Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (696)

Search Parameters:
Keywords = sodium chloride solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2799 KiB  
Article
Development of LPFG-Based Seawater Concentration Monitoring Sensors Packaged by BFRP
by Zhe Zhang, Tongchun Qin, Yuping Bao and Jianping He
Micromachines 2025, 16(7), 810; https://doi.org/10.3390/mi16070810 - 14 Jul 2025
Viewed by 137
Abstract
Leveraging the sensitivity of long-period fiber grating (LPFG) to changes in the environmental refractive index, an LPFG-based seawater concentration monitoring sensor is proposed. Considering the highly saltine and alkali characteristics of the sensor’s operating environment, the proposed sensor is packaged by basalt fiber-reinforced [...] Read more.
Leveraging the sensitivity of long-period fiber grating (LPFG) to changes in the environmental refractive index, an LPFG-based seawater concentration monitoring sensor is proposed. Considering the highly saltine and alkali characteristics of the sensor’s operating environment, the proposed sensor is packaged by basalt fiber-reinforced polymer (BFRP), and the sensor’s sensitivities were studied by sodium chloride and calcium chloride solution concentration experiments and one real-time sodium chloride solution concentration monitoring experiment. The test results show the wavelength of LPFG, a 3 dB bandwidth and a peak loss of LPFG’s spectrogram change with changes in the concentration of sodium chloride or calcium chloride solutions, but only the wavelength has a good linear relationship with the change in solution concentration, and the sensing coefficient is −0.160 nm/% in the sodium chloride solution and −0.225 nm/% in the calcium chloride solution. The real-time monitoring test further verified the sensor’s sensing performance, with an absolute measurement error of less than 1.8%. The BFRP packaged sensor has good corrosion resistance and a simple structure, and it has a certain application value in the monitoring of salinity in the marine environment and coastal soil. Full article
Show Figures

