Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = soft wearable sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2564 KB  
Article
Linearly Responsive, Reliable, and Stretchable Strain Sensors Based on Polyaniline Composite Hydrogels
by Chubin He and Xiuru Xu
Gels 2025, 11(12), 966; https://doi.org/10.3390/gels11120966 - 29 Nov 2025
Viewed by 222
Abstract
Conductive hydrogels are ideal for flexible strain sensors, yet their practical use is often limited by water evaporation, signal hysteresis, and structural instability, which impair linearity, durability, and long-term reliability. To overcome these challenges, we developed a robust multiple-network hydrogel composed of poly(vinyl [...] Read more.
Conductive hydrogels are ideal for flexible strain sensors, yet their practical use is often limited by water evaporation, signal hysteresis, and structural instability, which impair linearity, durability, and long-term reliability. To overcome these challenges, we developed a robust multiple-network hydrogel composed of poly(vinyl alcohol) (PVA), polyacrylic acid (PAA), in situ polymerized polyaniline (PANi), and the ionic liquid [EMIM][TFSI]. The resulting composite exhibits an exceptional linear piezoresistive response across its entire working range—from rest to fracture strain of 290%—together with high conductivity (0.68 S/cm), fast response/recovery (0.34 s/0.35 s), and a maximum gauge factor of 2.78. Mechanically robust (tensile strength ≈ 3.7 MPa, modulus ≈ 1.3 MPa), the hydrogel also demonstrates outstanding cyclic durability, withstanding over 12,000 stretching–relaxation cycles, and markedly improved dehydration resistance, retaining about 60% of its mass after 3 days at room temperature. This work provides a holistic material solution for developing high-performance, reliable strain sensors suitable for wearable electronics and soft robotics. Full article
(This article belongs to the Special Issue Research on the Applications of Conductive Hydrogels)
Show Figures

Graphical abstract

16 pages, 2961 KB  
Article
Numerical Investigation of Halbach-Array-Based Flexible Magnetic Sensors for Wide-Range Deformation Detection
by Yina Han, Shuaiqi Zhang, Chenglin Wen, Jie Han, Wenbin Kang and Zhiqiang Zheng
Sensors 2025, 25(23), 7240; https://doi.org/10.3390/s25237240 - 27 Nov 2025
Viewed by 446
Abstract
Flexible magnetic tactile sensors hold great promise for wearable electronics and intelligent robotics but often suffer from limited strain range and complex magnetic field variations due to rigid-soft coupling between the Hall sensor and magnetic layer. In this study, we propose a Halbach-array-based [...] Read more.
Flexible magnetic tactile sensors hold great promise for wearable electronics and intelligent robotics but often suffer from limited strain range and complex magnetic field variations due to rigid-soft coupling between the Hall sensor and magnetic layer. In this study, we propose a Halbach-array-based magnetic tactile sensor that structurally decouples the soft magnetic deformation layer from the rigid Hall sensing unit. The sensor embeds k = 2 Halbach-configured magnetic cubes within a PDMS matrix, while the Hall element is fixed at a remote, rigid location. Numerical analysis using COMSOL Multiphysics demonstrates that the Halbach configuration enhances magnetic field strength and uniformity, achieving mT-level detection even at a distance of 15 mm. Moreover, the Halbach array effectively reduces the field distribution from three-dimensional to one-dimensional, enabling stronger directionality, simplified data processing, and higher sensing frequency. This work establishes a theoretical framework for wide-range, high-precision magnetic tactile sensing through magnetic field tailoring, providing valuable guidance for the design of next-generation flexible sensors for wearable, robotic, and embodied intelligence applications. Full article
(This article belongs to the Special Issue Soft Sensors and Sensing Techniques (2nd Edition))
Show Figures

