Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = soil around piles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2911 KiB  
Article
Investigation of Implantable Capsule Grouting Technology and Its Bearing Characteristics in Soft Soil Areas
by Xinran Li, Yuebao Deng, Wenxi Zheng and Rihong Zhang
J. Mar. Sci. Eng. 2025, 13(7), 1362; https://doi.org/10.3390/jmse13071362 - 17 Jul 2025
Viewed by 180
Abstract
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles [...] Read more.
The implantable capsule grouting pile is a novel pile foundation technology in which a capsule is affixed to the side of the implanted pile to facilitate grouting and achieve extrusion-based reinforcement. This technique is designed to improve the bearing capacity of implanted piles in coastal areas with deep, soft soil. This study conducted model tests involving multiple grouting positions across different foundation types to refine the construction process and validate the enhancement of bearing capacity. Systematic measurements and quantitative analyses were performed to evaluate the earth pressure distribution around the pile, the resistance characteristics of the pile end, the evolution of side friction resistance, and the overall bearing performance. Special attention was given to variations in the lateral friction resistance adjustment coefficient under different working conditions. Furthermore, an actual case analysis was conducted based on typical soft soil geological conditions. The results indicated that the post-grouting process formed a dense soil ring through the expansion and extrusion of the capsule, resulting in increased soil strength around the pile due to increased lateral earth pressure. Compared to conventional piles, the grouted piles exhibited a synergistic improvement characterized by reduced pile end resistance, enhanced side friction resistance, and improved overall bearing capacity. The ultimate bearing capacity of model piles at different grouting depths across different foundation types increased by 6.8–22.3% compared with that of ordinary piles. In silty clay and clayey silt foundations, the adjustment coefficient ηs of lateral friction resistance of post-grouting piles ranged from 1.097 to 1.318 and increased with grouting depth. The findings contribute to the development of green pile foundation technology in coastal areas. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 9408 KiB  
Article
Pullout Behaviour of Snakeskin-Inspired Sustainable Geosynthetic Reinforcements in Sand: An Experimental Study
by Xin Huang, Fengyuan Yan and Jia He
Sustainability 2025, 17(14), 6502; https://doi.org/10.3390/su17146502 - 16 Jul 2025
Viewed by 286
Abstract
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study [...] Read more.
In recent years, there has been a growing interest in the frictional anisotropy of snake scale-inspired surfaces, especially its potential applications in enhancing the bearing capacity of foundations (piles, anchor elements, and suction caissons) and reducing materials consumption and installation energy. This study first investigated the frictional properties and surface morphologies of the ventral scales of Cantor’s rat snakes (Ptyas dhumnades). Based on the findings on the snake scales, a novel snakeskin-inspired geosynthetic reinforcement (SIGR) is developed using 3D-printed polylactic acid (PLA). A series of pullout tests under different normal loads (25 kPa, 50 kPa, and 75 kPa) were performed to analyze the pullout behavior of SIGR in sandy soil. Soil deformation and shear band thickness were measured using Particle Image Velocimetry (PIV). The results revealed that the ventral scales of Ptyas dhumnades have distinct thorn-like micro-protrusions pointing towards the tail, which exhibit frictional anisotropy. A SIGR with a unilateral (one-sided) layout scales (each scale 1 mm in height and 12 mm in length) could increase the peak pullout force relative to a smooth-surface reinforcement by 29% to 67%. Moreover, the peak pullout force in the cranial direction (soil moving against the scales) was found to be 13% to 20% greater than that in the caudal direction (soil moving along the scales). The pullout resistance, cohesion, and friction angle of SIGR all showed significant anisotropy. The soil deformation around the SIGR during pullout was more pronounced than that observed with smooth-surface reinforcement, which suggests that SIGR can mobilize a larger volume of soil to resist external loads. This study demonstrates that SIGR is able to enhance the pullout resistance of reinforcements, thereby improving the stability of reinforced soil structures, reducing materials and energy consumption, and is important for the sustainability of geotechnical engineering. Full article
Show Figures

