Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (994)

Search Parameters:
Keywords = soft polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 254 KiB  
Editorial
Novel Polymer Gels: Synthesis, Properties, and Applications
by Amin Babaei-Ghazvini
Gels 2025, 11(8), 598; https://doi.org/10.3390/gels11080598 (registering DOI) - 1 Aug 2025
Viewed by 80
Abstract
Polymer gels are a versatile class of soft, semi-solid materials characterized by a three-dimensional cross-linked network that can absorb significant amounts of solvent [...] Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
17 pages, 2519 KiB  
Article
Gel Electrophoresis of an Oil Drop
by Hiroyuki Ohshima
Gels 2025, 11(7), 555; https://doi.org/10.3390/gels11070555 - 18 Jul 2025
Viewed by 279
Abstract
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. [...] Read more.
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. Unlike solid particles, liquid drops exhibit internal fluidity and interfacial dynamics, leading to distinct electrokinetic behavior. In this study, the drop motion is driven by long-range hydrodynamic effects from the surrounding gel, which are treated using the Debye–Bueche–Brinkman continuum framework. A simplified version of the Baygents–Saville theory is adopted, assuming that no ions are present inside the drop and that the surface charge distribution results from linear ion adsorption. An approximate analytical expression is derived for the electrophoretic mobility of the drop under the condition of low zeta potential. Importantly, the derived expression explicitly includes the Marangoni effect, which arises from spatial variations in interfacial tension due to non-uniform ion adsorption. This model provides a physically consistent and mathematically tractable basis for understanding the electrophoretic transport of oil drops in soft porous media such as hydrogels, with potential applications in microfluidics, separation processes, and biomimetic systems. These results also show that the theory could be applied to more complicated or biologically important soft materials. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

38 pages, 5046 KiB  
Review
Photonics on a Budget: Low-Cost Polymer Sensors for a Smarter World
by Muhammad A. Butt
Micromachines 2025, 16(7), 813; https://doi.org/10.3390/mi16070813 - 15 Jul 2025
Viewed by 539
Abstract
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication [...] Read more.
Polymer-based photonic sensors are emerging as cost-effective, scalable alternatives to conventional silicon and glass photonic platforms, offering unique advantages in flexibility, functionality, and manufacturability. This review provides a comprehensive assessment of recent advances in polymer photonic sensing technologies, focusing on material systems, fabrication techniques, device architectures, and application domains. Key polymer materials, including PMMA, SU-8, polyimides, COC, and PDMS, are evaluated for their optical properties, processability, and suitability for integration into sensing platforms. High-throughput fabrication methods such as nanoimprint lithography, soft lithography, roll-to-roll processing, and additive manufacturing are examined for their role in enabling large-area, low-cost device production. Various photonic structures, including planar waveguides, Bragg gratings, photonic crystal slabs, microresonators, and interferometric configurations, are discussed concerning their sensing mechanisms and performance metrics. Practical applications are highlighted in environmental monitoring, biomedical diagnostics, and structural health monitoring. Challenges such as environmental stability, integration with electronic systems, and reproducibility in mass production are critically analyzed. This review also explores future opportunities in hybrid material systems, printable photonics, and wearable sensor arrays. Collectively, these developments position polymer photonic sensors as promising platforms for widespread deployment in smart, connected sensing environments. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

15 pages, 5712 KiB  
Article
Synthesis of Magnetic Nanoparticle/Polymer Matrix Nanocomposites with Induced Magnetic Performance
by Anastasios C. Patsidis, Aikaterini Sanida, Georgia C. Manika, Sevasti Gioti, Georgios N. Mathioudakis, Nicholas Petropoulos, Athanasios Kanapitsas, Christos Tsonos, Thanassis Speliotis and Georgios C. Psarras
Polymers 2025, 17(14), 1913; https://doi.org/10.3390/polym17141913 - 10 Jul 2025
Viewed by 403
Abstract
In this work magnetic nanoparticles (Fe3O4, or ZnFe2O4, or SrFe12O19) and BaTiO3 microparticles were embedded in an epoxy resin for the synthesis of three series of hybrid magnetic polymer nanocomposites. [...] Read more.
In this work magnetic nanoparticles (Fe3O4, or ZnFe2O4, or SrFe12O19) and BaTiO3 microparticles were embedded in an epoxy resin for the synthesis of three series of hybrid magnetic polymer nanocomposites. Barium titanate content was kept constant, while magnetic phase content was varied. Fabricated specimens were structurally and morphologically characterized by employing scanning electron microscopy images and X-ray diffraction patterns. Results implied successful synthesis of the hybrid nanocomposites. The magnetic behavior of the pure magnetic nanoparticles and the fabricated nanocomposites was investigated via a Vibrating Sample Magnetometer. The magnetic performance of each type of magnetic phase (i.e., soft and hard) was induced in the nanocomposites, and magnetic performance is strengthened with the increase in magnetic phase content. Initial magnetization curves were used for the determination of mass magnetic susceptibility of all nanocomposites. Magnetic saturation and magnetic remanence have been found to follow a linear relationship with magnetic phase content, giving the opportunity to predict the system’s response in advance. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Graphical abstract