Figure 1

29 pages, 3577 KB  
Review
4D-Printed Liquid Crystal Elastomers: Printing Strategies, Actuation Mechanisms, and Emerging Applications
by Mehrab Hasan and Yingtao Liu
J. Compos. Sci. 2025, 9(11), 633; https://doi.org/10.3390/jcs9110633 - 13 Nov 2025
Cited by 1 | Viewed by 1327
Abstract
Liquid crystal elastomers (LCEs), as a class of smart materials, have attracted significant attention across soft robotics, biomedical engineering, and intelligent devices because of their unique capabilities to undergo large, reversible, and anisotropic deformations under external stimuli. Over the years, fabrication methods have [...] Read more.
Liquid crystal elastomers (LCEs), as a class of smart materials, have attracted significant attention across soft robotics, biomedical engineering, and intelligent devices because of their unique capabilities to undergo large, reversible, and anisotropic deformations under external stimuli. Over the years, fabrication methods have advanced from conventional molding and thin-film processing to additive manufacturing, with 4D printing emerging as a transformative approach by enabling time-dependent, programmable shape transformations. Among the available methods, direct ink writing (DIW) and vat photopolymerization are most widely adopted, with ink chemistry, rheology, curing, and printing parameters directly governing mesogen alignment and actuation performance. Recent advances in LCE actuators have demonstrated diverse functionalities in soft robotics, including bending, crawling, gripping, and sequential actuation, while biomedical applications span adaptive tissue scaffolds, wearable sensors, and patient-specific implants. This review discusses the conceptual distinction between 3D and 4D printing, compares different additive manufacturing techniques for LCE, and highlights emerging applications in the field of soft robotics and biomedical technologies. Despite rapid progress in LCE, challenges remain in biocompatibility, long-term durability and manufacturing scalability. Overall, innovations in 4D printing of LCEs underscores both the promise and the challenges of these materials, pointing toward their transformative role in enabling next-generation soft robotic and biomedical technologies. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

23 pages, 5476 KB  
Article
SMA-Driven Assistive Hand for Rehabilitation Therapy
by Grace Mayhead, Megan Rook, Rosario Turner, Owen Walker, Nabila Naz and Soumya K. Manna
Sensors 2025, 25(21), 6782; https://doi.org/10.3390/s25216782 - 5 Nov 2025
Viewed by 907
Abstract
Home-based rehabilitation supports neuromuscular patients while minimising the need for extensive clinical supervision. Due to a growing number of stroke survivors, this approach appears to be more practical for patients across diverse demographics. Although existing hardware-based assistive devices are pretty common, they have [...] Read more.
Home-based rehabilitation supports neuromuscular patients while minimising the need for extensive clinical supervision. Due to a growing number of stroke survivors, this approach appears to be more practical for patients across diverse demographics. Although existing hardware-based assistive devices are pretty common, they have limitations in terms of usability, wearability, and safety, as well as other technical constraints such as bulkiness and torque-to-weight ratios. To overcome these issues, soft actuator–based assistance prioritises user safety and ergonomics, as it is more wearable and lightweight, offering overall support while reducing the social stigma associated with disability. Among the existing soft actuation techniques and related materials, shape memory alloys (SMA) present a feasible option, offering current-controlled actuation and compatibility with integration into flexible textiles, thereby enhancing the wearability of the device. This paper presents a compact, SMA-driven assistive device designed to support natural motion, reduce muscle fatigue, and enable daily therapy. Embedded in a glove, the device allows mirrored control, where one hand’s movement assists the other, using flex sensors for feedback. The functionality of the electromyography (EMG) sensor is also used to evaluate the activation of the SMA wire; however, it is not employed for detecting individual finger motions in the assistive hand. Polyurethane foam insulation minimises thermal effects while maintaining lightweight wearability. Experimental results demonstrate a reduction in actuation time at higher voltages and the effective lifting of light to moderate weights. The device shows strong potential for affordable, home-based rehabilitation and everyday assistance. Full article
(This article belongs to the Special Issue Sensing and AI: Advancements in Robotics and Autonomous Systems)
Show Figures

