Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (219)

Search Parameters:
Keywords = soft switching operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 7546 KB  
Article
Hierarchical Soft Actor–Critic Agent with Automatic Entropy, Twin Critics, and Curriculum Learning for the Autonomy of Rock-Breaking Machinery in Mining Comminution Processes
by Guillermo González, John Kern, Claudio Urrea and Luis Donoso
Processes 2026, 14(2), 365; https://doi.org/10.3390/pr14020365 (registering DOI) - 20 Jan 2026
Abstract
This work presents a hierarchical deep reinforcement learning (DRL) framework based on Soft Actor–Critic (SAC) for the autonomy of rock-breaking machinery in surface mining comminution processes. The proposed approach explicitly integrates mobile navigation and hydraulic manipulation as coupled subprocesses within a unified decision-making [...] Read more.
This work presents a hierarchical deep reinforcement learning (DRL) framework based on Soft Actor–Critic (SAC) for the autonomy of rock-breaking machinery in surface mining comminution processes. The proposed approach explicitly integrates mobile navigation and hydraulic manipulation as coupled subprocesses within a unified decision-making architecture, designed to operate under the unstructured and highly uncertain conditions characteristic of open-pit mining operations. The system employs a hysteresis-based switching mechanism between specialized SAC subagents, incorporating automatic entropy tuning to balance exploration and exploitation, twin critics to mitigate value overestimation, and curriculum learning to manage the progressive complexity of the task. Two coupled subsystems are considered, namely: (i) a tracked mobile machine with a differential drive, whose continuous control enables safe navigation, and (ii) a hydraulic manipulator equipped with an impact hammer, responsible for the fragmentation and dismantling of rock piles through continuous joint torque actuation. Environmental perception is modeled using processed perceptual variables obtained from point clouds generated by an overhead depth camera, complemented with state variables of the machinery. System performance is evaluated in unstructured and uncertain simulated environments using process-oriented metrics, including operational safety, task effectiveness, control smoothness, and energy consumption. The results show that the proposed framework yields robust, stable policies that achieve superior overall process performance compared to equivalent hierarchical configurations and ablation variants, thereby supporting its potential applicability to DRL-based mining automation systems. Full article
(This article belongs to the Special Issue Advances in the Control of Complex Dynamic Systems)
Show Figures

Figure 1

22 pages, 4205 KB  
Article
A Two-Phase Switching Adaptive Sliding Mode Control Achieving Smooth Start-Up and Precise Tracking for TBM Hydraulic Cylinders
by Shaochen Yang, Dong Han, Lijie Jiang, Lianhui Jia, Zhe Zheng, Xianzhong Tan, Huayong Yang and Dongming Hu
Actuators 2026, 15(1), 57; https://doi.org/10.3390/act15010057 - 16 Jan 2026
Viewed by 119
Abstract
Tunnel boring machine (TBM) hydraulic cylinders operate under pronounced start–stop shocks and load uncertainties, making it difficult to simultaneously achieve smooth start-up and high-precision tracking. This paper proposes a two-phase switching adaptive sliding mode control (ASMC) strategy for TBM hydraulic actuation. Phase I [...] Read more.
Tunnel boring machine (TBM) hydraulic cylinders operate under pronounced start–stop shocks and load uncertainties, making it difficult to simultaneously achieve smooth start-up and high-precision tracking. This paper proposes a two-phase switching adaptive sliding mode control (ASMC) strategy for TBM hydraulic actuation. Phase I targets a soft start by introducing smooth gating and a ramped start-up mechanism into the sliding surface and equivalent control, thereby suppressing pressure spikes and displacement overshoot induced by oil compressibility and load transients. Phase II targets precise tracking, combining adaptive laws with a forgetting factor design to maintain robustness while reducing chattering and steady-state error. We construct a state-space model that incorporates oil compressibility, internal/external leakage, and pump/valve dynamics, and provide a Lyapunov-based stability analysis proving bounded stability and error convergence under external disturbances. Comparative simulations under representative TBM conditions show that, relative to conventional PID Controller and single ASMC Controller, the proposed method markedly reduces start-up pressure/velocity peaks, overshoot, and settling time, while preserving tracking accuracy and robustness over wide load variations. The results indicate that the strategy can achieve the unity of smooth start and high-precision trajectory of TBM hydraulic cylinder without additional sensing configuration, offering a practical path for high-performance control of TBM hydraulic actuators in complex operating environments. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