15 pages, 4106 KiB  
Article
Effect of Alumina Microparticle-Infused Polymer Matrix on Mechanical Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite
by Ganesh Radhakrishnan, Teodora Odett Breaz, Abdul Hamed Hamed Al Hinai, Fisal Hamed Al Busaidi, Laqman Malik Al Sheriqi, Mohammed Ali Al Hattali, Mohammed Ibrahim Al Rawahi, Mohammed Nasser Al Rabaani and Kadhavoor R. Karthikeyan
J. Compos. Sci. 2025, 9(7), 360; https://doi.org/10.3390/jcs9070360 - 10 Jul 2025
Viewed by 311
Abstract
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the [...] Read more.
In recent times, fiber reinforced polymer composite materials have become more popular due to their remarkable features such as high specific strength, high stiffness and durability. Particularly, Carbon Fiber Reinforced Polymer (CFRP) composites are one of the most prominent materials used in the field of transportation and building engineering, replacing conventional materials due to their attractive properties as mentioned. In this work, a CFRP laminate is fabricated with carbon fiber mats and epoxy by a hand layup technique. Alumina (Al2O3) micro particles are used as a filler material, mixed with epoxy at different weight fractions of 0% to 4% during the fabrication of CFRP laminates. The important objective of the study is to investigate the influence of alumina micro particles on the mechanical performance of the laminates through characterization for various physical and mechanical properties. It is revealed from the results of study that the mass density of the laminates steadily increased with the quantity of alumina micro particles added and subsequently, the porosity of the laminates is reduced significantly. The SEM micrograph confirmed the constituents of the laminate and uniform distribution of Al2O3 micro particles with no significant agglomeration. The hardness of the CFRP laminates increased significantly for about 60% with an increase in weight % of Al2O3 from 0% to 4%, whereas the water gain % gradually drops from 0 to 2%, after which a substantial rise is observed for 3 to 4%. The improved interlocking due to the addition of filler material reduced the voids in the interfaces and thereby resist the absorption of water and in turn reduced the plasticity of the resin too. Tensile, flexural and inter-laminar shear strengths of the CFRP laminate were improved appreciably with the addition of alumina particles through extended grain boundary and enhanced interfacial bonding between the fibers, epoxy and alumina particles, except at 1 and 3 wt.% of Al2O3, which may be due to the pooling of alumina particles within the matrix. Inclusion of hard alumina particles resulted in a significant drop in impact strength due to appreciable reduction in softness of the core region of the laminates. Full article
Show Figures

Figure 1

20 pages, 1816 KiB  
Review
Recent Achievements of Epicardial Patch Electronics Using Adhesive and Conductive Hydrogels
by Su Hyeon Lee, Jong Won Lee, Daehyeon Kim, Gi Doo Cha and Sung-Hyuk Sunwoo
Gels 2025, 11(7), 530; https://doi.org/10.3390/gels11070530 - 9 Jul 2025
Viewed by 404
Abstract
Implantable cardiac devices are critical in improving patients’ quality of life through precise and continuous interaction between the device and pathological cardiac tissue. Due to the inherently rigid nature of conventional devices, several complications arise when interacting with soft cardiac tissue, caused by [...] Read more.
Implantable cardiac devices are critical in improving patients’ quality of life through precise and continuous interaction between the device and pathological cardiac tissue. Due to the inherently rigid nature of conventional devices, several complications arise when interacting with soft cardiac tissue, caused by a mechanical mismatch between the device and myocardium. This leads to the excessive formation of fibrous tissue around the implanted device, ultimately compromising both device functionality and tissue health. To address these challenges, flexible electronics based on polymers and elastomers significantly softer than conventional rigid metals and silicon have been explored. The epicardial approach enables the device to conform to the curved myocardial surface and deform synchronously with cardiac motion, thereby improving mechanical compatibility. However, modulus mismatches between soft polymers and cardiac tissue can still lead to mechanical instability and non-uniform adhesion, potentially affecting long-term performance. This review comprehensively summarizes recent research advancements in epicardial patch electronics based on bioadhesive and conductive hydrogels. We emphasize current research directions, highlighting the potential of hydrogels in epicardial electronics applications. Critical discussion includes recent trends, ongoing challenges, and emerging strategies aimed at improving the properties of hydrogel-based epicardial patches. Future research directions to facilitate clinical translation are also outlined. Full article
(This article belongs to the Special Issue Novel Gels for Biomedical Applications)
Show Figures