Figure 1

14 pages, 16744 KB  
Article
Robotic Drop-Coating Graphite–Copper PDMS Soft Pressure Sensor with Fabric-Integrated Electrodes for Wearable Devices
by Zeping Yu, Yunhao Zhang, Lingpu Ge, Daisuke Miyata, Zhongnan Pu, Chenghong Lu and Lei Jing
Micromachines 2025, 16(11), 1247; https://doi.org/10.3390/mi16111247 - 31 Oct 2025
Viewed by 895
Abstract
Flexible pressure sensors are essential for wearable electronics, human–machine interfaces, and soft robotics. However, conventional Polydimethylsiloxane (PDMS)-based sensors often suffer from limited conductivity, poor filler dispersion, and low structural integration with textile substrates. In this work, we present a robotic drop-coating approach for [...] Read more.
Flexible pressure sensors are essential for wearable electronics, human–machine interfaces, and soft robotics. However, conventional Polydimethylsiloxane (PDMS)-based sensors often suffer from limited conductivity, poor filler dispersion, and low structural integration with textile substrates. In this work, we present a robotic drop-coating approach for fabricating graphite–copper nanoparticle (G-CuNP)/PDMS composite pressure sensors with textile-integrated electrodes. By precisely controlling droplet deposition, a three-layer sandwiched structure was realized that ensures uniformity and scalability while avoiding the drawbacks of conventional full-line coating. The effects of filler loading and graphite nanoparticle (GNP) and copper nanoparticle (CuNP) ratios were systematically investigated, and the optimized sensor was obtained at 40 wt% total fillers with a graphite content of 55 wt%. The fabricated device exhibited high sensitivity in the low-pressure region, stable performance in the medium- and high-pressure ranges, and an exponential saturation fitting with R2 = 0.998. The average hysteresis was 7.42%, with excellent cyclic stability over 1000 loading cycles. Furthermore, a hand-shaped sensor matrix composed of five distributed sensing units successfully distinguished grasping behaviors of lightweight and heavyweight objects, demonstrating multipoint force mapping capability. This study highlights the advantages of robotic drop-coating for scalable fabrication and provides a promising pathway toward low-cost, reliable, and wearable soft pressure sensors. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

27 pages, 7870 KB  
Review
Direct vs. Indirect Charge Transfer: A Paradigm Shift in Phase-Spanning Triboelectric Nanogenerators Focused on Liquid and Gas Interfaces
by Jee Hwan Ahn, Quang Tan Nguyen, Tran Buu Thach Nguyen, Md Fajla Rabbi, Van Hien Nguyen, Yoon Ho Lee and Kyoung Kwan Ahn
Energies 2025, 18(21), 5709; https://doi.org/10.3390/en18215709 - 30 Oct 2025
Viewed by 609
Abstract
Triboelectric nanogenerators (TENGs) have emerged as a promising technology for harvesting mechanical energy via contact electrification (CE) at diverse interfaces, including solid–liquid, liquid–liquid, and gas–liquid phases. This review systematically explores fluid-based TENGs (Flu-TENGs), introducing a foundational and novel classification framework based on direct [...] Read more.
Triboelectric nanogenerators (TENGs) have emerged as a promising technology for harvesting mechanical energy via contact electrification (CE) at diverse interfaces, including solid–liquid, liquid–liquid, and gas–liquid phases. This review systematically explores fluid-based TENGs (Flu-TENGs), introducing a foundational and novel classification framework based on direct versus indirect charge transfer to the charge-collecting electrode (CCE). This framework addresses a critical gap by providing the first unified analysis of charge transfer mechanisms across all major fluid interfaces, establishing a clear design principle for future device engineering. We comprehensively compare the underlying mechanisms and performance outcomes, revealing that direct charge transfer consistently delivers superior energy conversion—with specific studies achieving up to 11-fold higher current and 8.8-fold higher voltage in solid–liquid TENGs (SL-TENGs), 60-fold current and 3-fold voltage gains in liquid–liquid TENGs (LL-TENGs), and 34-fold current and 10-fold voltage enhancements in gas–liquid TENGs (GL-TENGs). Indirect mechanisms, relying on electrostatic induction, provide stable Alternating Current (AC) output ideal for low-power, long-term applications such as environmental sensors and wearable bioelectronics, while direct mechanisms enable high-efficiency Direct Current (DC) output suitable for energy-intensive systems including soft actuators and biomedical micro-pumps. This review highlights a paradigm shift in Flu-TENG design, where the deliberate selection of charge transfer pathways based on this framework can optimize energy harvesting and device performance across a broad spectrum of next-generation sensing, actuation, and micro-power systems. By bridging fundamental charge dynamics with application-driven engineering, this work provides actionable insights for advancing sustainable energy solutions and expanding the practical impact of TENG technology. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

