Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,246)

Search Parameters:
Keywords = sodium hydroxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1014 KiB  
Article
Antimicrobial Activity of Ethyl (2-(Methylcarbamoyl)phenyl)carbamate and Its Mixed Ligand Ni(II) and Co(II) Complexes
by Slava Tsoneva, Miglena Milusheva, Nikola Burdzhiev, Petya Marinova, Evelina Varbanova, Yulian Tumbarski, Rositsa Mihaylova, Emiliya Cherneva and Stoyanka Nikolova
Inorganics 2025, 13(8), 267; https://doi.org/10.3390/inorganics13080267 - 14 Aug 2025
Viewed by 64
Abstract
The aim of this paper is to obtain ethyl (2-(methylcarbamoyl)phenyl)carbamate and its metal complexes as promising antimicrobial agents. The title compound was synthesized using the ring-opening of isatoic anhydride with methylamine and further acylation with ethyl chloroformate. All metal complexes were successfully obtained [...] Read more.
The aim of this paper is to obtain ethyl (2-(methylcarbamoyl)phenyl)carbamate and its metal complexes as promising antimicrobial agents. The title compound was synthesized using the ring-opening of isatoic anhydride with methylamine and further acylation with ethyl chloroformate. All metal complexes were successfully obtained after mixing the ligand dissolved in DMSO and water solutions of the corresponding metal salts and sodium hydroxide, in a metal-to-ligand-to base ratio 1:2:2. As a result, mixed ligand complexes of ethyl 2-(methylcarbamoyl)phenyl)carbamate and 3-methylquinazoline-2,4(1H,3H)-dione were obtained. The obtained complexes were characterized by their melting points, FTIR, NMR spectroscopy, and MP-AES. Then, the antimicrobial effect of the compounds against both Gram-negative and Gram-positive bacteria, yeasts, and fungi was studied. Only the Co(II) complex showed antimicrobial activity against almost all Gram-positive and Gram-negative bacteria. The cobalt complex exhibited promising antimicrobial activity against Gram-positive Micrococcus luteus with inhibition zones of 20 mm, Listeria monocytogenes (15 mm), Staphylococcus aureus (13 mm), as well as Gram-negative Klebsiella pneumoniae (13 mm) and Proteus vulgaris (13 mm). Given the potential of metal complexes as antimicrobial agents, understanding their cytotoxic effects is crucial for evaluating their therapeutic safety. To assess the in vitro biocompatibility of the experimental compounds, a range of cell viability assays was conducted using human malignant leukemic cell lines (LAMA-84, K-562) and normal murine fibroblast cells (CCL-1). The Ni(II) complex shows IC50 = 105.1 µM against human malignant leukemic cell lines LAMA-84. Based on the reported results, it may be concluded that the mixed cobalt complex of 2-(methylcarbamoyl)phenyl)carbamate and 3-methylquinazoline-2,4(1H,3H)-dione can be attributed as a promising antimicrobial agent. Future in vivo tests will contribute to establishing the antimicrobial properties of this complex. Full article
Show Figures

