Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Experimental Methods
2.2.1. Adsorption Kinetics Experiments
2.2.2. Isotherm Adsorption Experiments
2.2.3. Study on Influencing Factors of Groundwater Environment
2.3. Analytical Methods
2.4. Adsorption Models
3. Results and Discussion
3.1. Characterization of PE
3.2. Adsorption Kinetics Analysis
3.3. Adsorption Isotherm Analysis
3.4. Influencing Factors Analysis
3.4.1. Effect of pH Conditions
3.4.2. Effect of TC Concentrations
3.4.3. Effect of Media Particle Size
3.4.4. Effect of DOM
3.4.5. Effect of Ionic Strength
3.5. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Álvarez, M.S.; Gómez, L.; Ulloa, R.G.; Deive, F.J.; Sanromán, M.A.; Rodríguez, A. Antibiotics in swine husbandry effluents: Laying the foundations for their efficient removal with a biocompatible ionic liquid. Chem. Eng. J. 2016, 298, 10–16. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wang, M.; Cheng, W.; Huang, C.; Ren, J.H.; Wan, T.; Gao, K. Effects of water environmental factors and antibiotics on bacterial community in urban landscape lakes. Aquat. Toxicol. 2023, 265, 106740. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.F.; Chen, C.Y.; Li, S.Y.; Ye, P.P.; Shi, Y.J.; Sharma, G.; Sarkar, B.; Shaheen, S.M.; Lee, S.S.; Xiao, R.; et al. A comprehensive and global evaluation of residual antibiotics in agricultural soils: Accumulation, potential ecological risks, and attenuation strategies. Ecotoxicol. Environ. Saf. 2023, 262, 115175. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, M.T.; Li, B.L.; Mohamed, H.I.; Song, H.; Li, G.; Yu, Y.; Zhang, H.; Xie, W. Correction to: Distribution characteristics and removal rate of antibiotics and antibiotic resistance genes in different treatment processes of two drinking water plants. Front. Environ. Sci. Eng. 2024, 18, 145. [Google Scholar] [CrossRef]
- Yi, C.M.; Shang, J.G.; Shen, Z.H.; Sun, Y.L.; Yang, Y.; Zheng, X.L.; Peng, Z.; Chen, J.; Liu, Y.; Guo, R.; et al. Distribution and risk characteristics of antibiotics in China surface water from 2013 to 2024. Chemosphere Glob. Chang. Sci. 2025, 375, 144197. [Google Scholar] [CrossRef]
- Huang, F.Y.; Zhou, D.F.; Yan, B.S.; Wang, B.; Liu, F.; Guan, X.Y.; Qu, S. Global priority antibiotics integrated with their environmental occurrence and the health risks of antibiotic resistance genes. J. Clean. Prod. 2025, 490, 144778. [Google Scholar] [CrossRef]
- Aquino, I.d.S.d.; Freire, E.d.A.; Rodrigues, A.M.; Vercillo, O.E.; Silva, M.F.P.d.; Rocha, M.F.S.d.; Amaral, M.C.S.; Amorim, A.K.B. Sustainable Strategy for Microplastic Mitigation: Fe3O4 Acid-Functionalized Magnetic Nanoparticles for Microplastics Removal. Sustainability 2025, 17, 5203. [Google Scholar] [CrossRef]
- Horta, M.J.; Seetha, N. Experimental and mathematical investigation of cotransport of clay and microplastics in saturated porous media. Sci. Total Environ. 2024, 954, 176739. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Lin, Q.; Chen, T.; Peng, R. The Hidden Threat of Microplastics in Desert Environments: Environmental Impact, Challenges, and Response Measures. Sustainability 2025, 17, 1897. [Google Scholar] [CrossRef]
- Napper, I.E.; Baroth, A.; Barrett, A.C.; Bhola, S.; Chowdhury, G.; Davies, B.F.R. The distribution and characterisation of microplastics in air, surface water and sediment within a major river system. Sci. Total Environ. 2023, 901, 166640. [Google Scholar] [CrossRef]
- Narloch, I.; Gackowska, A.; Wejnerowska, G. Microplastic in the Baltic Sea: A review of distribution processes, sources, analysis methods and regulatory policies. Environ. Pollut. 2022, 315, 120453. [Google Scholar] [CrossRef]