31 pages, 8104 KB  
Review
Recent Advances in Triboelectric Materials for Active Health Applications
by Chang Peng, Yuetong Lin, Zhenyu Jiang, Yiping Liu, Licheng Zhou, Zejia Liu, Liqun Tang and Bao Yang
Electron. Mater. 2025, 6(4), 16; https://doi.org/10.3390/electronicmat6040016 - 23 Oct 2025
Viewed by 1041
Abstract
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the [...] Read more.
Triboelectric materials can convert irregular mechanical stimuli from human motion or environmental sources into high surface charge densities and instantaneous electrical outputs. Their intrinsic properties, such as flexibility, stretchability, chemical tunability, and compatibility with diverse substrates, play a critical role in determining the efficiency and reliability of triboelectric devices. In the context of active health, triboelectric materials not only serve as the core functional layers for self-powered sensing but also enable real-time physiological monitoring, motion tracking, and human–machine interaction by directly transducing biomechanical signals into electrical information. Soft triboelectric sensors exhibit high sensitivity, wide operational ranges, excellent biocompatibility, and wearability, making them highly promising for active health monitoring applications. Despite these advantages, challenges remain in enhancing surface charge density, achieving effective signal multiplexing, and ensuring long-term stability. This review provides a comprehensive overview of triboelectric mechanisms, working modes, influencing factors, performance enhancement strategies, and wearable health applications. Finally, it systematically summarizes the key improvement approaches and future development directions of triboelectric materials for active health, offering valuable guidance for advancing wearable self-powered biosensors. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

36 pages, 8183 KB  
Review
Recent Advances in Conductive Composite Hydrogels for Electronic Skin Applications
by Yiqing Yuan, Yilong Zhang, Haiyang Duan, Yitao Zhang, Lijun Lu, Artem Emel’yanov, Alexander S. Pozdnyakov, Pengcheng Zhu and Yanchao Mao
Gels 2025, 11(10), 822; https://doi.org/10.3390/gels11100822 - 13 Oct 2025
Viewed by 2113
Abstract
Electronic skins (E-skins) are the integration of intelligent wearable sensors that can collect human physiological, motion, or environmental parameters in real-time through flexible, sensitive materials. The performance of E-skins depends on the selection of materials to a large extent. Hydrogel materials are an [...] Read more.
Electronic skins (E-skins) are the integration of intelligent wearable sensors that can collect human physiological, motion, or environmental parameters in real-time through flexible, sensitive materials. The performance of E-skins depends on the selection of materials to a large extent. Hydrogel materials are an excellent candidate for E-skin preparation due to their tissue-like softness and biocompatibility. However, their low electrical conductivity, weak mechanical strength, and environmental instability seriously hinder high-fidelity signal acquisition and reliable operation in practical applications. To overcome these bottlenecks, conductive composite hydrogels have emerged as a promising alternative material. The unique properties of conductive composite hydrogels, such as high stretchability, self-healing ability, and adjustable electrical conductivity, address the relevant issues of traditional hydrogels in wearable applications. This review focuses on conductive composite hydrogels for wearable E-skins. Firstly, the types, characteristics, and preparation strategies of hydrogel matrix materials are introduced. Subsequently, the performance regulation mechanisms of key conductive fillers on composite hydrogels are discussed. Then, the application progress in electrophysiological signal monitoring, human–machine interaction, and human motion monitoring is reviewed. Finally, the current challenges and future development directions of hydrogel-based E-skins are prospected, aiming to provide comprehensive material and fabrication references for the practical application of composite hydrogel in electronic skins. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