Figure 1

26 pages, 7033 KiB  
Article
Numerical Investigation into the Response of a Laterally Loaded Pile in Coastal and Offshore Slopes Considering Scour Effect
by Hao Zhang, Abubakarr Barrie, Fayun Liang and Chen Wang
Water 2025, 17(13), 2032; https://doi.org/10.3390/w17132032 - 7 Jul 2025
Viewed by 324
Abstract
This study investigates the response of laterally loaded pile foundations embedded in sloping beds under scour conditions, which is vital for the design and stability of coastal and offshore infrastructure like sea-crossing bridges, offshore wind turbines, and wharves. While previous studies have focused [...] Read more.
This study investigates the response of laterally loaded pile foundations embedded in sloping beds under scour conditions, which is vital for the design and stability of coastal and offshore infrastructure like sea-crossing bridges, offshore wind turbines, and wharves. While previous studies have focused on scour-affected pile performance in horizontal beds, this research expands the scope by incorporating sloped beds and corresponding scour effect, which are common in coastal and offshore environments. A three-dimensional finite element model was established to evaluate the pile foundation’s lateral load-bearing capacity under different slope and scour conditions, according to preceding flume tests on the mechanism of local scour around a pile in sloping bed. The results indicate that the lateral response of the pile is significantly influenced by the seabed slope and scour depth. A negatively inclined seabed weakens the interaction between the pile and the surrounding sediment, thereby reducing the lateral bearing capacity and bending moment. As the scour depth increases, the support provided by the soil further weakens, intensifying the reduction in lateral resistance. This effect is particularly pronounced for steep negative slopes, where the combined impact of slope and scour has a more significant detrimental effect. Full article
Show Figures

Figure 1

20 pages, 13331 KiB  
Article
Numerical Simulation of Seabed Response Around Monopile Under Wave–Vibration
by Hongyi Du, Dunge Wang, Jiankang Hou, Ziqin Yu, Ze Liu and Yongzhou Cheng
J. Mar. Sci. Eng. 2025, 13(7), 1309; https://doi.org/10.3390/jmse13071309 - 6 Jul 2025
Viewed by 286
Abstract
Monopile foundation is an important foundation form for offshore wind turbines, and the stability of the seabed around it is affected by the combined effects of wave and pile vibration. Based on the Biot consolidation theory and elastoplastic constitutive model, a multi-physical field [...] Read more.
Monopile foundation is an important foundation form for offshore wind turbines, and the stability of the seabed around it is affected by the combined effects of wave and pile vibration. Based on the Biot consolidation theory and elastoplastic constitutive model, a multi-physical field coupling model of wave–vibration–seabed–monopile is constructed, and the dynamic characteristics of seabed pore pressure around the monopile under the joint action of wave–vibration are systematically investigated, and the influences of waves, vibrations, and seabed parameters on the distribution of pore pressure amplitude are analysed in depth. The results show that the increase in wave incident energy will increase the seabed wave pressure, and the suction and pressure generated by pile vibration will change the soil force state; the coupling of waves and vibrations results in pile displacement difference, causing the seabed pore pressure dissipation depth dissimilarity, and the peak relative amplitude of pore pressure and the peak of vibration displacement are in a linear relationship; the wave parameters and seabed characteristics have a significant effect on the change in pore pressure amplitude distribution. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 7600 KiB  
Article
Experimental Study on a Laterally Loaded Pile Under Scour Condition Using Particle Image Velocimetry Technology
by Feng Yu, Xiaofeng Yang, Zhaoming Yao and Yaoyao Meng
J. Mar. Sci. Eng. 2025, 13(6), 1125; https://doi.org/10.3390/jmse13061125 - 4 Jun 2025
Viewed by 409
Abstract
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity [...] Read more.
The monopile foundation is a popular foundation type for offshore wind turbines; due to the harsh marine environment, there are lateral loads applied on the monopile foundation from winds and currents, and scouring also often occurs around the pile, reducing the bearing capacity and impacting the normal operation of offshore wind turbines. A series of 1 g model tests is conducted to investigate the lateral load response and scouring response of the monopile in sand. Based on the experimental results, the characteristics of the pile’s load-displacement curves, bending moments, and p-y curves under the effects of scour were analyzed. Particle Image Velocimetry technology was adopted to analyze the deformation development rules of soil particles around the pile. It is found that under the same lateral load, the maximum bending moment of the pile increases and the bearing capacity is reduced as the scour depth increases, the scour width increases, or the scour slope decreases. The effects of scour depth, slope, and width on pile bearing stability decrease successively. Soil displacements and strains in the passive zone in front of the pile develop gradually in both radial and vertical directions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 4374 KiB  
Article
Time-Dependent Bearing Capacity of Jacked Piles in Soft Soil Based on Non-Darcy Seepage
by Lin Wu, Cong Zhao, Xiaoya Bian and Xiang Wei
Buildings 2025, 15(11), 1760; https://doi.org/10.3390/buildings15111760 - 22 May 2025
Viewed by 316
Abstract
Non-Darcy seepage can more accurately quantify the bearing capacity of jacked piles during the bearing and reconsolidation processes. This paper is divided into three parts. Firstly, it theoretically analyzes the pore water pressure distribution in the soil around the pile through differential treatment [...] Read more.
Non-Darcy seepage can more accurately quantify the bearing capacity of jacked piles during the bearing and reconsolidation processes. This paper is divided into three parts. Firstly, it theoretically analyzes the pore water pressure distribution in the soil around the pile through differential treatment of the equation. Secondly, it simulates the pile sinking process and the reconsolidation process of the soil around the pile after sinking by ABAQUS, and then a parameter analysis is conducted. Finally, a time analysis of the pile bearing capacity is conducted. The results show that the dissipation rate of excess pore water pressure (EPWP) and the consolidation rate of the pile side will be underestimated at the initial stage of consolidation if the influence of non-Darcy seepage is ignored, while the opposite is true in the later stage. The strength and effective stress of the soil are greatly improved in the early stage of consolidation, and the bearing capacity of the static pressure pile is also significantly enhanced. In the later stage of consolidation, as the excess pore pressure of the soil around the pile slowly dissipates, the bearing capacity of the static pressure pile also increases steadily. This paper studies the dissipation of EPWP to make the design of pile foundation bearing capacity more rational and to improve the economic benefits. Full article
(This article belongs to the Special Issue Foundation Treatment and Building Structural Performance Enhancement)
Show Figures