- Panno, S.V.; Kelly, W.R.; Scott, J.; Zheng, W.; McNeish, R.E.; Holm, N.; Hoellein, T.J.; Baranski, E.L. Microplastic Contamination in Karst Groundwater Systems. Groundwater 2019, 57, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Wisitthammasri, W.; Promduang, P.; Chotpantarat, S. Characterization of microplastics in soil, leachate and groundwater at a municipal landfill in Rayong Province, Thailand. J. Contam. Hydrol. 2024, 267, 104455. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.G.L.; Sobral, P.; Ferreira, A.M. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 2010, 60, 1988–1992. [Google Scholar] [CrossRef]
- Massos, A.; Turner, A. Cadmium, lead and bromine in beached microplastics. Environ. Pollut. 2017, 227, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J.L. Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar. Pollut. Bull. 2019, 149, 110511. [Google Scholar] [CrossRef]
- Ma, J.; Sheng, G.D.; O’Connor, P. Microplastics combined with tetracycline in soils facilitate the formation of antibiotic resistance in the Enchytraeus crypticus microbiome. Environ. Pollut. 2020, 264, 114689. [Google Scholar] [CrossRef]
- Syranidou, E.; Kalogerakis, N. Interactions of microplastics, antibiotics and antibiotic resistant genes within WWTPs. Sci. Total Environ. 2022, 804, 150141. [Google Scholar] [CrossRef]
- Yu, F.; Yang, C.F.; Huang, G.Q.; Zhou, T.; Zhao, Y.; Ma, J. Interfacial interaction between diverse microplastics and tetracycline by adsorption in an aqueous solution. Sci. Total Environ. 2020, 721, 137729. [Google Scholar] [CrossRef]
- Nguyen, T.; Ho, T.; Chen, C.; Bui, X.; Chen, W.; Dong, C. Influence of UV wavelength variations on tetracycline adsorption by polyethylene microplastics in aquatic environments. Sci. Total Environ. 2025, 959, 178144. [Google Scholar] [CrossRef]
- Fan, X.L.; Xie, Y.; Qian, S.W.; Xiang, Y.; Chen, Q.; Yang, Y.Y.; Liu, J.; Zhang, J.; Hou, J. Insights into the characteristics, adsorption and desorption behaviors of microplastics aged with or without fulvic acid. Environ. Sci. Pollut. Res. 2022, 30, 10484–10494. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.F.; Yang, Y.Y.; Liu, G.H.; He, G.; Liu, W. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Res. 2020, 184, 116209. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.Y. Study on the Adsorption and Mechanism of Microplastics on Typical Organic Pollutants and Heavy Metal Ions. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2021. [Google Scholar] [CrossRef]
- Luo, H.W.; Li, Y.; Zhao, Y.Y.; Xiang, Y.H.; He, D.Q.; Pan, X.L. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics. Environ. Pollut. 2020, 257, 113475. [Google Scholar] [CrossRef]
- Zhong, C.F. Study on the Damage and Mechanism of Several Typical Bonded Solid Lubricating Coatings Under Strong Irradiation Environment. Master’s Thesis, Northwest Minzu University, Lanzhou, China, 2024. [Google Scholar] [CrossRef]
- Dou, Y.Y.; Cheng, X.H.; Miao, M.H.; Wang, T.; Hao, T.W.; Zhang, Y.Q.; Li, Y.; Ning, X.; Wang, Q. The impact of chlorination on the tetracycline sorption behavior of microplastics in aqueous solution. Sci. Total Environ. 2022, 849, 157800. [Google Scholar] [CrossRef]
- Zahmatkesh, A.M.; Najafpoor, A.; Barikbin, B.; Bonyadi, Z. Adsorption of tetracycline on polyvinyl chloride microplastics in aqueous environments. Sci. Rep. 2023, 13, 17989. [Google Scholar] [CrossRef]