23 pages, 3492 KB  
Article
Multi-Objective Reinforcement Learning for Virtual Impedance Scheduling in Grid-Forming Power Converters Under Nonlinear and Transient Loads
by Jianli Ma, Kaixiang Peng, Xin Qin and Zheng Xu
Energies 2025, 18(24), 6621; https://doi.org/10.3390/en18246621 - 18 Dec 2025
Viewed by 356
Abstract
Grid-forming power converters play a foundational role in modern microgrids and inverter-dominated distribution systems by establishing voltage and frequency references during islanded or low-inertia operation. However, when subjected to nonlinear or impulsive impact-type loads, these converters often suffer from severe harmonic distortion and [...] Read more.
Grid-forming power converters play a foundational role in modern microgrids and inverter-dominated distribution systems by establishing voltage and frequency references during islanded or low-inertia operation. However, when subjected to nonlinear or impulsive impact-type loads, these converters often suffer from severe harmonic distortion and transient current overshoot, leading to waveform degradation and protection-triggered failures. While virtual impedance control has been widely adopted to mitigate these issues, conventional implementations rely on fixed or rule-based tuning heuristics that lack adaptivity and robustness under dynamic, uncertain conditions. This paper proposes a novel reinforcement learning-based framework for real-time virtual impedance scheduling in grid-forming converters, enabling simultaneous optimization of harmonic suppression and impact load resilience. The core of the methodology is a Soft Actor-Critic (SAC) agent that continuously adjusts the converter’s virtual impedance tensor—comprising dynamically tunable resistive, inductive, and capacitive elements—based on real-time observations of voltage harmonics, current derivatives, and historical impedance states. A physics-informed simulation environment is constructed, including nonlinear load models with dominant low-order harmonics and stochastic impact events emulating asynchronous motor startups. The system dynamics are modeled through a high-order nonlinear framework with embedded constraints on impedance smoothness, stability margins, and THD compliance. Extensive training and evaluation demonstrate that the learned impedance policy effectively reduces output voltage total harmonic distortion from over 8% to below 3.5%, while simultaneously limiting current overshoot during impact events by more than 60% compared to baseline methods. The learned controller adapts continuously without requiring explicit load classification or mode switching, and achieves strong generalization across unseen operating conditions. Pareto analysis further reveals the multi-objective trade-offs learned by the agent between waveform quality and transient mitigation. Full article
Show Figures

Figure 1

19 pages, 5899 KB  
Article
Small-Signal Modeling of Asymmetric PWM Control-Based Parallel Resonant Converter
by Na-Yeon Kim and Kui-Jun Lee
Electronics 2025, 14(24), 4970; https://doi.org/10.3390/electronics14244970 - 18 Dec 2025
Viewed by 259
Abstract
This paper proposes a small-signal model of a DC–DC parallel resonant converter operating in continuous conduction mode based on asymmetric pulse-width modulation (APWM) under light-load conditions. The parallel resonant converter enables soft switching and no-load control over a wide load range because the [...] Read more.
This paper proposes a small-signal model of a DC–DC parallel resonant converter operating in continuous conduction mode based on asymmetric pulse-width modulation (APWM) under light-load conditions. The parallel resonant converter enables soft switching and no-load control over a wide load range because the resonant capacitor is connected in parallel with the load. However, the resonant energy required for soft switching is already sufficient, and the current flowing through the resonant tank is independent of the load magnitude; therefore, as the load decreases, the energy that is not delivered to the load and instead circulates meaninglessly inside the resonant tank increases. This results in conduction loss and reduced efficiency. To address this issue, APWM with a fixed switching frequency is required, which reduces circulating energy and improves efficiency under light-load conditions. Precise small-signal modeling is required to optimize the APWM controller. Unlike PFM or PSFB, APWM includes not only sine components but also DC and cosine components in the control signal due to its asymmetric switching characteristics, and this study proposes a small-signal model that can relatively accurately reflect these multi-harmonic characteristics. The proposed model is derived based on the Extended Describing Function (EDF) concept, and the derived transfer function is useful for systematically analyzing the dynamic characteristics of the APWM-based parallel resonant converter. In addition, it provides information that can systematically analyze the dynamic characteristics of various APWM-based resonant converters and control signals that reflect various harmonic characteristics, and it can be widely applied to future control design and analysis studies. The validity of the model is verified through MATLAB (R2025b) and PLECS (4.7.5) switching-model simulations and experimental results, confirming its high accuracy and practicality. Full article
(This article belongs to the Special Issue New Insights in Power Electronics: Prospects and Challenges)
Show Figures