Figure 1

21 pages, 4376 KiB  
Article
Influence of Construction-Induced Effects and Post-Grouting on the Performance of Mud-Protected Bored Piles: A Numerical Investigation
by Hua Mo, Haopeng Liao, Xiangfeng Guo and Mi Zhou
Buildings 2025, 15(9), 1457; https://doi.org/10.3390/buildings15091457 - 25 Apr 2025
Viewed by 467
Abstract
Mud-protected bored piles are widely used in foundation engineering due to their high bearing capacity and strong adaptability to various geological conditions. However, the formation of mud skin around the pile shaft and sediment at the pile bottom during construction significantly affects their [...] Read more.
Mud-protected bored piles are widely used in foundation engineering due to their high bearing capacity and strong adaptability to various geological conditions. However, the formation of mud skin around the pile shaft and sediment at the pile bottom during construction significantly affects their mechanical behavior, posing challenges for performance evaluation and design optimization. The post-grouting technique, which involves injecting grout material to strengthen the bottom and surrounding soils, has been practically adopted to enhance pile performance. This study investigates the effect of construction-induced factors (mud skin and sediment) and post-grouting on the performance of mud-protected bored piles. Finite element analyses were conducted based on a super-long test pile (60 m in length, 1.8 m in diameter) from an infrastructure project in Eastern China. The numerical model was validated against field test measurements and previously published numerical results. The results reveal that mud skin and sediment individually decrease the bearing capacity by 28% and 24%, respectively, compared to ideal conditions. When both factors are present, the bearing capacity is decreased by 36%. The post-grouting technique effectively improves pile performance, increasing the bearing capacity by 81% compared to non-grouting conditions. The findings also demonstrate that side friction dominates the bearing behavior of the studied super-long pile, accounting for approximately 90% of the total bearing capacity. Parametric analysis indicates that post-grouting effectiveness varies with soil properties and dimensions of effective grouting zones, showing greater improvement in weak soils. These results provide insights into the mechanisms through which construction-induced effects impact pile performance and offer guidelines for post-grouting applications. Full article
Show Figures