- Lin, L.J.; Tang, S.; Wang, X.S.; Sun, X.; Liu, Y. Sorption of tetracycline onto hexabromocyclododecane/polystyrene composite and polystyrene microplastics: Statistical physics models, influencing factors, and interaction mechanisms. Environ. Pollut. 2021, 284, 117164. [Google Scholar] [CrossRef]
- Wu, P.F.; Cai, Z.W.; Jin, H.B.; Tang, Y.Y. Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Sci. Total Environ. 2019, 650, 671–678. [Google Scholar] [CrossRef]
- Dong, Y.M.; Gao, M.L.; Song, Z.G.; Qiu, W.W. As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere 2020, 239, 124792. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, M.J.; Ansari, A.J.; Hai, F.I. Antibiotic sorption onto microplastics in water: A critical review of the factors, mechanisms and implications. Water Res. 2023, 233, 119790. [Google Scholar] [CrossRef] [PubMed]
- Seidensticker, S.; Grathwohl, P.; Lamprecht, J.; Zarfl, C. A combined experimental and modeling study to evaluate pH-dependent sorption of polar and non-polar compounds to polyethylene and polystyrene microplastics. Environ. Sci. Eur. 2018, 30, 30. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.Y.; Zhong, F.; Zhang, H.R.; Wei, S.P.; Dong, Y.W.; Chen, S.; Cao, F.; Zou, L.; Xu, J. Investigation of the adsorption pattern and mechanism of enrofloxacin on montmorillonite and activated carbon surfaces: Effect of Cu(II) complexation. Surf. Interfaces 2025, 60, 106012. [Google Scholar] [CrossRef]
- Hájek, M.; Jiménez-Alfaro, B.; Hájek, O.; Brancaleoni, L.; Cantonati, M.; Carbognani, M.; Horsák, M. A European map of groundwater pH and calcium. Earth Syst. Sci. Data 2020, 13, 1089–1105. [Google Scholar] [CrossRef]
- Hu, Y.H. Efficacy and Mechanism of Activated Persulfate Degradation of Sulfadimethylpyrimidine in Groundwater by Prussian Blue Derivatives. Master’s Thesis, Chinese Research Academy of Environmental Sciences, Beijing, China, 2024. [Google Scholar] [CrossRef]
- Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O. Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PLoS ONE 2022, 17, e0262117. [Google Scholar] [CrossRef]
- Wallace, S.H.; Shaw, S.; Morris, K.; Small, J.S.; Fuller, A.J.; Burke, I.T. Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: Implications for 90Sr mobility at contaminated nuclear sites. Appl. Geochem. 2012, 27, 1482–1491. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, Y.; Zhang, H.; Song, C.; Li, J.; Liu, Y. Hydrochemistry of the natural low pH groundwater in the coastal aquifers near Beihai. China. J. Ocean Univ. China 2015, 14, 475–483. [Google Scholar] [CrossRef]
- Jang, H.M.; Yoo, S.; Choi, Y.K.; Park, S.; Kan, E. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda -derived activated biochar. Bioresour. Technol. 2018, 259, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, M.; Saeed, F. Polyoxometalate supported on a magnetic Fe3O4/MIL-88A rod-like nanocomposite as an adsorbent for the removal of ciprofloxacin, tetracycline and cationic organic dyes from aqueous solutions. RSC Adv. 2023, 13, 6356–6367. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Guo, X.T.; Pang, J.W. The adsorption kinetics and thermodynamics of tylosin by microplastics. China Environ. Sci. 2018, 38, 1905–1912. [Google Scholar] [CrossRef]
- Li, H.; Han, Z.T.; Deng, Q.; Ma, C.X.; Kong, X.K. Assessing the effectiveness of nanoscale zero-valent iron particles produced by green tea for Cr(VI)-contaminated groundwater remediation. J. Groundw. Sci. Eng. 2023, 11, 55–67. [Google Scholar] [CrossRef]
- Wei, Q.Q.; Jin, Y.H.; Liu, M.Y.; Chen, J.Y.; Li, D.L.; Qi, Z.C. Effect of inorganic ligands and solution pH on the deposition behavior of tetracycline on quartz sand media. Chem. Res. 2023, 34, 244–252. [Google Scholar] [CrossRef]