Figure 1

17 pages, 3838 KiB  
Article
Mix Design Optimization of Coal Gangue-Based Geopolymer Foamed Concrete Using Response Surface Methodology
by Dan Wang, Wendong Shan, Rongjie Li, Zhiqiang Song and Lanhui Guo
Materials 2025, 18(16), 3801; https://doi.org/10.3390/ma18163801 - 13 Aug 2025
Viewed by 229
Abstract
This study develops a novel geopolymer foamed concrete using coal gangue and slag as precursors, along with a composite alkali activator comprising sodium silicate and sodium hydroxide, based on the physical foaming method. The Box–Behnken Design within Response Surface Methodology was applied to [...] Read more.
This study develops a novel geopolymer foamed concrete using coal gangue and slag as precursors, along with a composite alkali activator comprising sodium silicate and sodium hydroxide, based on the physical foaming method. The Box–Behnken Design within Response Surface Methodology was applied to optimize the mix proportions of coal gangue–slag-based geopolymer foamed concrete. The effects of alkali activator dosage, sodium silicate modulus, water-to-binder ratio, and foam content on 28-day compressive strength and thermal conductivity were systematically investigated to determine the optimal mix for achieving a balance between mechanical and thermal performance. Scanning Electron Microscopy and other characterization techniques were used to analyze the microstructural features. The results show that foam content has the most significant influence on both mechanical and thermal performance, while the interaction between sodium silicate modulus and foam content exhibits the most pronounced combined effect. The optimized mix design consists of 9.1% alkali activator dosage, a sodium silicate modulus of 1.07, a water-to-binder ratio of 0.44, and foam content of 50%, resulting in a 28-day compressive strength of 2.30 MPa and thermal conductivity of 0.0781 W/(m·K). The observed performance enhancement is primarily attributed to the increased heterogeneity in the pore structure. This study provides theoretical and technical support for the development of integrated thermal insulation and load-bearing wall materials suitable for severely cold regions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 2170 KiB  
Article
VVX001 Induces preS-Specific Antibodies Reacting to Common HBV Genotypes in Hepatitis B Virus (HBV) Carrier Mice
by Inna Tulaeva, Maryline Bourgine, Carolin Cornelius-Nikl, Alexander Karaulov, Rainer Henning, Marie-Louise Michel and Rudolf Valenta
Vaccines 2025, 13(8), 854; https://doi.org/10.3390/vaccines13080854 - 12 Aug 2025
Viewed by 244
Abstract
Background: Chronic hepatitis B (CHB) remains being a major public health threat, and currently existing CHB therapies have limited efficacy and side effects. We have recently developed a vaccine termed VVX001 based on a recombinant fusion protein consisting of the preS domain [...] Read more.
Background: Chronic hepatitis B (CHB) remains being a major public health threat, and currently existing CHB therapies have limited efficacy and side effects. We have recently developed a vaccine termed VVX001 based on a recombinant fusion protein consisting of the preS domain of the large surface protein of hepatitis B virus (HBV) fused to grass pollen allergen peptides. VVX001 has been shown to induce preS-specific antibodies in grass pollen allergic patients, and sera of immunized subjects inhibited HBV infection in vitro. Methods: In this study we investigated if immunization with VVX001 can induce preS-specific antibodies in CHB using the adeno-associated virus (AAV)-HBV murine model of CHB. Six groups of C57BL/6 female mice (n = 6) were transduced with AAV-HBV or AAV-Empty, and after six weeks, they were immunized five times with 20 µg of aluminum hydroxide-adsorbed VVX001 or preS or vehicle (Alum alone). Serum samples were taken continuously. Two weeks after the last immunization, spleen and liver mononuclear cells were collected. Serum reactivity to preS and preS-derived peptides was assessed by ELISA. B-cell responses were measured by ELISPOT assay, and intrahepatic lymphocyte (ILH) counts were determined by FACS. HBV DNA, HBsAg, HBeAg, ALT, and AST were assessed using commercial kits. Results: Our results show that VVX001 induces preS-specific IgG antibodies that cross-react with different HBV genotypes A-H and are directed against the sodium taurocholate co-transporting polypeptide (NTCP) receptor binding site of preS both in mice with and without HBV. Actively immunized AAV-HBV-treated mice had a higher number of intrahepatic lymphocytes than vehicle-vaccinated and mock-transduced animals. Conclusions: These findings encourage performing further trials to study the potential of VVX001 for therapeutic vaccination against CHB. Full article
(This article belongs to the Special Issue Role of Next Generation Vaccines in Immunotherapeutics)
Show Figures