Figure 1

11 pages, 5555 KiB  
Article
Surfaced—The Digital Pile Dwellings
by Fiona Leipold, Helena Seidl da Fonseca, Cyril Dworsky and Ronny Weßling
Heritage 2025, 8(5), 145; https://doi.org/10.3390/heritage8050145 - 23 Apr 2025
Viewed by 1229
Abstract
Since 2011, five of Austria’s 29 known prehistoric pile dwellings have been part of the transnational UNESCO World Heritage Site “Prehistoric Pile Dwellings around the Alps”. These remarkable archaeological sites have been preserved for over 7000 years in lakes and moors. Due to [...] Read more.
Since 2011, five of Austria’s 29 known prehistoric pile dwellings have been part of the transnational UNESCO World Heritage Site “Prehistoric Pile Dwellings around the Alps”. These remarkable archaeological sites have been preserved for over 7000 years in lakes and moors. Due to their hidden location underwater or in the soil of bogs, the sites are inaccessible to the public, making it difficult to convey the full scope of this heritage. To address this, the national project “Surfaced—the digital pile dwellings” was launched, aiming to create a virtual bridge connecting the sites, collections, and exhibitions across Austria. It involved digitizing 500 objects, scanned in high resolution, and presenting them as 3D models in an open-access web application. The web application PfahlbauKompass allows users to explore these 3D models, view information about the artefacts and the sites, and create digital collections. It provides access to finds from national museums, regional heritage houses, and private collections. The project offers scientific potential as well as opportunities for virtual exhibitions and educational initiatives. It aims to preserve and visualize an essential part of Austria’s cultural heritage and was designed not only to archive finds but also to raise awareness of the hidden sites among the public. Full article
Show Figures

Figure 1

13 pages, 7111 KiB  
Article
Effect of Pile Spacing on Load Bearing Performance of NT-CEP Pile Group Foundation
by Yongmei Qian, Hualong Li, Wei Tian, Hang Yu, Yingtao Zhang, Ming Guan and Zhongwei Ma
Buildings 2025, 15(9), 1404; https://doi.org/10.3390/buildings15091404 - 22 Apr 2025
Viewed by 383
Abstract
The NT-CEP pile is an innovative type of pile that builds upon the conventional concrete straight-hole cast-in-place pile. It primarily consists of two components: the main pile and the bearing plate. The key factors influencing its load-bearing capacity include the pile diameter, the [...] Read more.
The NT-CEP pile is an innovative type of pile that builds upon the conventional concrete straight-hole cast-in-place pile. It primarily consists of two components: the main pile and the bearing plate. The key factors influencing its load-bearing capacity include the pile diameter, the cantilever dimensions of the bearing plate, and the slope of the bearing plate’s foot, among others. The pile spacing significantly influences the bearing capacity of NT-CEP pile group foundations. The overall bearing capacity of an NT-CEP pile group foundation is not merely the sum of the ultimate bearing capacities of individual piles; rather, it results from the interactions among the pile bodies, the cap, and the foundation soil. Advancing the design theory of NT-CEP pile groups and enhancing their practical applications in engineering requires an in-depth investigation of how different pile spacings influence the load-bearing performance of pile group foundations. This objective can be achieved by exploring the soil damage mechanisms around side, corner, and central piles. This exploration helps in clarifying the influence of pile spacing on the load-bearing performance. Based on research findings regarding the bearing capacity of single and double pile foundations, this paper utilizes ANSYS finite element simulation analysis to model six-pile and nine-pile groups. Because these arrangements are universally adopted in engineering practice, they are capable of accounting for the pile group effect under various pile spacings and row configurations. The nine-pile group