Figure 1

19 pages, 21427 KB  
Article
Soft-Switching, Duty-Cycle-Extended Two-Phase Interleaved Buck with Positive Inductor Coupling for High-Density Consumer Electronics Power Supplies
by Zhengyang Zhang, Song Xu, Seiji Hashimoto and Wei Jiang
Symmetry 2025, 17(12), 2126; https://doi.org/10.3390/sym17122126 - 10 Dec 2025
Viewed by 285
Abstract
Against the backdrop of rapid advances in computing, industry, and electric vehicles, DC–DC buck converters—as core point-of-load regulators—are critical for power supplies in applications with stringent voltage-stability requirements. This paper proposes a two-phase interleaved Buck converter based on positively coupled inductor with a [...] Read more.
Against the backdrop of rapid advances in computing, industry, and electric vehicles, DC–DC buck converters—as core point-of-load regulators—are critical for power supplies in applications with stringent voltage-stability requirements. This paper proposes a two-phase interleaved Buck converter based on positively coupled inductor with a high coupling coefficient. The innovation lies in the positively coupled inductor and two-phase interleaved architecture, where two MOSFETs and two diodes form a similar symmetrical full-bridge interleaved structures together achieve a higher conversion ratio and provide ZCS operation for all power devices, thereby effectively reducing switching losses. Relative to traditional topologies, the proposed converter delivers a higher conversion ratio without extreme duty-cycle operation while improving reliability. After detailing the operating mechanism, we derive the input–output voltage relation, outline controller synthesis guidelines, and specify the soft-switching conditions. From the viewpoint of symmetry, the proposed interleaved converter exploits the electrical and magnetic symmetry between phases to achieve current balancing, extended duty-cycle range and soft-switching. Validation is provided by both a PSIM simulation model and a 270W hardware prototype using an STM32F103ZET6, which achieves 93.3% peak efficiency at a conversion ratio of 0.45, demonstrating the practicality and effectiveness of the approach. Full article
Show Figures

Figure 1

22 pages, 25352 KB  
Article
Open-Loop Characterisation of Soft Actuator Pressure Regulated by Pulse-Driven Solenoid Valve
by Andrés J. Serrano-Balbontín, Inés Tejado, Blas M. Vinagre, Sumeet S. Aphale and Andres San-Millan
Robotics 2025, 14(12), 177; https://doi.org/10.3390/robotics14120177 - 28 Nov 2025
Viewed by 442
Abstract
Solenoid valves are widely used for pressure regulation in soft pneumatic robots, but their inherent electromechanical nonlinearities—such as dead zones, saturation, and pressure-dependent dynamics—pose significant challenges for accurate control. Conventional pulse modulation techniques, including pulse-width modulation (PWM), often exacerbate these effects by neglecting [...] Read more.
Solenoid valves are widely used for pressure regulation in soft pneumatic robots, but their inherent electromechanical nonlinearities—such as dead zones, saturation, and pressure-dependent dynamics—pose significant challenges for accurate control. Conventional pulse modulation techniques, including pulse-width modulation (PWM), often exacerbate these effects by neglecting valve-switching transients. This paper presents a physics-informed dynamic modelling framework that captures transient and pressure-dependent behaviours in solenoid valve-driven soft pneumatic systems operating under pulse modulation. The model is experimentally validated on a soft pneumatic actuator (SPA) platform using four modulation schemes: PWM, integral pulse frequency modulation (IPFM), its inverted variant (IIPFM), and ΔΣ modulation. Results demonstrate that only the IIPFM scheme produces near-linear input–pressure characteristics, in close agreement with model predictions. The proposed framework provides new physical insights into valve-induced nonlinearities and establishes a systematic basis for high-fidelity modelling and control of soft pneumatic robotic systems. Full article
(This article belongs to the Special Issue Dynamic Modeling and Model-Based Control of Soft Robots)
Show Figures