Figure 1

20 pages, 4457 KiB  
Article
The Mechanical Reinforcing Mechanism and Self-Healing Properties of Biomimetic Hybrid Cement Composites via In-Situ Polymerization
by Wenhui Bao, Jian Zhao, Bumin Guo, Shuan Li, Jinwei Shen, Mengyuan Liu, Jingmin Han, Susu Xing, Miaomiao Hu and Jintang Guo
Materials 2025, 18(16), 3763; https://doi.org/10.3390/ma18163763 - 11 Aug 2025
Viewed by 304
Abstract
Addressing the inherent brittleness of cement to mitigate infrastructure failures stemming from cracking is imperative. To accomplish both early crack resistance and subsequent self-healing capabilities, a biomimetic microstructure composed of a sodium polyacrylate (CSPA) network interwoven with hydration products was developed. The calcium-enriched [...] Read more.
Addressing the inherent brittleness of cement to mitigate infrastructure failures stemming from cracking is imperative. To accomplish both early crack resistance and subsequent self-healing capabilities, a biomimetic microstructure composed of a sodium polyacrylate (CSPA) network interwoven with hydration products was developed. The calcium-enriched polymer network formed via in situ polymerization of sodium acrylate (ANa) can enhance the mechanical properties of cement and achieve efficient self-healing of cracks. The porous structure of sodium polyacrylate (PANa) formed in pore solution at room temperature to simulate cement hydration conditions was observed by scanning electron microscopy (SEM). Feature peaks found by Fourier transform infrared (FTIR) spectroscopy as well as confocal Raman microscopy (CRM) suggested that ANa was polymerized successfully. Notably, CSPA samples demonstrated a remarkable 104% increase in flexural strength, attributed to the efficient transmission and dissipation of external forces along the polymer network embedded within the cement matrix. Additionally, after a 28-day hydration, CSPA specimens exhibited enhanced compressive strength compared to blank cement samples. This enhancement stems from the formation of a uniform polymer network, which effectively decreased the porosity and densified the microstructure of cement. Moreover, this organic–inorganic hybrid structure contributes to efficient crack healing, as the calcium-rich polymer network binds calcium ions and promotes the generation of healing products. The healing products consist of calcium hydroxide (CH), CaCO3 (aragonite), C-S-H (calcium–silicate–hydrate), and PANa. Full article
Show Figures

Figure 1

18 pages, 3280 KiB  
Article
Preparation of Agrowaste-Based Nanocellulose by NaOH-Assisted Ball Milling Technique: Influence of Component Intervention
by Yuxi Wang, Yong Yu, Shuhan Hu, Jinyao Yu, Yue Huang and Hongjie Dai
Gels 2025, 11(8), 631; https://doi.org/10.3390/gels11080631 - 11 Aug 2025
Viewed by 184
Abstract
Pineapple peel cellulose nanofibrils (PCNFs) were facilely prepared by the ball milling method assisted by alkali solution (3 wt% NaOH) and a wet grinding medium, using various treated pineapple peels (hot water treatment (WT), bleaching treatment (BT), alkaline treatment (AT), and baleaching–alkaline treatment [...] Read more.
Pineapple peel cellulose nanofibrils (PCNFs) were facilely prepared by the ball milling method assisted by alkali solution (3 wt% NaOH) and a wet grinding medium, using various treated pineapple peels (hot water treatment (WT), bleaching treatment (BT), alkaline treatment (AT), and baleaching–alkaline treatment (ABT)) as raw materials. The structure of the obtained PCNFs (i.e., WT-PCNF, BT-PCNF, AT-PCNF, and ABT-PCNF) was characterized to analyze the influence of component intervention. The results indicated that NaOH-assisted ball milling did not change the crystal structure of cellulose, and the yield and thermal stability of the PCNFs was improved. The average diameters of WT-PCNF, BT-PCNF, AT-PCNF, and ABT-PCNF were 24.16, 21.53, 23.04, and 19.46 nm, respectively, in which BT-PCNF and ABT-PCNF exhibited a higher defibrillating degree and smaller diameter. Particularly, NaOH-assisted ball milling can promote the removal of non-cellulose components. The viscosity and modulus of BT-PCNF were relatively higher due to the presence of residual hemicellulose as a natural linker of fibers. The current research provides insights for simplifying the preparation and functionalization of nanocellulose. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