- Yuan, Q.L.; Li, Z.P.; Li, L.C.; Wang, S.L.; Yao, S.Y. Pharmaceuticals and personal care products transference-transformation in aquifer system. J. Groundwater Sci. Eng. 2020, 8, 358–365. [Google Scholar] [CrossRef]
- Atugoda, T.; Wijesekara, H.; Werellagama, D.; Jinadasa, S.; Bolan, N.; Vithanage, M. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water. Environ. Technol. Innov. 2020, 19, 100971. [Google Scholar] [CrossRef]
- Zhang, J.H.; Chen, H.B.; He, H.; Cheng, X.Y.; Ma, T.; Hu, J.P.; Zhang, L.M. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions. Chemosphere 2020, 245, 125628. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.B.; Huang, C.P.; Chen, C.W.; Hsieh, S.L.; Tsai, W.P.; Dong, C.D. Adsorption characteristics of tetracycline onto particulate polyethylene in dilute aqueous solutions. Environ. Pollut. 2021, 285, 117398. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Ju, C.; Tang, Z.; Qin, Y. Enhanced adsorption of tetracycline on polypropylene and polyethylene microplastics after anaerobically microbial-mediated aging process. J. Hazard. Mater. Adv. 2022, 6, 100075. [Google Scholar] [CrossRef]
Weight Average Molecular Weight (Mw) | Number Average Molecular Weight (Mn) | Peak Molecular Weight (Mp) | Z-Average Molecular Weight (Mz) | Polydispersity Index (PD) |
---|---|---|---|---|
1.07 × 105 | 3.82 × 104 | 6.97 × 104 | 2.39 × 105 | 2.81 |
Models | Parameter | TC |
---|---|---|
Balance adsorption | Qe (mg/g) | 0.326 |
Pseudo-first-order model | Qe,cal (mg/g) | 0.272 |
k1 (h−1) | 0.078 | |
R2 | 0.989 | |
Pseudo-second-order model | Qe,cal (mg/g) | 0.378 |
k2 (g·mg−1·h−1) | 0.369 | |
R2 | 0.996 | |
Weber–Morris intraparticle diffusion model | K1 (mg/(g·min0.5) | 0.061 |
R12 | 0.981 | |
K2 (mg/(g·min0.5) | 0.018 | |
R22 | 0.822 |
Langmuir | Freundlich | Henry | |||||
---|---|---|---|---|---|---|---|
Qmax | kL | R2 | kF | 1/n | R2 | kH | R2 |
(mg/g) | (L/mg) | ((mg/g)·(mg/L)−n) | (L/g) | ||||
0.339 | 0.746 | 0.999 | 0.136 | 0.253 | 0.681 | 0.002 | 0.274 |
Influence Factors | Parameters | |||
---|---|---|---|---|
Qe,cal (mg/g) | k2 (g·mg−1·h−1) | R2 | ||
pH | 5.0 | 0.191 | 1.009 | 0.971 |
6.0 | 0.250 | 2.335 | 0.998 | |
7.0 | 0.334 | 1316 | 0.981 | |
8.0 | 0.295 | 1.195 | 0.981 | |
Concentration of TC (mg/L) | 1 | 0.054 | 17.062 | 0.998 |
5 | 0.233 | 4.176 | 0.999 | |
10 | 0.301 | 1.301 | 0.998 | |
Media Size (mm) | 0.1–0.25 | 0.319 | 0.875 | 0.994 |
0.25–0.5 | 0.316 | 1.404 | 0.999 | |
1.0–2.0 | 0.321 | 0.862 | 0.997 | |
Concentration of FA (mg/L) | 0.5 | 0.316 | 1.202 | 0.974 |
1 | 0.315 | 1.266 | 0.951 | |
5 | 0.217 | 2.263 | 0.952 | |
Ionic strength (mol/L) | 0.005 | 0.230 | 1.838 | 0.998 |
0.01 | 0.266 | 1.503 | 0.997 | |
0.05 | 0.296 | 3.242 | 0.999 | |
0.1 | 0.222 | 2.184 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, H.; Zhang, W.; Li, X.; Kong, X.; Liu, M. Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment. Sustainability 2025, 17, 6908. https://doi.org/10.3390/su17156908
Li J, Li H, Zhang W, Li X, Kong X, Liu M. Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment. Sustainability. 2025; 17(15):6908. https://doi.org/10.3390/su17156908
Chicago/Turabian StyleLi, Jiahui, Hui Li, Wei Zhang, Xiongguang Li, Xiangke Kong, and Min Liu. 2025. "Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment" Sustainability 17, no. 15: 6908. https://doi.org/10.3390/su17156908
APA StyleLi, J., Li, H., Zhang, W., Li, X., Kong, X., & Liu, M. (2025). Adsorption Behavior of Tetracycline by Polyethylene Microplastics in Groundwater Environment. Sustainability, 17(15), 6908. https://doi.org/10.3390/su17156908