Figure 1

26 pages, 1328 KB  
Article
Adaptive Electromagnetic Working Mode Decision-Making Algorithm for Miniaturized Radar Systems in Complex Electromagnetic Environments: An Improved Soft Actor–Critic Algorithm
by Houwei Liu, Chudi Zhang, Lulu Wang, Jun Hu and Shiyou Xu
Electronics 2025, 14(23), 4633; https://doi.org/10.3390/electronics14234633 - 25 Nov 2025
Viewed by 342
Abstract
With the advancement of multi-function radar (MFR) technology, miniaturized radar systems (MRSs) inevitably operate in complex electromagnetic environments (CEEs) dominated by MFRs as single-function radars are gradually being replaced by MFRs. MFRs can not only flexibly switch working states and generate diverse radar [...] Read more.
With the advancement of multi-function radar (MFR) technology, miniaturized radar systems (MRSs) inevitably operate in complex electromagnetic environments (CEEs) dominated by MFRs as single-function radars are gradually being replaced by MFRs. MFRs can not only flexibly switch working states and generate diverse radar signal characteristics, but they can also acquire the MRSs’ position information, which has a significant impact on the execution of the MRSs’ close-range remote sensing missions. For resource-constrained MRS, selecting the optimal electromagnetic working mode in such environments becomes a critical challenge. This paper addresses the adaptive electromagnetic working mode decision-making (EWMDM) problem for MRS in CEE by establishing an EWMDM model and proposing a reinforcement learning (RL) method based on an improved soft actor–critic algorithm with prioritized experience replay (SAC-PER). First, we simulate the process of MRS receiving pulse description words (PDWs) from MFR waveforms and introduce noise into the PDWs to emulate real electromagnetic environments. Then we use a threshold to filter out uncertain recognition results to reduce the impact of noise on the MFR’s working state recognition. Subsequently, we analyze the limitations of the SAC-PER algorithm in noisy environments and propose an improved algorithm—SAC with alpha decay prioritized experience replay (SAC-ADPER)—to address the influence of environmental noise and stochasticity. Experimental results show that SAC-ADPER significantly accelerates the convergence speed of EWMDM in noisy environments and validate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue New Research in Computational Intelligence)
Show Figures

Figure 1

45 pages, 6699 KB  
Review
End-Effectors for Fruit and Vegetable Harvesting Robots: A Review of Key Technologies, Challenges, and Future Prospects
by Jiaxin Ao, Wei Ji, Xiaowei Yu, Chengzhi Ruan and Bo Xu
Agronomy 2025, 15(11), 2650; https://doi.org/10.3390/agronomy15112650 - 19 Nov 2025
Viewed by 1972
Abstract
In recent years, agricultural production activities have been advancing towards mechanization and intelligence to bridge the growing gap between the high labor intensity and time sensitivity of harvesting operations and the limited labor resources. As the component that directly interacts with target crops, [...] Read more.
In recent years, agricultural production activities have been advancing towards mechanization and intelligence to bridge the growing gap between the high labor intensity and time sensitivity of harvesting operations and the limited labor resources. As the component that directly interacts with target crops, the end-effector is a crucial part of agricultural harvesting robots. This paper first reviews their materials, number of fingers, actuation methods, and detachment techniques. Analysis reveals that three-fingered end-effectors, known for their stability and ease of control, are the most prevalent. Soft materials have gained significant attention due to their flexibility and low-damage characteristics, while the emergence of variable stiffness technology holds promise for addressing their issues of poor stability and fragility. The introduction of bionics and composite concepts offers potential for enhancing the performance of end-effectors. Subsequently, starting from an analysis of the biomechanical properties of fruits and vegetables, the relationship between mechanical damage and the intrinsic parameters of produce is elucidated. On the other hand, practical and efficient finite element analysis has been applied to various stages of end-effector research, such as structural design and grasping force estimation. Given the importance of compliance control, this paper explores the current research status of various control methods. It emphasizes that while hybrid force–position control often suffers from frequent controller switching, which directly affects real-time performance, active admittance control and impedance control directly convert external forces or torques into the robot’s reference position and velocity, resulting in more stable and flexible external control. To enable a unified comparison of end-effector performance, this review proposes a progressive comparison framework centered on control philosophy, comprising the ontological characteristic layer, physical interaction layer, feedback optimization layer, and task layer. Additionally, in response to the current lack of scientific rigor and systematization in performance evaluation systems for end-effectors, performance evaluation criteria (harvest success rate, harvest time, and damage rate) are defined to standardize the characterization of end-effector performance. Finally, this paper summarizes the challenges faced in the development of end-effectors and analyzes their causes. It highlights how emerging technologies, such as digital twin technology, can improve the control accuracy and flexibility of end-effectors. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 6413 KB  
Article
High-Efficiency Soft-Switching Technique for a Cascaded Buck–Boost Converter Based on Model Predictive Control Using GaN Devices
by Li Liu, Jialiang Dai, Ju Lee, Seonheui Kang and Changsung Jin
Electronics 2025, 14(22), 4499; https://doi.org/10.3390/electronics14224499 - 18 Nov 2025
Viewed by 2194
Abstract
Improving the efficiency of buck–boost converters has long been a major focus in power electronics. To enhance efficiency and overcome existing limitations, this paper proposes a soft-switching technique for a cascaded buck–boost converter (CBBC). The proposed approach integrates high-frequency switching of four gallium [...] Read more.
Improving the efficiency of buck–boost converters has long been a major focus in power electronics. To enhance efficiency and overcome existing limitations, this paper proposes a soft-switching technique for a cascaded buck–boost converter (CBBC). The proposed approach integrates high-frequency switching of four gallium nitride (GaN) devices, improving both dynamic and steady-state performance from hardware and control perspectives. First, a soft-switching modulation scheme based on negative-current pulse width modulation (PWM) is implemented by introducing a new switching sequence in the CBBC, controlled by a modulation variable. This scheme ensures that the GaN switches operate under zero-current switching (ZCS) and zero-voltage switching (ZVS) conditions during transitions. Furthermore, the CBBC operating modes are divided into four intervals for modeling and analysis, upon which a model predictive control (MPC) strategy is developed to achieve fast closed-loop regulation of both output voltage and current. To further minimize current ripple and device losses, the MPC cost function is optimized by constraining the control parameters. Experimental results obtained from a 300-W hardware prototype verify the effectiveness and feasibility of the proposed soft-switching control method. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