28 pages, 6430 KiB  
Article
AHP-Based Evaluation of Hybrid Kenaf/Flax/Glass Fiber-Reinforced Biocomposites for Unmanned Maritime Vehicle Applications
by Yang Huang, Mohamed Thariq Hameed Sultan, Andrzej Łukaszewicz, Farah Syazwani Shahar and Zbigniew Oksiuta
Materials 2025, 18(16), 3731; https://doi.org/10.3390/ma18163731 - 8 Aug 2025
Viewed by 393
Abstract
Unmanned maritime vehicles (UMVs) have become essential tools in marine research and monitoring, significantly enhancing operational efficiency and reducing risks and costs. Fiber-reinforced composites have been widely used in marine applications due to their excellent characteristics. However, environmental concerns and the pursuit of [...] Read more.
Unmanned maritime vehicles (UMVs) have become essential tools in marine research and monitoring, significantly enhancing operational efficiency and reducing risks and costs. Fiber-reinforced composites have been widely used in marine applications due to their excellent characteristics. However, environmental concerns and the pursuit of sustainable development goals have driven the development of environmentally friendly materials. The development of eco-friendly biocomposites for UMV construction can effectively reduce the environmental impact of marine equipment. This study investigates the effects of seawater aging on kenaf/flax/glass-fiber-reinforced composites under artificial seawater conditions and determines their ranking for UMVs using the Analytic Hierarchy Process (AHP). These hybrid composites, fabricated with various stacking sequences, were prepared using a combination of hand lay-up and vacuum bagging techniques. All plant fibers underwent sodium hydroxide treatment to eliminate impurities and enhance interfacial bonding, while nano-silica was incorporated into the epoxy matrix to improve overall performance. After 50 days of immersion in artificial seawater, mechanical tests were conducted to evaluate the extent of changes in mechanical properties. Subsequently, the AHP analysis was performed based on three main criteria and thirteen sub-criteria to determine the most suitable configuration for marine applications. The results demonstrate that the stacking sequence plays a critical role in resisting seawater-induced degradation and maintaining mechanical performance. GKFKG exhibited the highest retention rates for both tensile strength (86.77%) and flexural strength (88.36%). Furthermore, the global priority vector derived from the AHP analysis indicates that hybrid composites consisting of kenaf, flax, and glass fibers consistently ranked highest. The optimum configuration among these hybrid composites was determined to be GKFKG, followed by GFKFG, GKKKG, and GKGKG. Full article
(This article belongs to the Special Issue Modeling and Optimization of Material Properties and Characteristics)
Show Figures

Figure 1

17 pages, 1959 KiB  
Article
Achieving Optimum Compressive Strength for Geopolymers Manufactured at Both Low and High Si:Al Values
by Arie van Riessen, Evan Jamieson, Hendrik Gildenhuys, Jarrad Allery and Ramon Skane
Buildings 2025, 15(16), 2822; https://doi.org/10.3390/buildings15162822 - 8 Aug 2025
Viewed by 144
Abstract
Numerous researchers have successfully made alkali-activated material or geopolymer using fly ash, ground granulated blast furnace slag, or metakaolin, either individually or in combination. However, few researchers first determined the reactive Si:Al of their solid precursor and then used this information to develop [...] Read more.
Numerous researchers have successfully made alkali-activated material or geopolymer using fly ash, ground granulated blast furnace slag, or metakaolin, either individually or in combination. However, few researchers first determined the reactive Si:Al of their solid precursor and then used this information to develop a formulation with a specific targeted Si:Al for their alkali-activated material. Even if a targeted Si:Al is chosen, few researchers check if the actual Si:Al of the geopolymer matches the targeted values. Characterisation of the precursor, setting target Si:Al values for the geopolymer and verifying target Si:Al values are present in the geopolymer are all part of quality control and essential if high quality products are to be manufactured. Quality control is critical but does not provide the target Si:Al value. This work presents results from a range of geopolymers made with different Si:Al values using sodium aluminate, sodium hydroxide and sodium silicate, either by themselves or in combination. Results reveal, surprisingly, for samples tested, that compressive strength exhibits a maximum for samples with Si:Al less than and greater than the starting Si:Al of the precursor. A strength minimum was found to be present close to the starting Si:Al of the precursor and between the strength maxima. This new information extends the usability range of aluminosilicate precursors and at the same time, makes available a broader range of applications based on Si:Al. Selection of an optimum Si:Al for a geopolymer based on strength can only be made when first a complete spectrum of Si:Al ratios have been evaluated. Full article
Show Figures

Figure 1

14 pages, 4543 KiB  
Article
Tuning Corn Zein-Chitosan Biocomposites via Mild Alkaline Treatment: Structural and Physicochemical Property Insights
by Nagireddy Poluri, Creston Singer, David Salas-de la Cruz and Xiao Hu
Polymers 2025, 17(15), 2161; https://doi.org/10.3390/polym17152161 - 7 Aug 2025
Viewed by 240
Abstract
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning [...] Read more.
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Both untreated and sodium hydroxide (NaOH)-treated films were evaluated to assess changes in physicochemical properties. FTIR analysis revealed that NaOH treatment promoted deprotonation of chitosan’s amine groups, partial removal of ionic residues, and increased deacetylation, collectively enhancing hydrogen bonding and resulting in a denser molecular network. Simultaneously, partial unfolding of zein’s α-helical structures improved conformational flexibility and strengthened interactions with chitosan. These molecular-level changes led to improved thermal stability, reduced degradation, and the development of porous microstructures. Controlled NaOH treatment thus provides an effective strategy to tailor the physicochemical properties of zein–chitosan composite films, supporting their potential in sustainable food packaging, wound healing, and drug delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