Figure 1

33 pages, 3171 KiB  
Review
Environmentally Responsive Hydrogels and Composites Containing Hydrogels as Water-Based Lubricants
by Song Chen, Zumin Wu, Lei Wei, Xiuqin Bai, Chengqing Yuan, Zhiwei Guo and Ying Yang
Gels 2025, 11(7), 526; https://doi.org/10.3390/gels11070526 - 7 Jul 2025
Viewed by 467
Abstract
Both biosystems and engineering fields demand advanced friction-reducing and lubricating materials. Due to their hydrophilicity and tissue-mimicking properties, hydrogels are ideal candidates for use as lubricants in water-based environments. They are particularly well-suited for applications involving biocompatibility or interactions with intelligent devices such [...] Read more.
Both biosystems and engineering fields demand advanced friction-reducing and lubricating materials. Due to their hydrophilicity and tissue-mimicking properties, hydrogels are ideal candidates for use as lubricants in water-based environments. They are particularly well-suited for applications involving biocompatibility or interactions with intelligent devices such as soft robots. However, external environments, whether within the human body or in engineering applications, often present a wide range of dynamic conditions, including variations in shear stress, temperature, light, pH, and electric fields. Additionally, hydrogels inherently possess low mechanical strength, and their dimensional stability can be compromised by changes during hydration. This review focuses on recent advancements in using environmentally responsive hydrogels as lubricants. It explores strategies involving physical or structural modifications, as well as the incorporation of smart chemical functional groups into hydrogel polymer chains, which enable diverse responsive mechanisms. Drawing on both the existing literature and our own research, we also examine how composite friction materials where hydrogels serve as water-based lubricants offer promising solutions for demanding engineering environments, such as bearing systems in marine vessels. Full article
(This article belongs to the Special Issue Smart Hydrogels in Engineering and Biomedical Applications)
Show Figures