16 pages, 2798 KB  
Article
Simple Preparation of Conductive Hydrogels Based on Precipitation Method for Flexible Wearable Devices
by Bolan Wu, Jiahao Liu, Zunhui Zhao, Na Li, Bo Liu and Hangyu Zhang
Sensors 2025, 25(19), 6032; https://doi.org/10.3390/s25196032 - 1 Oct 2025
Viewed by 606
Abstract
Conductive polymer hydrogels have attracted extensive attention in wearable devices, soft machinery, and energy storage due to their excellent mechanical and conductive properties. However, their preparation is often complex, expensive, and time-consuming. Herein, we report a facile precipitation method to prepare conductive polymer [...] Read more.
Conductive polymer hydrogels have attracted extensive attention in wearable devices, soft machinery, and energy storage due to their excellent mechanical and conductive properties. However, their preparation is often complex, expensive, and time-consuming. Herein, we report a facile precipitation method to prepare conductive polymer composite hydrogels composed of poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(3,4-ethylenedioxythiophene) (PEDOT) via straightforward solution blending and centrifugation. During the preparation, PEDOT, grown along the PAA template, is uniformly dispersed in the hydrogel matrix. After shaping and rinsing, the PEDOT/PAA/PVA hydrogel shows good mechanical and electrical properties, with a conductivity of 4.065 S/m and a Young’s modulus of 311.6 kPa. As a strain sensor, it has a sensitivity of 1.86 within 0–100% strain and a response time of 400 ms. As a bioelectrode, it exhibits lower contact impedance than commercially available electrodes and showed no signs of skin irritation in the test. The method’s versatility is confirmed by the observation of similar performance of hydrogels with different compositions (e.g., polyaniline (PANI)/PAA/PVA). These results demonstrate the broad applicability of the method. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

36 pages, 3444 KB  
Review
Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies
by Mubasshira, Md. Mahbubur Rahman, Md. Nizam Uddin, Mukitur Rhaman, Sourav Roy and Md Shamim Sarker
Processes 2025, 13(9), 2991; https://doi.org/10.3390/pr13092991 - 19 Sep 2025
Cited by 2 | Viewed by 4187
Abstract
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable [...] Read more.
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable responsiveness to external stimuli such as strain, pressure, temperature, light, and chemical environments. This review provides a comprehensive overview of recent advances in the design and synthesis of CPNCs, focusing on their application in multifunctional sensors and actuator technologies. Key carbon nanomaterials including graphene, carbon nanotubes (CNTs), and MXenes were examined in the context of their integration into polymer matrices to enhance performance parameters such as sensitivity, flexibility, response time, and durability. The review also highlights novel fabrication techniques, such as 3D printing, self-assembly, and in situ polymerization, that are driving innovation in device architectures. Applications in wearable electronics, soft robotics, biomedical diagnostics, and environmental monitoring are discussed to illustrate the transformative impact of CPNCs. Finally, this review addresses current challenges and outlines future research directions toward scalable manufacturing, environmental stability, and multifunctional integration for the real-world deployment of smart sensing and actuation systems. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Smart Applications)
Show Figures