21 pages, 2139 KiB  
Article
Reclaimed Municipal Wastewater Sand as a Viable Aggregate in Cement Mortars: Alkaline Treatment, Performance, Assessment, and Circular Construction Applications
by Beata Łaźniewska-Piekarczyk and Monika Jolanta Czop
Processes 2025, 13(8), 2463; https://doi.org/10.3390/pr13082463 - 4 Aug 2025
Viewed by 346
Abstract
This study evaluates the potential use of reclaimed sand from municipal wastewater treatment plants (WWTP), categorized as waste under code 19 08 02, as a full substitute for natural sand in cement mortars. The sand was subjected to alkaline pretreatment using sodium hydroxide [...] Read more.
This study evaluates the potential use of reclaimed sand from municipal wastewater treatment plants (WWTP), categorized as waste under code 19 08 02, as a full substitute for natural sand in cement mortars. The sand was subjected to alkaline pretreatment using sodium hydroxide (NaOH) at concentrations of 0.5%, 1% and 2% to reduce organic impurities and improve surface cleanliness. All mortar mixes were prepared using CEM I 42.5 R as the binder, maintaining a constant water-to-cement ratio of 0.5. Mechanical testing revealed that mortars produced with 100% WWTP-derived sand, pretreated with 0.5% NaOH, achieved a mean compressive strength of 51.9 MPa and flexural strength of 5.63 MPa after 28 days, nearly equivalent to reference mortars with standardized construction sand (52.7 MPa and 6.64 MPa, respectively). In contrast, untreated WWTP sand resulted in a significant performance reduction, with compressive strength averaging 30.0 MPa and flexural strength ranging from 2.55 to 2.93 MPa. The results demonstrate that low-alkaline pretreatment—particularly with 0.5% NaOH—allows for the effective reuse of WWTP waste sand (code 19 08 02) in cement mortars based on CEM I 42.5 R, achieving performance comparable to conventional materials. Although higher concentrations, such as 2% NaOH, are commonly recommended or required by standards for the removal of organic matter from fine aggregates, the results suggest that lower concentrations (e.g., 0.5%) may offer a better balance between cleaning effectiveness and mechanical performance. Nevertheless, 2% NaOH remains the obligatory reference level in some standard testing protocols for fine aggregate purification. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Exploring the Influence of NaOH Catalyst on the Durability of Liquid Calcium Aluminate Cement Concrete
by Chung-Lin Lin, Chia-Jung Tsai, Leila Fazeldehkordi, Wen-Shinn Shyu, Chih-Wei Lu and Jin-Chen Hsu
Materials 2025, 18(15), 3655; https://doi.org/10.3390/ma18153655 - 4 Aug 2025
Viewed by 335
Abstract
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC [...] Read more.
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC are sodium hydroxide (NaOH) and potassium hydroxide (KOH). Therefore, it is crucial to investigate the effects of sodium and potassium ions on alkali–aggregate reactions in concrete structures. This study evaluated the durability of liquid calcium aluminate cement concrete catalyzed using four different concentrations of NaOH (0.5%, 1.0%, 1.5%, and 2.0%) as experimental variables, incorporating a control group of traditional concrete with a water–cement ratio of 0.64. The findings indicate that NaOH catalysis in the concrete significantly trigger alkali–aggregate reactions, leading to volume expansion. Furthermore, it increased chloride ion penetration and porosity in the concrete. These effects were more notable with the increase in NaOH concentration. The results suggested that NaOH catalysis can enhance certain chemical reactions within the concrete matrix; however, its concentration must be carefully controlled to mitigate adverse effects. The NaOH dosage should be limited to 0.5% to ensure optimal durability of the concrete. This study emphasizes the crucial importance of precisely balancing catalyst concentration to maintain the long-term durability and performance of liquid calcium aluminate cement concrete in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