comprises corner piles, side piles, and a center pile, enabling a comprehensive analysis of stress variations among piles at different positions. As six-pile and nine-pile groups represent common pile configurations, studying these two types can provide valuable insights and direct references for optimizing pile foundation design. The study systematically investigates the influence of varying piles spacings on the bearing capacity of NT-CEP pile group foundations. It concludes that, as pile spacing decreases, The displacement of the top of this pile increases. thereby enhancing the group piles effects. Conversely, increasing the spacing between piles represents an effective strategy for elevating the compressive capacity of the NT-CEP pile-group foundation. Larger spacing also increases the vertical load-bearing capacity of the central piles, enhances the lateral friction resistance of corner piles, and heightens the load-sharing proportion between the bearing plate and the pile end. Furthermore, increasing pile spacing raises the ratio of load sharing by the foundation soil for both the CEP nine-pile foundation and the CEP six-pile foundation. The reliability of the simulation study has been verified by a visualization small scale model test of a half cut pile. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 3072 KiB  
Article
Research on the Time-Dependent Behavior of Uplift Piles in Structured Clay Foundations in Zhanjiang Formation
by Yonghui Yang, Tang Bin, Yinchuan Wang, Xingyun Huang and Zuyuan Yu
Appl. Sci. 2025, 15(7), 3814; https://doi.org/10.3390/app15073814 - 31 Mar 2025
Viewed by 359
Abstract
The structural clay of the Zhanjiang Formation exhibits significant thixotropy, and there are considerable differences in the ultimate bearing capacity of pulled-out piles under different resting times. Using the structural clay from the Zhanjiang Formation as the foundation, direct shear tests on the [...] Read more.
The structural clay of the Zhanjiang Formation exhibits significant thixotropy, and there are considerable differences in the ultimate bearing capacity of pulled-out piles under different resting times. Using the structural clay from the Zhanjiang Formation as the foundation, direct shear tests on the soil surrounding nine groups of model single piles of different sizes were conducted at various resting times, along with static pullout tests on the pile foundations. The results indicate that the cohesion and internal friction angle of the surrounding soil increase following a logarithmic function with increasing resting time; specifically, the growth rate is rapid in the early resting period and gradually slows down in the later period. A quantitative relationship describing the variation of cohesion and internal friction angle over time was established. The load–displacement curves for single piles at different resting times exhibit a distinct steep drop. The uplift single pile exhibits significant time-dependency, with the ultimate uplift bearing capacity increasing more rapidly in the early stages and gradually stabilizing in the later stages. Under different resting times, for each load level, the maximum side friction resistance of the pile gradually shifts to the middle and lower parts of the pile body, while the ultimate side friction resistance is evenly distributed along the lower part of the pile body, with the side friction resistance of the pile bearing the uplift load. Based on the quantitative relationship of the cohesion and internal friction angle of the surrounding soil around the pile varying with time, a predictive formula for the axial pullout ultimate bearing capacity of a single pile in the Zhanjiang Group structured clay foundation has been established. Using existing pile foundation projects, model experiments were designed to verify the validity of the formula; however, there is a lack of field-scale validation. The research findings can provide a reference for predicting the axial pullout ultimate bearing capacity of single piles in practical engineering applications. Full article
Show Figures