23 pages, 3607 KB  
Article
Dynamic Average-Value Modeling and Stability of Shipboard PV–Battery Converters with Curve-Scanning Global MPPT
by Andrei Darius Deliu, Emil Cazacu, Florențiu Deliu, Ciprian Popa, Nicolae Silviu Popa and Mircea Preda
Electricity 2025, 6(4), 66; https://doi.org/10.3390/electricity6040066 - 12 Nov 2025
Viewed by 513
Abstract
Maritime power systems must reduce fuel use and emissions while improving resilience. We study a shipboard PV–battery subsystem interfaced with a DC–DC converter running maximum power point tracking (MPPT) and curve-scanning GMPPT to manage partial shading. Dynamic average-value models capture irradiance steps and [...] Read more.
Maritime power systems must reduce fuel use and emissions while improving resilience. We study a shipboard PV–battery subsystem interfaced with a DC–DC converter running maximum power point tracking (MPPT) and curve-scanning GMPPT to manage partial shading. Dynamic average-value models capture irradiance steps and show GMPPT sustains operation near the global MPP without local peak trapping. We compare converter options—conventional single-port stages, high-gain bidirectional dual-PWM converters, and three-level three-port topologies—provide sizing rules for passives, and note soft-switching in order to limit loss. A Fourier framework links the switching ripple to power quality metrics: as irradiance falls, the current THD rises while the PCC voltage distortion remains constant on a stiff bus. We make the loss relation explicit via Irms2R scaling with THDi and propose a simple reactive power policy, assigning VAR ranges to active power bins. For AC-coupled cases, a hybrid EMT plus transient stability workflow estimates ride-through margins and critical clearing times, providing a practical path from modeling to monitoring. Full article
Show Figures

Figure 1

18 pages, 6194 KB  
Article
Pseudo-Partial-Power Switch-Multiplexed Resonant Converter with Wide Voltage Gain
by Xiaoying Chen, Zehong Yao, Yizhan Zhuang and Yiming Zhang
Energies 2025, 18(22), 5939; https://doi.org/10.3390/en18225939 - 11 Nov 2025
Viewed by 439
Abstract
Full-bridge resonant converters have gained widespread adoption due to their excellent performance characteristics. However, these converters face limitations in terms of gain expansion. To address this issue, this paper proposes a switch-multiplexed resonant converter with wide voltage gain. By employing an auxiliary capacitor [...] Read more.
Full-bridge resonant converters have gained widespread adoption due to their excellent performance characteristics. However, these converters face limitations in terms of gain expansion. To address this issue, this paper proposes a switch-multiplexed resonant converter with wide voltage gain. By employing an auxiliary capacitor and inductor, the converter can achieve pseudo partial power processing and effectively expand its voltage gain. To regulate the voltage of the converter, the duty cycle of the switching devices is designed to be modulated, which is different from the conventional resonant converter. By optimizing the design parameters, the resonant current of converter can operate in discontinuous current mode (DCM), eliminating reverse recovery losses and/or minimizing reactive current. All switching devices achieve soft switching, thereby removing switching losses and further enhancing efficiency. Finally, a 1 kW prototype is built to validate the effectiveness of the proposed converter. Full article
(This article belongs to the Special Issue Design and Control Strategies for Wide Input Range DC-DC Converters)
Show Figures