17 pages, 5839 KiB  
Article
Hydrogen Bond-Regulated Rapid Prototyping and Performance Optimization of Polyvinyl Alcohol–Tannic Acid Hydrogels
by Xiangyu Zou and Jun Huang
Gels 2025, 11(8), 602; https://doi.org/10.3390/gels11080602 - 1 Aug 2025
Viewed by 395
Abstract
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by [...] Read more.
Traditional hydrogel preparation methods typically require multiple steps and certain external stimuli. In this study, rapid and stable gelation of polyvinyl alcohol (PVA)-tannic acid (TA)-based hydrogels was achieved through the regulation of hydrogen bonds. The cross-linking between PVA and TA is triggered by the evaporation of ethanol. Rheological testing and analysis of the liquid-solid transformation process of the hydrogel were performed. The gelation onset time (GOT) could be tuned from 10 s to over 100 s by adjusting the ethanol content and temperature. The addition of polyhydroxyl components (e.g., glycerol) significantly enhances the hydrogel’s water retention capacity (by 858%) and tensile strain rate (by 723%), while concurrently increasing the gelation time. Further studies have shown that the addition of alkaline substances (such as sodium hydroxide) promotes the entanglement of PVA molecular chains, increasing the tensile strength by 23% and the fracture strain by 41.8%. The experimental results indicate that the optimized PVA-TA hydrogels exhibit a high tensile strength (>2 MPa) and excellent tensile properties (~600%). Moreover, the addition of an excess of weakly alkaline substances (such as sodium acetate) reduces the degree of hydrolysis of PVA, enabling the system to form a hydrogel with extrudable characteristics before the ethanol has completely evaporated. This property allows for patterned printing and thus demonstrates the potential of the hydrogel in 3D printing. Overall, this study provides new insights for the application of PVA-TA based hydrogels in the fields of rapid prototyping and strength optimization. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (3rd Edition))
Show Figures

Graphical abstract

13 pages, 553 KiB  
Article
Biorefinery-Based Energy Recovery from Algae: Comparative Evaluation of Liquid and Gaseous Biofuels
by Panagiotis Fotios Chatzimaliakas, Dimitrios Malamis, Sofia Mai and Elli Maria Barampouti
Fermentation 2025, 11(8), 448; https://doi.org/10.3390/fermentation11080448 - 1 Aug 2025
Viewed by 478
Abstract
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested [...] Read more.
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested and sedimented algal biomass. Employing a factorial experimental design, various trials were conducted, with ethanol yield as the primary optimization target. The findings indicated that the sodium hydroxide concentration during pretreatment and the amylase dosage in enzymatic hydrolysis were key parameters influencing the ethanol production efficiency. Under optimized conditions—using 0.3 M NaOH, 25 μL/g starch, and 250 μL/g cellulose—fermentation yielded ethanol concentrations as high as 2.75 ± 0.18 g/L (45.13 ± 2.90%), underscoring the significance of both enzyme loading and alkali treatment. Biomethane potential tests on the residues of fermentation revealed reduced methane yields in comparison with the raw algal feedstock, with a peak value of 198.50 ± 25.57 mL/g volatile solids. The integrated process resulted in a total energy recovery of up to 809.58 kWh per tonne of algal biomass, with biomethane accounting for 87.16% of the total energy output. However, the energy recovered from unprocessed biomass alone was nearly double, indicating a trade-off between sequential valorization steps. A comparison between fresh and dried feedstocks also demonstrated marked differences, largely due to variations in moisture content and biomass composition. Overall, this study highlights the promise of integrated algal biomass utilization as a viable and energy-efficient route for sustainable biofuel production. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

8 pages, 3048 KiB  
Communication
Layer-by-Layer Nanoassembly of Cu(OH)2 Multilayer Membranes for Nanofiltration
by Wenbo Sun, Yanpeng Xue and Guozhi Liu
Coatings 2025, 15(8), 895; https://doi.org/10.3390/coatings15080895 - 1 Aug 2025
Viewed by 244
Abstract
A facile way to prepare Cu(OH)2 inorganic nanofiltration membranes with neatly arranged multilayers has been developed based on the reaction of a sodium hydroxide solution and a copper ammonia solution at the liquid–liquid interfaces. The effects of the concentration, temperature, and time [...] Read more.
A facile way to prepare Cu(OH)2 inorganic nanofiltration membranes with neatly arranged multilayers has been developed based on the reaction of a sodium hydroxide solution and a copper ammonia solution at the liquid–liquid interfaces. The effects of the concentration, temperature, and time of the liquid–liquid reaction on membrane structure and pore sizes were studied by SEM, TEM, and X-ray diffraction. The growth mechanism of the membrane was discussed and the formation process model was proposed. It was found that the reaction temperature was a key factor in obtaining a Cu(OH)2 monolayer, and this could be used to adjust the thickness and pore size of the monolayer. The as-prepared Cu(OH)2 membranes exhibited excellent filtration performance with the pure water fluxes of 156.2 L·m−2 h−1 bar−1 and retention rates of 100% for methylene blue (50 ppm) at a pressure of 0.1 MPa. This successfully opens up a new method of synthesizing multilayer nanoarrays’ Cu(OH)2 structure for nanofiltration. Full article
(This article belongs to the Special Issue Deposition-Based Coating Solutions for Enhanced Surface Properties)
Show Figures