Figure 1

18 pages, 8814 KiB  
Article
Interaction Analysis of the Synchronous Excavations of Deep Foundation Pit and Adjacent Underground Channel
by Hai Zhong, Liqun Zheng, Bo Liu, Tao Li and Bo Cao
Buildings 2025, 15(7), 1110; https://doi.org/10.3390/buildings15071110 - 29 Mar 2025
Viewed by 369
Abstract
Based on FLAC3D finite element analysis and field measurements, this paper studies the synchronous excavation of the deep foundation pit and the adjacent underground channel in the 17th section of the Beijing Metro Line 10 Phase II project. Due to the very tight [...] Read more.
Based on FLAC3D finite element analysis and field measurements, this paper studies the synchronous excavation of the deep foundation pit and the adjacent underground channel in the 17th section of the Beijing Metro Line 10 Phase II project. Due to the very tight schedule and deadline, an underground channel has been added between the double-arch tunnel and the deep foundation pit and excavated synchronously with the deep foundation pit. The minimum distance between the two excavations is 5 m. It was found that (1) the underground channel excavation destroys the intact structure of the soil around the channel and foundation pit on a larger scale, which affects the formation of soil arch behind the retaining pile and thus increases the lateral pile displacement, and the addition of anchor cables at the north and south sides of the foundation pit is not necessary; (2) if conditions permit, it is the safest to excavate the underground channel first and then the foundation pit; (3) the primary interaction spacing between the two adjacent excavations is the same depth as that of the foundation pit, and when the spacing increases to twice the depth of the foundation pit, there is basically no interaction; (4) compared with the solid and heavy soil, the adjacent existing underground channel is like a “hollow, elastic, light” tube and more sensitive to the foundation pit excavation, whose uplift and deformation rebound could exert a force on the surrounding soil and then enlarge the lateral displacement of the retaining pile. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 4080 KiB  
Article
A Unified Winkler Model for Vertical and Lateral Dynamic Analysis of Tapered Piles in Layered Soils in the Frequency Domain
by Qiangqiang Shua, Huanliang Xu, Wenbo Tu, Mingkang Li and Ningzhuo Shi
Buildings 2025, 15(5), 651; https://doi.org/10.3390/buildings15050651 - 20 Feb 2025
Viewed by 513
Abstract
Tapered piles are a new type of pile foundation known for their simple construction and high bearing capacity, commonly used in railway, highway, or building foundation treatment. This study proposes a unified dynamic Winkler model for vertical and lateral vibration response of tapered [...] Read more.
Tapered piles are a new type of pile foundation known for their simple construction and high bearing capacity, commonly used in railway, highway, or building foundation treatment. This study proposes a unified dynamic Winkler model for vertical and lateral vibration response of tapered piles in the frequency domain using the impedance function transfer matrix method. The computational expressions are obtained for the different springs and damping of tapered piles with different dimensions using the elastodynamic theoretical of rigid embedded foundations, and the dynamic interaction mechanisms of vertical and lateral vibrations between tapered piles and soil are analyzed. The rationality of the simplified model is validated by comparison with existing literature and finite element simulation results. Finally, an example is provided to discuss the influences of the dimensional parameters of the pile and soil properties on vertical, lateral, and rocking dynamic impedance. The analytical findings demonstrate that the lateral and rocking dynamic impedances of tapered piles undergo a substantially greater enhancement relative to their vertical counterpart as the taper angle is progressively enlarged, assuming the pile volume remains constant. The dynamic impedance of tapered piles under vertical and lateral vibration in upper hard and lower weak soil layers, or upper weak and lower hard soil layers, are both greater than those in a homogeneous foundation. Specifically, the vertical dynamic stiffness of tapered piles in double-layered soils is approximately twice that of homogeneous soil. The rocking dynamic stiffness of the pile is significantly influenced by the soil properties around the pile foundation, whereas the soil properties have little impact on the rocking damping coefficient. Overall, the vertical dynamic characteristics are less influenced by the geometric features of the upper part of the tapered pile, while the lateral dynamic characteristics are significantly affected by these features. The lateral dynamic impedance of the tapered pile increases with the diameter of the upper part of the pile. Furthermore, the vertical, lateral, and rocking dynamic impedance of the pile can be effectively improved by enhancing the soil properties around its upper section. These results can provide theoretical references for the engineering practice. Full article
(This article belongs to the Special Issue Building Vibration and Soil Dynamics—2nd Edition)
Show Figures