Figure 1

28 pages, 5988 KB  
Article
Triple Active Bridge Modeling and Decoupling Control
by Andrés Camilo Henao-Muñoz, Mohammed B. Debbat, Antonio Pepiciello and José Luis Domínguez-García
Electronics 2025, 14(21), 4224; https://doi.org/10.3390/electronics14214224 - 29 Oct 2025
Cited by 1 | Viewed by 979
Abstract
The increased penetration of power electronics interfaced resources in modern power systems is unlocking new opportunities and challenges. New concepts like multiport converters can further enhance the efficiency and power density of power electronics-based solutions. The triple active bridge is an isolated multiport [...] Read more.
The increased penetration of power electronics interfaced resources in modern power systems is unlocking new opportunities and challenges. New concepts like multiport converters can further enhance the efficiency and power density of power electronics-based solutions. The triple active bridge is an isolated multiport converter with soft switching and high voltage gain that can integrate different sources, storage, and loads, or act as a building block for modular systems. However, the triple active bridge suffers from power flow cross-coupling, which affects its dynamic performance if it is not removed or mitigated. Unlike the extensive literature on two-port power converters, studies on modeling and control comparison for multiport converters are still lacking. Therefore, this paper presents and compares different modeling and decoupling control approaches applied to the triple active bridge converter, highlighting their benefits and limitations. The converter operation and modulation are introduced, and modeling and control strategies based on the single phase shift power flow control are detailed. The switching model, generalized full-order average model, and the reduced-order model derivations are presented thoroughly, and a comparison reveals that first harmonic approximations can be detrimental when modeling the triple active bridge. Furthermore, the model accuracy is highly sensitive to the operating point, showing that the generalized average model better represents some dynamics than the lossless reduced-order model. Furthermore, three decoupling control strategies are derived aiming to mitigate cross-coupling effects to ensure decoupled power flow and improve system stability. To assess their performance, the TAB converter is subjected to power and voltage disturbances and parameter uncertainty. A comprehensive comparison reveals that linear PI controllers with an inverse decoupling matrix can effectively control the TAB but exhibit large settling time and voltage deviations due to persistent cross-coupling. Furthermore, the decoupling matrix is highly sensitive to inaccuracies in the converter’s model parameters. In contrast, linear active disturbance rejection control and sliding mode control based on a linear extended state observer achieve rapid stabilization, demonstrating strong decoupling capability under disturbances. Furthermore, both control strategies demonstrate robust performance under parameter uncertainty. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

38 pages, 5909 KB  
Article
A Hybrid TLBO-Cheetah Algorithm for Multi-Objective Optimization of SOP-Integrated Distribution Networks
by Abdulaziz Alanazi, Mohana Alanazi and Mohammed Alruwaili
Mathematics 2025, 13(21), 3419; https://doi.org/10.3390/math13213419 - 27 Oct 2025
Viewed by 527
Abstract
The integration of Soft Open Points (SOPs) into distribution networks has been an essential method for enhancing operational flexibility and efficiency. But simultaneous optimization of network reconfiguration and SOP scheduling constitutes a difficult mixed-integer nonlinear programming (MINLP) problem that is likely to suffer [...] Read more.
The integration of Soft Open Points (SOPs) into distribution networks has been an essential method for enhancing operational flexibility and efficiency. But simultaneous optimization of network reconfiguration and SOP scheduling constitutes a difficult mixed-integer nonlinear programming (MINLP) problem that is likely to suffer from premature convergence with standard metaheuristic solvers, particularly in large power networks. This paper proposes a novel hybrid algorithm, hTLBO–CO, which synergistically integrates the exploitative capability of Teaching–Learning-Based Optimization (TLBO) with the explorative capability of the Cheetah Optimizer (CO). One of the notable contributions of our framework is an in-depth problem formulation that enables SOP locations on both tie and sectionalizing switches with an efficient constraint-handling scheme, preserving topo-logical feasibility through a minimum spanning tree repair scheme. The evolved hTLBO–CO algorithm is systematically validated across IEEE 33-, 69-, and 119-bus test feeders with differential operational scenarios. Results indicate consistent dominance over established metaheuristics (TLBO, CO, PSO, JAYA), showing significant efficiency improvement in power loss minimization, voltage profile enhancement, and convergence rate. Remarkably, in a situation with a large-scale 119-bus power grid, hTLBO–CO registered a significant 50.30% loss reduction in the single-objective reconfiguration-only scheme, beating existing state-of-the-art approaches by over 15 percentage points. These findings, further substantiated by comprehensive statistical and multi-objective analyses, confirm the proposed framework’s superiority, robustness, and scalability, establishing hTLBO–CO as a robust computational tool for the advanced optimization of future distribution networks. Full article
Show Figures