Figure 1

12 pages, 2311 KB  
Communication
Dual-Responsive Starch Hydrogels via Physicochemical Crosslinking for Wearable Pressure and Ultra-Sensitive Humidity Sensing
by Zi Li, Jinhui Zhu, Zixuan Wang, Hao Hu and Tian Zhang
Sensors 2025, 25(16), 5006; https://doi.org/10.3390/s25165006 - 13 Aug 2025
Cited by 1 | Viewed by 798
Abstract
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile [...] Read more.
Flexible hydrogel sensors demonstrate emerging applications, such as wearable electronics, soft robots, and humidity smart devices, but their further application is limited due to their single-responsive behavior and unstable, low-sensitivity signal output. This study develops a dual-responsive starch-based conductive hydrogel via a facile “one-pot” strategy, achieving mechanically robust pressure sensing and ultra-sensitive humidity detection. The starch-Poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS)-glutaraldehyde (SPG) hydrogel integrates physical entanglement and covalent crosslinking to form a porous dual-network architecture, exhibiting high compressive fracture stress (266 kPa), and stable electromechanical sensitivity (ΔI/I0, ~2.3) with rapid response (0.1 s). In its dried state (D-SPG), the film leverages the starch’s hygroscopicity for humidity sensing, detecting minute moisture changes (ΔRH = 6.6%) within 120 ms and outputting 0.4~0.5 (ΔI/I0) signal amplitudes. The distinct state-dependent responsiveness enables tailored applications: SPG monitors physiological motions (e.g., pulse waves and joint movements) via conformal skin attachment, while D-SPG integrated into masks quantifies respiratory intensity with 3× signal enhancement during exercise. This work pioneers a sustainable candidate for biodegradable flexible electronics, overcoming trade-off limitations between mechanical integrity, signal stability, and dual responsiveness in starch hydrogels through synergistic network design. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

12 pages, 5474 KB  
Article
Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring
by Yaojia Mou, Cong Wang, Xiaohu Jiang, Jingxiang Wang, Changchao Zhang, Linpeng Liu and Ji’an Duan
Materials 2025, 18(15), 3707; https://doi.org/10.3390/ma18153707 - 7 Aug 2025
Viewed by 1265
Abstract
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection [...] Read more.
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection range, and poor signal stability under cyclic deformation remain unresolved. To overcome the aforementioned limitations, this work introduces a high-performance soft sensor featuring a dual-layered electrode system, comprising silver nanoparticles (AgNPs) and a composite of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB), coupled with a laser-engraved crack-gradient microstructure. This structural strategy facilitates progressive crack formation under applied strain, thereby achieving enhanced sensitivity (1.56 kPa−1), broad operational bandwidth (50–600 Hz), fine frequency resolution (0.5 Hz), and a rapid signal response. The synergistic structure also improves signal repeatability, durability, and noise immunity. The sensor demonstrates strong applicability in health monitoring, motion tracking, and intelligent interfaces, offering a promising pathway for reliable, multifunctional sensing in wearable health monitoring, motion tracking, and soft robotic systems. Full article
(This article belongs to the Special Issue Advanced Materials for Flexible Sensing Applications and Electronics)
Show Figures

Figure 1

12 pages, 1677 KB  
Article
Validating Capacitive Pressure Sensors for Mobile Gait Assessment
by John Carver Middleton, David Saucier, Samaneh Davarzani, Erin Parker, Tristen Sellers, James Chalmers, Reuben F. Burch, John E. Ball, Charles Edward Freeman, Brian Smith and Harish Chander
Biomechanics 2025, 5(3), 54; https://doi.org/10.3390/biomechanics5030054 - 1 Aug 2025
Viewed by 1028
Abstract
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler [...] Read more.
Background: This study was performed to validate the addition of capacitive-based pressure sensors to an existing smart sock developed by the research team. This study focused on evaluating the accuracy of soft robotic sensor (SRS) pressure data and its relationship with laboratory-grade Kistler force plates in collecting ground force reaction data. Methods: Nineteen participants performed walking trials while wearing the smart sock with and without shoes. Data was collected simultaneously with the sock and the force plates for each gait phase including foot-flat, heel-off, and midstance. The correlation between the smart sock and force plates was analyzed using Pearson’s correlation coefficient and R-squared values. Results: Overall, the strength of the relationship between the smart sock’s SRS data and the vertical ground reaction force (GRF) data from the force plates showed a strong correlation, with a Pearson’s correlation coefficient of 0.85 ± 0.1; 86% of the trials had a value higher than 0.75. The linear regression models also showed a strong correlation, with an R-squared value of 0.88 ± 0.12, which improved to 0.90 ± 0.07 when including a stretch-SRS for measuring ankle flexion. Conclusions: With these strong correlation results, there is potential for capacitive pressure sensors to be integrated into the proposed device and utilized in telehealth and sports performance applications. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