Graphical abstract

15 pages, 2645 KiB  
Article
Carbon Footprint and Uncertainties of Geopolymer Concrete Production: A Comprehensive Life Cycle Assessment (LCA)
by Quddus Tushar, Muhammed A. Bhuiyan, Ziyad Abunada, Charles Lemckert and Filippo Giustozzi
C 2025, 11(3), 55; https://doi.org/10.3390/c11030055 - 28 Jul 2025
Viewed by 1021
Abstract
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2 [...] Read more.
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2SiO3), superplasticizer, and others, are assessed to reflect the actual scenarios of the carbon footprint. The conjugate application of the life cycle assessment (LCA) tool SimPro 9.4 and @RISK Monte Carlo simulation justifies the variations in carbon emissions rather than a specific determined value for concrete binders, precursors, and filler materials. A reduction of 43% in carbon emissions has been observed by replacing cement with alkali-activated binders. However, the associative uncertainties of chemical admixtures reveal that even a slight increase may cause significant environmental damage rather than its benefit. Pearson correlations of carbon footprint with three admixtures, namely sodium silicate (r = 0.80), sodium hydroxide (r = 0.52), and superplasticizer (r = 0.19), indicate that the shift from cement to alkaline activation needs additional precaution for excessive use. Therefore, a suitable method of manufacturing chemical activators utilizing renewable energy sources may ensure long-term sustainability. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

15 pages, 4855 KiB  
Article
An Investigation of the Surface-Regulating Mechanism of Tungsten Alloys Using the Electrochemical Polishing Process
by Yachun Mao, Yanqiu Xu, Shiru Le, Maozhong An, Zhijiang Wang and Yuhan Zhang
Solids 2025, 6(3), 39; https://doi.org/10.3390/solids6030039 - 24 Jul 2025
Viewed by 282
Abstract
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic [...] Read more.
Tungsten and tungsten alloys are widely used in important industrial fields due to their high density, hardness, melting point, and corrosion resistance. However, machining often leaves processing marks on their surface, significantly affecting the surface quality of precision components in industrial applications. Electrolytic polishing offers high efficiency, low workpiece wear, and simple processing. In this study, an electrolytic polishing method is adopted and a novel trisodium phosphate–sodium hydroxide electrolytic polishing electrolyte is developed to study the effects of temperature, voltage, polishing time, and solution composition on the surface roughness of a tungsten–nickel–iron alloy. The optimal voltage, temperature, and polishing time are determined to be 15 V, 55 °C, and 35 s, respectively, when the concentrations of trisodium phosphate and sodium hydroxide are 100 g·L−1 and 6 g·L−1. In addition, glycerol is introduced into the electrolyte as an additive. The calculated LUMO value of glycerol is −5.90 eV and the HOMO value is 0.40 eV. Moreover, electron enrichment in the hydroxyl region of glycerol can form an adsorption layer on the surface of the tungsten alloy, inhibit the formation of micro-pits, balance ion diffusion, and thus promote the formation of a smooth surface. At 100 mL·L−1 of glycerol, the roughness of the tungsten–nickel–iron alloy decreases significantly from 1.134 μm to 0.582 μm. The electrochemical polishing mechanism of the tungsten alloy in a trisodium phosphate electrolyte is further investigated and explained according to viscous film theory. This study demonstrates that the trisodium phosphate–sodium hydroxide–glycerol electrolyte is suitable for electropolishing tungsten–nickel–iron alloys. Overall, the results support the application of tungsten–nickel–iron alloy in the electronics, medical, and atomic energy industries. Full article
Show Figures

Graphical abstract

Back to TopTop