tested as a packaging material for paneer, demonstrating better preservation by maintaining nutritional quality and reducing microbial load over a 14-day storage period. These findings highlight the potential of A. versicolor AD07-derived chitosan, cultivated on a waste substrate medium, as a sustainable biopolymer for food packaging applications. Full article
Show Figures

Figure 1

18 pages, 4389 KiB  
Article
Acoustic Wave Propagation Characteristics of Maize Seed and Surrounding Region with the Double Media of Seed–Soil
by Yadong Li, Caiyun Lu, Hongwen Li, Jin He, Zhinan Wang and Chengkun Zhai
Agriculture 2025, 15(14), 1540; https://doi.org/10.3390/agriculture15141540 - 17 Jul 2025
Viewed by 337
Abstract
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations [...] Read more.
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations and analyze propagation characteristics. The effects of the compression ratio (0/6/12%), excitation frequency (20/40/60 kHz), and amplitude (5/10/15 μm) on signal variation and attenuation were analyzed. The results show consistent trends: time/frequency domain signal intensity increased with a higher compression ratio and amplitude but decreased with frequency. Comparing ultrasonic signals at soil particles before and after the seed along the propagation path shows that the seed significantly absorbs and attenuates ultrasonic waves. Time domain intensity drops 93.99%, and first and residual wave frequency peaks decrease by 88.06% and 96.39%, respectively. Additionally, comparing ultrasonic propagation velocities in the double media of seed–soil and the single soil medium reveals that the velocity in the seed is significantly higher than that in the soil. At compression ratios of 0%, 6%, and 12%, the sound velocity in the seed is 990.47%, 562.72%, and 431.34% of that in the soil, respectively. These findings help distinguish seed presence and provide a basis for ultrasonic seed position monitoring after sowing. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

32 pages, 23012 KiB  
Article
A DEM Study on the Macro- and Micro-Mechanical Characteristics of an Irregularly Shaped Soil–Rock Mixture Based on the Analysis of the Contact Force Skeleton
by Chenglong Jiang, Lingling Zeng, Yajing Liu, Yu Mu and Wangyi Dong
Appl. Sci. 2025, 15(14), 7978; https://doi.org/10.3390/app15147978 - 17 Jul 2025
Viewed by 261
Abstract
The mechanical characteristics of soil–rock mixtures (S-RMs) are essential for ensuring geotechnical engineering stability and are significantly influenced by the microstructure’s contact network configuration. Due to the irregularity of particle shapes and the variability in particle grading with S-RMs, their macro-mechanical characteristics and [...] Read more.
The mechanical characteristics of soil–rock mixtures (S-RMs) are essential for ensuring geotechnical engineering stability and are significantly influenced by the microstructure’s contact network configuration. Due to the irregularity of particle shapes and the variability in particle grading with S-RMs, their macro-mechanical characteristics and mesoscopic contact skeleton distribution exhibit increased complexity. To further elucidate the macro-mesoscopic mechanical behavior of S-RMs, this study employed the DEM to develop a model incorporating irregular specimens representing various states, based on CT scan outlines, and applied flexible boundary conditions. A main skeleton system of contact force chains is an effective methodology for characterizing the dominant structural features that govern the mechanical behavior of soil–rock mixture specimens. The results demonstrate that the strength of S-RMs was significantly influenced by gravel content and consolidation state; however, the relationship is not merely linear but rather intricately associated with the strength and distinctiveness of the contact force chain skeleton. In the critical state, the mechanical behavior of S-RMs was predominantly governed by the characteristics of the principal contact force skeleton: the contact force skeleton formed by gravel–gravel, despite having fewer contact forces, exhibits strong contact characteristics and an exceptionally high-density distribution of weak contacts, conferring the highest shear strength to the specimens. Conversely, the principal skeleton formed through gravel–sand exhibits contact characteristics that are less distinct compared to those associated with strong contacts. Simultaneously, the probability density distribution of weak contacts diminishes, resulting in reduced shear strength. The contact skeleton dominated by sand–sand contact forces displays similar micro-mechanical characteristics yet possesses the weakest macroscopic behavior strength. Consequently, the concept of the main skeleton of contact force chains utilized in this study presents a novel research approach for elucidating the macro- and micro-mechanical characteristics of multiphase media. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 3120 KiB  
Article
Asymbiotic Seed Germination and In Vitro Propagation of the Thai Rare Orchid Species; Eulophia bicallosa (D.Don) P.F.Hunt & Summerh.
by Thanakorn Wongsa, Jittra Piapukiew, Kanlaya Kuenkaew, Chatchaya Somsanook, Onrut Sapatee, Julaluk Linjikao, Boworn Kunakhonnuruk and Anupan Kongbangkerd
Plants 2025, 14(14), 2212; https://doi.org/10.3390/plants14142212 - 17 Jul 2025
Viewed by 375
Abstract
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and [...] Read more.
An efficient in vitro propagation protocol for Eulophia bicallosa was developed using asymbiotic seed germination and protocorm proliferation. The effect of light on seed germination and development was evaluated on Vacin and Went (VW) medium under five conditions: darkness, white, green, red, and blue light for 24 weeks. Blue and red light significantly accelerated seed development, allowing progression to stage 5 within 24 weeks. For protocorm proliferation, six semi-solid culture media were tested. Half-strength Murashige and Skoog (½MS) medium yielded the best results after 8 weeks, producing the highest numbers of shoots (1.0), leaves (1.1), and roots (4.2) per protocorm, with 100% survival. The effects of organic additives were also evaluated using coconut water and potato extract. A combination of 200 mL L−1 coconut water and 50 g L−1 potato extract enhanced shoot formation (1.7 shoots), while 150 mL L−1 coconut water with 50 g L−1 potato extract increased both leaf (1.9) and root (8.8) numbers. The effects of cytokinins (benzyladenine (BA), kinetin (6-furfurylaminopurine), and thidiazuron (TDZ)) and auxins (indole-3-acetic acid (IAA), α-naphthalene acetic acid (NAA), indole-3-butyric acid (IBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) were investigated using ½MS medium supplemented with each plant growth regulator individually at concentrations of 0, 0.1, 0.5, 1.0, and 2.0 mg L−1. Among the cytokinins, 0.1 mg L−1 BA produced the highest survival rate (96%), while 1.0 mg L−1 BA induced the greatest shoot formation (93%, 2.3 shoots). Among the auxins, 0.1 mg L−1 IAA resulted in the highest survival (96%), and 1.0 mg L−1 IAA significantly enhanced root induction (4.2 roots per protocorm). Acclimatization in pots containing a 1:1:1 (v/v) mixture of pumice, sand, and soil resulted in 100% survival. This protocol provides a reliable and effective approach for the mass propagation and ex situ conservation of E. bicallosa. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