Figure 1

18 pages, 2880 KiB  
Article
Novel Magnetically Charged Grafts for Vascular Repair: Process Optimization, Mechanical Characterization and In Vitro Validation
by Iriczalli Cruz-Maya, Roberto De Santis, Luciano Lanotte and Vincenzo Guarino
Polymers 2025, 17(13), 1877; https://doi.org/10.3390/polym17131877 - 5 Jul 2025
Viewed by 481
Abstract
In the last decade, magnetic nanoparticles (MNPs) have attracted much attention for the implementation of non-invasive approaches suitable for the diagnosis and treatment of vascular diseases. In this work, the optimization of novel vascular grafts loaded with Nickel-based nanoparticles via electrospinning is proposed. [...] Read more.
In the last decade, magnetic nanoparticles (MNPs) have attracted much attention for the implementation of non-invasive approaches suitable for the diagnosis and treatment of vascular diseases. In this work, the optimization of novel vascular grafts loaded with Nickel-based nanoparticles via electrospinning is proposed. Two different polycarbonate urethanes—i.e., Corethane A80 (COT) and Chronoflex AL80 (CHF)—were used to fabricate 3D electrospun nanocomposite grafts. SEM analysis showed a homogeneous distribution of fibers, with slight differences in terms of average diameters as a function of the polymer used—(1.14 ± 0.18) µm for COT, and (1.33 ± 0.23) µm for CHF—that tend to disappear in the presence of MNPs—(1.26 ± 0.19) µm and (1.26 ± 0.213) µm for COT/NPs and CHF/NPs, respectively. TGA analyses confirmed the higher ability of CHF to entrap MNPs in the fibers—18.25% with respect to 14.63% for COT—while DSC analyses suggested an effect of MNPs on short-range rearrangements of hard/soft micro-domains of CHF. Accordingly, mechanical tests confirmed a decay of mechanical strength in the presence of MNPs with some differences depending on the matrix—from (6.16 ± 0.33) MPa to (4.55 ± 0.2) MPa (COT), and from (3.67 ± 0.18) MPa to (2.97 ± 0.22) MPa (CNF). The in vitro response revealed that the presence of MNPs did not negatively affect cell viability after 7 days in in vitro culture, suggesting a promising use of these materials as smart vascular grafts able to support the actuation function of vessel wall muscles. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 2586 KiB  
Communication
Full-Factorial Rheological Investigation of Carbopol ETD2020 for Embedded Printing: Effects of pH and Carbomer Concentration
by Tobias Biermann, Lennart Mesecke, Simon Teves, Ivo Ziesche and Roland Lachmayer
Materials 2025, 18(13), 3164; https://doi.org/10.3390/ma18133164 - 3 Jul 2025
Viewed by 378
Abstract
Embedded printing of soft materials relies on yield-stress support matrices to prevent sagging and enable freeform fabrication. The rheological parameters of the matrix material directly influence critical printing outcomes such as strand positioning, cavity formation, structural stability, and defect suppression in embedded printing. [...] Read more.
Embedded printing of soft materials relies on yield-stress support matrices to prevent sagging and enable freeform fabrication. The rheological parameters of the matrix material directly influence critical printing outcomes such as strand positioning, cavity formation, structural stability, and defect suppression in embedded printing. Despite widespread use of Carbopol® formulations, a systematic rheological characterization of ETD2020 across relevant polymer concentrations and pH levels for embedded printing is lacking. Here, we implement a full-factorial design with polymer concentrations from 0.1wt% to 0.9wt% and triethanolamine dosages of 30–50µL per 100g. Steady-shear (0.001200s1) and oscillatory (1Hz) rheometry yielded Herschel–Bulkley parameters τy, k, n as well as storage and loss modulus G/G. All formulations exhibited pronounced shear-thinning, with τy increasing nonlinearly from <1Pa to 41.1Pa and G reaching 400Pa at 0.9wt%. A five-hour window of invariant rheology was identified, followed by a Δτy10Pa increase after five days, indicating delayed polymerization. The comprehensive material characterization defines a rheological window for ETD2020 and facilitates simulation-based modeling and the targeted tuning of matrix properties. Heatmaps provide an interpolated depiction of combined carbomer and triethanolamine concentrations, enabling tunable support matrices for embedded printing. Full article
(This article belongs to the Special Issue Novel Materials for Additive Manufacturing)
Show Figures

Figure 1

19 pages, 11146 KiB  
Article
Effect of Build Orientation on Surface Finish and Hydrodynamic Stability of Inkjet 3D-Printed Microfluidic Channels
by Emanuela Cutuli, Lorena Saitta, Nunzio Tuccitto, Gianluca Cicala and Maide Bucolo
Polymers 2025, 17(13), 1864; https://doi.org/10.3390/polym17131864 - 3 Jul 2025
Viewed by 374
Abstract
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed [...] Read more.
This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed in two orientations: along XY (Dev-1) and across YX (Dev-2) the printhead direction. Next, the surface finish was characterized using a profilometer to acquire the primary profile of the surface along the microchannel’s edge. The results indicated that the build orientation had a strong influence on the latter, since Dev-1 displayed a tall and narrow Gaussian distribution for a channel width of 398.43 ± 0.29 µm; Dev-2 presented a slightly lower value of 393.74 ± 1.67 µm, characterized by a flat and broader distribution, highlighting greater variability due to more disruptive, orthogonally oriented, and striated patterns. These results were also confirmed by hydrodynamically testing the two MoF devices with an air–water slug flow process. A large experimental study was conducted by analyzing the mean period trend in the slug flow with respect to the imposed flow rate and build orientation. Dev-1 showed greater sensitivity to flow rate changes, attributed to its smoother, more consistent microchannel geometry. The slightly narrower average channel width in Dev-2 contributed to increased flow velocity at the expense of having worse discrimination capability at different flow rates. This study is relevant for optimizing 3D-printing strategies for the fabrication of high-performance microfluidic devices, where precise flow control is essential for applications in biomedical engineering, chemical processing, and lab-on-a-chip systems. These findings highlight the effect of microchannel morphology in tuning a system’s sensitivity to flow rate modulation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