27 pages, 4077 KB  
Review
Biomimetic Robotics and Sensing for Healthcare Applications and Rehabilitation: A Systematic Review
by H. M. K. K. M. B. Herath, Nuwan Madusanka, S. L. P. Yasakethu, Chaminda Hewage and Byeong-Il Lee
Biomimetics 2025, 10(7), 466; https://doi.org/10.3390/biomimetics10070466 - 16 Jul 2025
Viewed by 2540
Abstract
Biomimetic robotics and sensor technologies are reshaping the landscape of healthcare and rehabilitation. Despite significant progress across various domains, many areas within healthcare still demand further bio-inspired innovations. To advance this field effectively, it is essential to synthesize existing research, identify persistent knowledge [...] Read more.
Biomimetic robotics and sensor technologies are reshaping the landscape of healthcare and rehabilitation. Despite significant progress across various domains, many areas within healthcare still demand further bio-inspired innovations. To advance this field effectively, it is essential to synthesize existing research, identify persistent knowledge gaps, and establish clear frameworks to guide future developments. This systematic review addresses these needs by analyzing 89 peer-reviewed sources retrieved from the Scopus database, focusing on the application of biomimetic robotics and sensing technologies in healthcare and rehabilitation contexts. The findings indicate a predominant focus on enhancing human mobility and support, with rehabilitative and assistive technologies comprising 61.8% of the reviewed literature. Additionally, 12.36% of the studies incorporate intelligent control systems and Artificial Intelligence (AI), reflecting a growing trend toward adaptive and autonomous solutions. Further technological advancements are demonstrated by research in bioengineering applications (13.48%) and innovations in soft robotics with smart actuation mechanisms (11.24%). The development of medical robots (7.87%) and wearable robotics, including exosuits (10.11%), underscores specific progress in clinical and patient-centered care. Moreover, the emergence of transdisciplinary approaches, present in 6.74% of the studies, highlights the increasing convergence of diverse fields in tackling complex healthcare challenges. By consolidating current research efforts, this review aims to provide a comprehensive overview of the state of the art, serving as a foundation for future investigations aimed at improving healthcare outcomes and enhancing quality of life. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

38 pages, 5046 KB  
Review
Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World
by Muhammad A. Butt
Micromachines 2025, 16(7), 813; https://doi.org/10.3390/mi16070813 - 15 Jul 2025
Cited by 3 | Viewed by 3402
Abstract
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication [...] Read more.
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication techniques, device architectures, and application domains. Key polymer materials, including PMMA, SU-8, polyimides, COC, and PDMS, are evaluated for their optical properties, processability, and suitability for integration into sensing platforms. High-throughput fabrication methods such as nanoimprint lithography, soft lithography, roll-to-roll processing, and additive manufacturing are examined for their role in enabling large-area, low-cost device production. Various photonic structures, including planar waveguides, Bragg gratings, photonic crystal slabs, microresonators, and interferometric configurations, are discussed concerning their sensing mechanisms and performance metrics. Practical applications are highlighted in environmental monitoring, biomedical diagnostics, and structural health monitoring. Challenges such as environmental stability, integration with electronic systems, and reproducibility in mass production are critically analyzed. This review also explores future opportunities in hybrid material systems, printable photonics, and wearable sensor arrays. Collectively, these developments position polymer photonic sensors as promising platforms for widespread deployment in smart, connected sensing environments. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

Back to TopTop