Figure 1

18 pages, 18380 KiB  
Article
Examining Shear Behavior in Sandy Gravel Interfaces: The Role of Relative Density and Material Interactions
by Zhanhai Li, Jinxiao Li, Xiang Mao, Xinyu Xie, Jingze Zhu, Yang Zheng, Yuan Li, Zhifeng Ren, Zhaohui Sun and Jiankun Liu
Buildings 2025, 15(4), 546; https://doi.org/10.3390/buildings15040546 - 11 Feb 2025
Viewed by 746
Abstract
Current research on soil–structure interface properties mainly focuses on sand, clay, and silt, with little attention given to sandy gravel. In order to study the effects of relative density and interface materials on the shear behavior of the sandy gravel–structure interface, a series [...] Read more.
Current research on soil–structure interface properties mainly focuses on sand, clay, and silt, with little attention given to sandy gravel. In order to study the effects of relative density and interface materials on the shear behavior of the sandy gravel–structure interface, a series of large-scale direct shear tests on sandy gravel were carried out, and stress–strain relationships, volume change curves, and shear strengths were investigated. The results show that the angle of internal friction of sandy gravel increases linearly with relative density (R2 is 0.998), from 43.0° to 48.0° when the relative density increases from 0.3 to 0.9. The growth trend of cohesion increases, the shear behavior transitions from strain hardening to strain softening, and the shear strength increases linearly with the increase in relative density. The interfacial shear strengths and interface adhesion of sandy gravel with steel and concrete interfaces increase linearly with relative density, and the shear curves are strain hardening. Furthermore, the interface friction angle of concrete increases linearly with relative density (R2 is 0.985), from 30.2° to 34.2°, while the interface friction angle of the steel interface remains relatively constant around 28.9°. Finally, relative density was introduced into the Mohr–Coulomb shear strength formula, and the relationship equations of relative density and normal pressure with the shear strength and interfacial shear strength of sandy gravel were established. The validation results show that the error margin of the formula is within 4%. This formula can be used to evaluate changes in the mechanical properties of sandy gravel formations and the bearing capacity of pile foundations after they have been disturbed by factors such as construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 8525 KiB  
Article
Response of Thermo-Hydro-Mechanical Fields to Pile Material in Pile–Soil System Under Freezing Based on Numerical Analysis
by Dongxue Hao, Yexian Shi, Rong Chen, Zhao Lu, Yue Ji, Zhonghua Lv and Liguo Liu
Buildings 2025, 15(4), 534; https://doi.org/10.3390/buildings15040534 - 9 Feb 2025
Cited by 1 | Viewed by 937
Abstract
In engineering practice, various types of pile foundations are commonly employed to mitigate the impact of differential frost heave on structures in cold regions. However, the studies on how pile material properties influence the thermo-hydro-mechanical coupling fields during the freezing of the pile–soil [...] Read more.
In engineering practice, various types of pile foundations are commonly employed to mitigate the impact of differential frost heave on structures in cold regions. However, the studies on how pile material properties influence the thermo-hydro-mechanical coupling fields during the freezing of the pile–soil system remain limited. To address this, a finite element model was developed to simulate the response of the pile–soil system under unidirectional freezing conditions. The numerical model in simulating ground temperature field and frost heave was first verified by comparison with experimental results. Then, the simulations for piles made of different materials, specifically steel and concrete piles at field scale, were conducted to obtain real-time temperature, moisture, and displacement fields during the freezing process. The results demonstrate that pile–soil systems of the two materials exhibit clearly different freezing patterns. The thermal conductivity of concrete, being similar to that of the surrounding soil, results in a unidirectional freezing pattern of soil around concrete piles, with the frost depth line parallel to the frost heave surface, forming a “一-shaped” freezing zone. In contrast, the high thermal conductivity of steel piles significantly accelerates the freezing rate and increases the frost depth in the surrounding soil, leading to both vertical and horizontal bidirectional freezing around the piles, creating an “inverted L-shaped” freezing zone. This bidirectional freezing generates greater tangential frost heave forces, pile frost jacking, and soil displacement around piles compared to concrete piles under identical freezing conditions. The numerical simulation also identifies the critical hydraulic conductivity at which moisture migration in the frozen soil layer ceases and describes the variation of relative ice content with temperature. These findings offer valuable insights into considering soil frost heave and pile displacement when using steel for foundation construction in cold regions, providing guidance for anti-frost heave measures in such environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 3550 KiB  
Article
Optimizing Bioaugmentation for Pharmaceutical Stabilization of Sewage Sludge: A Study on Short-Term Composting Under Real Conditions
by Gabriela Angeles-De Paz, Juan Cubero-Cardoso, Clementina Pozo, Concepción Calvo, Elisabet Aranda and Tatiana Robledo-Mahón
J. Fungi 2025, 11(1), 67; https://doi.org/10.3390/jof11010067 - 16 Jan 2025
Cited by 4 | Viewed by 1515
Abstract
A significant concentration of pharmaceuticals has been detected within composted sewage sludge. Their uncomplete removal and lack of monitoring during composting neglects their potentially toxic effects when used as a soil organic amendment. Previously, we successfully implemented a bioaugmentation–composting system focused on toxicity [...] Read more.
A significant concentration of pharmaceuticals has been detected within composted sewage sludge. Their uncomplete removal and lack of monitoring during composting neglects their potentially toxic effects when used as a soil organic amendment. Previously, we successfully implemented a bioaugmentation–composting system focused on toxicity and pharmaceuticals’ concentration reduction. This method, however, comprised a long inoculant-acclimatization period, making it an unprofitable technology. Hence, this work aimed to explore a shorter and yet effective composting process by simultaneously implementing the inoculation of a native microbial consortium and the fungus Penicillium oxalicum XD 3.1 in composting piles of sewage sludge and olive prunings. All the piles were subjected to frequent inoculation, windrow turning, and monitoring of the physicochemical and biological parameters. Additionally, both the bioaugmentation stability and pharmaceuticals degradation were evaluated through different analysis and removal rates calculations. One hundred days earlier than previous attempts, both bioaugmentation treatments achieved adequate composting conditions, maintained core native populations while improving the degrading microbial diversity, and achieved around 70–72% of pharmaceutical remotion. Nevertheless, only Penicillium inoculation produced favorable toxicity results ideal for organic amendments (acute microtoxicity and phytotoxicity). Thus, a shorter but equally stable and effective degrading bioaugmentation–composting with P. oxalicum was achieved here. Full article
Show Figures

Figure 1

Back to TopTop