Figure 1

27 pages, 21804 KB  
Article
Analysis and Compensation of Dead-Time Effect in Dual Active Bridge with Asymmetric Duty Cycle
by Pengfei Liu, Shuairan Yu, Ruiyang Zhang, Yanming Cheng and Shaojie Yu
Symmetry 2025, 17(10), 1701; https://doi.org/10.3390/sym17101701 - 10 Oct 2025
Viewed by 844
Abstract
The dead-time effect seriously affects the soft-switching performance and operating efficiency of the dual-active-bridge converter, and also causes problems such as reduced duty cycle, distortion of voltage and current waveforms, and narrowed transmission power range. The proposal of the five-degree-of-freedom modulation strategy transforms [...] Read more.
The dead-time effect seriously affects the soft-switching performance and operating efficiency of the dual-active-bridge converter, and also causes problems such as reduced duty cycle, distortion of voltage and current waveforms, and narrowed transmission power range. The proposal of the five-degree-of-freedom modulation strategy transforms the working voltage waveforms of the primary and secondary sides as well as the inductor current waveform of the DAB converter from symmetric to asymmetric, while the dead-time issue still persists. Based on the five-degree-of-freedom modulation strategy, this paper analyzes the electrical characteristics of the converter before and after the introduction of dead time, designs switch drive pulses to avoid the dead time, and proposes a dead-time compensation modulation strategy based on five-degree-of-freedom phase shift. The results show that the proposed dead-time compensation control strategy can avoid problems such as voltage and current waveform distortion and reduction in the soft-switching power range caused by dead time, realizing dead-time compensation in the full power range. Experimental measurements show that, for different voltage transmission ratios, the maximum efficiency improvement is approximately 3.8–4% and the current stress is reduced by 2.11% to 3.13% under low-power operating conditions. The maximum efficiency improvement is approximately about 1.4–2.8% and the current stress is reduced by 1.84% to 2.53% under high-power operating conditions. Full article
Show Figures

Graphical abstract

15 pages, 3325 KB  
Article
Impact of SiN Passivation on Dynamic-RON Degradation of 100 V p-GaN Gate AlGaN/GaN HEMTs
by Marcello Cioni, Giacomo Cappellini, Giovanni Giorgino, Alessandro Chini, Antonino Parisi, Cristina Miccoli, Maria Eloisa Castagna, Aurore Constant and Ferdinando Iucolano
Electron. Mater. 2025, 6(4), 14; https://doi.org/10.3390/electronicmat6040014 - 7 Oct 2025
Viewed by 1272
Abstract
In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two [...] Read more.
In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two different experimental setups are employed to investigate the RON-drift showing up during conventional switch mode operation by driving the DUTs under both (i) resistive load and (ii) soft-switching trajectory. This allows to discern the impact of hot carriers and off-state drain voltage stress on the RON parameter drift. Measurements performed with both switching loci shows similar dynamic-RON response, indicating that hot carriers are not involved in the degradation of tested devices. Nevertheless, a significant difference was observed between Sample A and Sample B, with the former showing an additional RON-degradation mechanism, not present on the latter. This additional drift is totally ascribed to the SiN passivation layer and is confirmed by the different leakage current measured across the two SiN types. The mechanism is explained by the injection of negative charges from the Source Field-Plate towards the AlGaN surface that are captured by surface/dielectric states and partially depletes the 2DEG underneath. Full article
Show Figures

Figure 1

Back to TopTop