56 pages, 16805 KiB  
Review
Lightweight Textile and Fiber-Reinforced Composites for Soft Body Armor (SBA): Advances in Panel Design, Materials, and Testing Standards
by Mohammed Islam Tamjid, Mulat Alubel Abtew and Caroline Kopot
J. Compos. Sci. 2025, 9(7), 337; https://doi.org/10.3390/jcs9070337 - 28 Jun 2025
Viewed by 741
Abstract
Soft body armor (SBA) remains an essential component of first responder protection. However, most SBA design concepts do not adequately address the unique performance, morphological, and psychological needs of women as first responders. In this review, female-specific designs of ballistic-resistant panels, material systems, [...] Read more.
Soft body armor (SBA) remains an essential component of first responder protection. However, most SBA design concepts do not adequately address the unique performance, morphological, and psychological needs of women as first responders. In this review, female-specific designs of ballistic-resistant panels, material systems, and SBA performance testing are critically examined. The paper also explores innovations in shaping and design techniques, including darting, dartless shape construction, modular assembly, and body scanning with CAD integration to create contoured and structurally stable panels with improved coverage, reduced bulk, and greater mobility. In addition, the review addresses broadly used and emerging dry textile fabrics and fiber-reinforced polymers, considering various innovations, such as 3D warp interlock weave, shear thickening fluid (STF) coating, nanomaterials, and smart composites that improve energy dissipation and impact tolerance without sacrificing flexibility. In addition, the paper also examines various emerging ballistic performance testing standards and their revisions to incorporate gender-specific standards and measures their ability to decrease trauma effects and maintain flexibility and practical protection. Finally, it identifies existing challenges and areas of future research, such as optimizing multi-layer systems, addressing fatigue behavior, and improving multi-angle and low-velocity impact performance while providing avenues for future sustainable, adaptive, and performance-optimized body armor. Full article
Show Figures

Figure 1

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 408
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

18 pages, 2992 KiB  
Article
The Influence of Concentration and Type of Salts on the Behaviour of Linear Actuators Based on PVA Hydrogel Activated by AC Power
by Aleksey Maksimkin, Mikhail Zadorozhnyy, Kseniia V. Filippova, Lidiia D. Iudina, Dmitry V. Telyshev and Tarek Dayyoub
Gels 2025, 11(7), 484; https://doi.org/10.3390/gels11070484 - 23 Jun 2025
Viewed by 758
Abstract
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. [...] Read more.
The creation of quick-reacting electrically conductive polymers for use as actuators driven by low electrical currents is now seen as an important issue. Enhancing the electrical conductivity of hydrogels through the incorporation of conductive fillers, like salts, can reduce the necessary actuating voltage. However, several important questions arise about how the type of salt chosen and its concentration will affect not only the activation efficiency of the actuators but also the structure of the hydrogels utilized. In this study, to enhance the electrical conductivity of the hydrogel and lower the necessary activation voltage of the hydrogel actuators, lithium chloride (LiCl) and sodium chloride (NaCl) were incorporated as conductive fillers into the polyvinyl alcohol (PVA) polymer matrix. To determine the deformation of actuators, as well as the activation and relaxation times and efficiencies during activation, linear actuators capable of being activated through extension/contraction (swelling/shrinking) cycles were developed and examined based on the LiCl/NaCl content, applied voltage, and frequency. The main finding is that the required actuating voltage was lowered by up to 20 V by adding an equal mass of salt in relation to the PVA mass content. With a load of around 20 kPa, it was observed that the extension deformation for PVA/NaCl-based actuators can achieve 75%, while in contraction deformation, can reach 17%. Additionally, for the PVA/LiCl-based actuators, the extension deformation can reach 87%, while during contraction deformation, it can reach 22%. The degree of swelling in the PVA/NaCl hydrogels was generally less than that in the PVA/LiCl hydrogels, which was associated with the finding that the actuators prepared from PVA/NaCl hydrogels delivered an output that was 10–15% lower than those made from PVA/LiCl hydrogels across different testing cycles. Furthermore, adding salt increases the degree of crosslinking, which can explain why increased crosslinking leads to reduced deformation when exposed to AC voltage. These actuators can find extensive use in soft robotics, artificial muscles, medical applications, and aerospace industries. Full article
Show Figures