17 pages, 4206 KiB  
Article
Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media
by Yuhao Ai, Zhifeng Wan, Han Xu, Yan Li, Yijia Sun, Jingya Xi, Hongfan Hou and Yihang Yang
Water 2025, 17(14), 2115; https://doi.org/10.3390/w17142115 - 16 Jul 2025
Viewed by 275
Abstract
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by [...] Read more.
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by soil matrix particle size distribution. Changes in the DNE across porous media with discrete particle size fractions are investigated via stepwise drying experiments. Through quantification of saturation–capillary pressure hysteresis and DNE metrics, three critical signatures are identified: (1) the temporal lag between peak capillary pressure and minimum water saturation; (2) the pressure gap between transient and equilibrium states; and (3) residual water saturation. In the four experimental sets, with the finest material (Test 1), the peak capillary pressure consistently precedes the minimum water saturation by up to 60 s. Conversely, with the coarsest material (Test 4), peak capillary pressure does not consistently precede minimum saturation, with a maximum lag of only 30 s. The pressure gap between transient and equilibrium states reached 14.04 cm H2O in the finest sand, compared to only 2.65 cm H2O in the coarsest sand. Simultaneously, residual water saturation was significantly higher in the finest sand (0.364) than in the coarsest sand (0.086). The results further reveal that the intensity of the DNE scales inversely with particle size and linearly with wetting phase saturation (Sw), exhibiting systematic decay as Sw decreases. Coarse media exhibit negligible hysteresis due to suppressed capillary retention; this is in stark contrast with fine sands, in which the DNE is observed to persist in advanced drying stages. These results establish pore geometry and capillary dominance as fundamental factors controlling non-equilibrium fluid dynamics, providing a mechanistic framework for the refinement of multi-phase flow models in heterogeneous porous systems. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