Figure 1

19 pages, 997 KiB  
Review
A Review of Bio-Inspired Actuators and Their Potential for Adaptive Vehicle Control
by Vikram Mittal, Michael Lotwin and Rajesh Shah
Actuators 2025, 14(7), 303; https://doi.org/10.3390/act14070303 - 20 Jun 2025
Viewed by 1614
Abstract
Adaptive vehicle control systems are crucial for enhancing safety, performance, and efficiency in modern transportation, particularly as vehicles become increasingly automated and responsive to dynamic environments. This review explores the advancements in bio-inspired actuators and their potential applications in adaptive vehicle control systems. [...] Read more.
Adaptive vehicle control systems are crucial for enhancing safety, performance, and efficiency in modern transportation, particularly as vehicles become increasingly automated and responsive to dynamic environments. This review explores the advancements in bio-inspired actuators and their potential applications in adaptive vehicle control systems. Bio-inspired actuators, which mimic natural mechanisms such as muscle movement and plant tropism, offer unique advantages, including flexibility, adaptability, and energy efficiency. This paper categorizes these actuators based on their mechanisms, focusing on shape memory alloys, dielectric elastomers, ionic polymer–metal composites, polyvinylidene fluoride-based electrostrictive actuators, and soft pneumatic actuators. The review highlights the properties, operating principles, and potential applications for each mechanism in automotive systems. Additionally, it investigates the current uses of these actuators in adaptive suspension, active steering, braking systems, and human–machine interfaces for autonomous vehicles. The review further outlines the advantages of bio-inspired actuators, including their energy efficiency and adaptability to road conditions, while addressing key challenges like material limitations, response times, and integration with existing automotive control systems. Finally, this paper discusses future directions, including the integration of bio-inspired actuators with machine learning and advancements in material science, to enable more efficient and responsive adaptive vehicle control systems. Full article
Show Figures

Figure 1

19 pages, 487 KiB  
Review
Evolution of Thread Lifting: Advancing Toward Bioactive Polymers and Sustained Hyaluronic Acid Delivery
by Pavel Burko and Ilias Miltiadis
Cosmetics 2025, 12(3), 127; https://doi.org/10.3390/cosmetics12030127 - 18 Jun 2025
Viewed by 1034
Abstract
Facial aging is a multifactorial and stratified biological process characterized by progressive morphological and biochemical alterations affecting both cutaneous (Layer I) and subcutaneous (Layer II) tissues. These age-related changes manifest clinically as volume depletion, tissue ptosis, and a decline in overall skin quality. [...] Read more.
Facial aging is a multifactorial and stratified biological process characterized by progressive morphological and biochemical alterations affecting both cutaneous (Layer I) and subcutaneous (Layer II) tissues. These age-related changes manifest clinically as volume depletion, tissue ptosis, and a decline in overall skin quality. In response to these phenomena, thread lifting techniques have evolved significantly—from simple mechanical suspension methods to sophisticated bioactive platforms. Contemporary threads now incorporate biocompatible polymers and hyaluronic acid (HA), aiming not only to reposition soft tissues but also to promote dermal regeneration. This review provides a comprehensive classification and critical assessment of thread lifting materials, focusing on their chemical composition, mechanical performance, degradation kinetics, and biostimulatory potential. Particular emphasis has been given to the surface integration of HA into monofilament threads, especially with the emergence of advanced delivery systems such as NAMICA, which facilitate sustained HA release. Advanced thread materials, especially those fabricated from poly(L-lactide-co-ε-caprolactone) [P(LA/CL)], demonstrate both tensile support and regenerative efficacy. Emerging HA-covered threads exhibit synergistic bioactivity, stimulating skin remodeling. NAMICA technology represents an advancement in the field, in which HA is encapsulated within biodegradable polymer fibers to enable gradual release and enhanced dermal integration. Nonetheless, well-designed human studies are still needed to substantiate its therapeutic efficacy. Consequently, the paradigm of thread lifting is shifting from purely mechanical interventions toward biologically active systems that promote comprehensive ECM regeneration. The integration of HA into resorbable threads, especially when combined with sustained-release technologies, represents a meaningful innovation in aesthetic dermatology, meriting further preclinical and clinical evaluation. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

Back to TopTop