32 pages, 2768 KiB  
Article
A Comprehensive Simplified Algorithm for Heat Transfer Modeling of Medium-Deep Borehole Heat Exchangers Considering Soil Stratification and Geothermal Gradient
by Boyu Li, Fei Lei and Zibo Shen
Energies 2025, 18(14), 3716; https://doi.org/10.3390/en18143716 - 14 Jul 2025
Viewed by 234
Abstract
Medium-deep borehole heat exchanger (BHE) systems represent an emerging form of ground source heat pump technology. Their heat transfer process is significantly influenced by geothermal gradient and soil stratification, typically simulated using segmented finite line source (SFLS) models. However, this approach involves computationally [...] Read more.
Medium-deep borehole heat exchanger (BHE) systems represent an emerging form of ground source heat pump technology. Their heat transfer process is significantly influenced by geothermal gradient and soil stratification, typically simulated using segmented finite line source (SFLS) models. However, this approach involves computationally intensive procedures that hinder practical engineering implementation. Building upon an SFLS model adapted for complex geological conditions, this study proposes a comprehensive simplified algorithm: (1) For soil stratification: A geothermally-weighted thermal conductivity method converts layered heterogeneous media into an equivalent homogeneous medium; (2) For geothermal gradient: A temperature correction method establishes fluid temperatures under geothermal gradient by superimposing correction terms onto uniform-temperature model results (g-function model). Validated through two engineering case studies, this integrated algorithm provides a straightforward technical tool for heat transfer calculations in BHE systems. Full article
Show Figures

Figure 1

13 pages, 2751 KiB  
Article
Experimental Study on Grouting Visualization of Cover Layer Based on Transparent Soil
by Pengfei Guo and Weiquan Zhao
Appl. Sci. 2025, 15(14), 7854; https://doi.org/10.3390/app15147854 - 14 Jul 2025
Viewed by 209
Abstract
Grouting, as a widely applicable and versatile foundation treatment technology, plays a crucial role in addressing seepage control problems in cover layers due to its flexibility and convenience. The effectiveness of grouting largely depends on slurry diffusion; however, due to the opaque nature [...] Read more.
Grouting, as a widely applicable and versatile foundation treatment technology, plays a crucial role in addressing seepage control problems in cover layers due to its flexibility and convenience. The effectiveness of grouting largely depends on slurry diffusion; however, due to the opaque nature of geotechnical media, the diffusion mechanism of slurry in the cover layers remains insufficiently understood. To investigate this, a visual grouting model device was designed and fabricated, and grouting tests were conducted using transparent soil materials to simulate the cover layers. The slurry diffusion patterns and the velocity field within the transparent soil were analyzed. The results show that, based on refractive-index matching, fused quartz sand of specific gradation and white mineral oil were selected as simulation materials for the cover layers. A stable slurry suitable for transparent grouting was also chosen to satisfy visualization requirements. The transparent soil grouting model, integrated with a Digital Image Correlation (DIC) monitoring system, has the advantages of demonstrating simple operation, real-time monitoring, and high precision. These tests verify the feasibility of visualizing slurry diffusion in cover layers. Furthermore, step-pressure grouting tests preliminarily reveal the dynamic mechanism of slurry diffusion. The results suggest that, in the cover layer, the cover layer in this grouting test is mainly splitting grouting, accompanied by compaction grouting. These methods offer new insights and methods for model testing of cover layer grouting mechanisms. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

24 pages, 1332 KiB  
Review
Strategies for the Removal of Per- and Polyfluoroalkyl Substances: A Review
by Feng Wang, Mingtong Wang, Ling Xu, Jingya Qian, Bin Zou, Shuhao Huo, Guoqiang Guan and Kai Cui
Catalysts 2025, 15(7), 678; https://doi.org/10.3390/catal15070678 - 12 Jul 2025
Viewed by 777
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of synthetic fluorine-containing organic compounds that exhibit chemical and thermal stability due to the highly stable carbon–fluorine bonds present in their molecular structures. This characteristic makes them slow to degrade in the natural environment. With [...] Read more.
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of synthetic fluorine-containing organic compounds that exhibit chemical and thermal stability due to the highly stable carbon–fluorine bonds present in their molecular structures. This characteristic makes them slow to degrade in the natural environment. With the widespread application of these compounds in the industrial and consumer goods sectors, environmental media such as water, air, soil, and food have been severely polluted, posing a range of significant threats to public health. Therefore, the development of efficient, economical, and environmentally friendly PFAS removal technologies has become a current research hotspot. This review systematically summarizes the current technologies for removing PFASs from four perspectives—physical, chemical, biological, and combined treatments—enabling a clear understanding of the existing treatment strategies to be discussed. In addition, suggestions for future research on PFAS removal are provided. Full article
Show Figures

Graphical abstract

Back to TopTop