Figure 1

20 pages, 3062 KiB  
Article
Optimal Horseshoe Crab Blood Collection Solution That Inhibits Cellular Exocytosis and Improves Production Yield of Limulus Amoebocyte Lysate for Use in Endotoxin Tests
by Mengmeng Zhang, Sophia Zhang and Jessica Zhang
Int. J. Mol. Sci. 2025, 26(14), 6642; https://doi.org/10.3390/ijms26146642 - 11 Jul 2025
Viewed by 153
Abstract
Limulus amoebocyte lysate (LAL) assays have emerged as among the most effective approaches for detecting endotoxins and fungi in vitro since they were first tested 50 years ago. Although detailed protocols are publicly available, conventional LAL collection methods (3% sodium chloride) waste as [...] Read more.
Limulus amoebocyte lysate (LAL) assays have emerged as among the most effective approaches for detecting endotoxins and fungi in vitro since they were first tested 50 years ago. Although detailed protocols are publicly available, conventional LAL collection methods (3% sodium chloride) waste as much as 80% of the total LAL during blood accumulation, confirming the incompatibility of these methods with the lasting survival of the American horseshoe crab. For this reason, new implementations of blood collection–suspension buffer combinations are critical. Here, we evaluated the ability of different blood collection solutions to inhibit exocytosis and subsequently treated the cells with CaCl2 to stimulate exocytosis and improve the yield of LAL. Two test methods, chromogenic and turbidimetric tests for LAL activity, were evaluated. Crabs were bled during the bleeding season. The crab blood samples were collected with the following blood collection solutions: citric acid buffer, malic acid buffer, PBS buffer, and PBS–caffeine buffer. The cell pellets were washed with 3% NaCl and subsequently resuspended in LRW or CaCl2 to facilitate degranulation. Both the chromogenic test and the turbidimetric assay were used to evaluate the LAL enzyme activity. Citric acid buffer, malic acid buffer, PBS buffer, and PBS–caffeine buffer blocked exocytosis, resulting in the high yields of LAL. There was no observable effect on the activity output of crab size via a chromogenic test with PBS–caffeine buffer during the bleeding season. This protocol substantially benefited prior processes, as the PBS–caffeine collection mixture decreased amoebocyte aggregation/clot formation during processing. Furthermore, we evaluated the specific biochemical parameters of PBS–caffeine-derived LAL. We developed an accessible, promising phosphate–caffeine-based blood collection buffer that prevents amoebocyte degranulation during blood collection, maximizing the LAL yield. Moreover, our analysis revealed that phosphate–caffeine-derived LAL is uniquely adaptable to compatibility with chromogenic and turbidimetric assay techniques. By employing this method for LAL blood extraction, our same-cost approach fostered significantly greater LAL yields, simultaneously ensuring a healthy limulus polyphemus population. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 689 KiB  
Article
Efficiency of Ozone Applied in Flow and at Low Pressures in the Inactivation of Salmonella in Black Peppercorns (Piper nigrum L.) and the Effects of Ozone Treatment on Grain Quality and Essential Oil Composition
by Handina da Graça Lurdes Langa Massango, Lêda Rita D’Antonino Faroni, Maria Cristina Dantas Vanetti, Ernandes Rodrigues de Alencar, Marcus Vinícius de Assis Silva, Alessandra Aparecida Zinato Rodrigues, Paulo Roberto Cecon, Carollayne Gonçalves Magalhães, Daniele Almeida Teixeira and Letícia Elisa Rossi
Foods 2025, 14(13), 2215; https://doi.org/10.3390/foods14132215 - 24 Jun 2025
Viewed by 333
Abstract
Food contamination by Salmonella poses a significant public health risk, rendering products unfit for consumption. This study aimed to evaluate the efficiency of ozone gas (O3), applied in flow and at low pressures, in inactivating Salmonella on black peppercorns (Piper [...] Read more.
Food contamination by Salmonella poses a significant public health risk, rendering products unfit for consumption. This study aimed to evaluate the efficiency of ozone gas (O3), applied in flow and at low pressures, in inactivating Salmonella on black peppercorns (Piper nigrum L.). Samples were inoculated with a cocktail of four Salmonella serotypes and subjected to ozonation under flow or low-pressure conditions in a hypobaric chamber. For the flow treatment, ozone gas at 16 mg L−1 was humidified by passing it through a 40% (w/v) sodium chloride solution and applied for 2, 4, and 8 h. For the hypobaric chamber treatment, an inlet O3 concentration of 60 mg L−1 was used, with 10, 15, and 20 injections. The results showed that, under flow ozonation for 8 h, Salmonella was absent in 25 g of the sample. Ozone treatment increased pH, total titratable acidity (TTA), antioxidant activity (DPPH*), lightness (L*), color saturation (C*), total phenolic content (TPC), and the concentration of major essential oil compounds in all treatments. Under low-pressure ozonation, Salmonella persisted in all tested conditions, along with changes in color difference (∆E*), moisture content, TTA, DPPH*, L*, C*, pH, TPC, and the concentration of major essential oil compounds. The essential oil yield was not affected. Although the application of ozone at low pressures reduced Salmonella contamination, it was not sufficient for complete inactivation under the tested conditions. However, the flow-applied ozone treatment proved effective in the inactivation of Salmonella in black peppercorns. Full article
Show Figures

Figure 1

14 pages, 2916 KiB  
Article
Investigation of the Electrodialysis of Sodium Tungstate Solutions for the Production of Tungstic Acid
by Adelya Dauletbakova, Bolotpay Baimbetov, Yeleussiz Tazhiyev and Gulnara Moldabayeva
Appl. Sci. 2025, 15(13), 7033; https://doi.org/10.3390/app15137033 - 22 Jun 2025
Viewed by 557
Abstract
Industrial technologies for processing tungsten concentrates using soda roasting or autoclave leaching are based on the production of alkaline sodium tungstate solutions that contain impurities such as silicon, phosphorus, arsenic, and others. The purification of these solutions from impurities requires the neutralization of [...] Read more.
Industrial technologies for processing tungsten concentrates using soda roasting or autoclave leaching are based on the production of alkaline sodium tungstate solutions that contain impurities such as silicon, phosphorus, arsenic, and others. The purification of these solutions from impurities requires the neutralization of excess soda or alkali with inorganic acids, which leads to the formation of chloride and sulfate effluents that are subsequently discharged into waste repositories. An analysis was carried out on existing methods for the production and processing of sodium tungstate solutions using HNO3 and NH3, as well as extraction and sorption techniques involving anion exchange resins. Currently, processes such as nanofiltration, reverse osmosis, and electrodialysis are being applied for water purification and the treatment of sulfate and chloride effluents. These processes employ various types of industrially manufactured membranes. For the purpose of electrodialysis, a two-compartment electrodialyzer setup was employed using cation-exchange membranes of the MK-40 (Russia) and EDC1R (China) types. The composition and structure of sodium tungstate, used as the starting reagents, were analyzed. Based on experiments conducted on a laboratory-scale unit with continuous circulation of the catholyte and anolyte, dependencies of various parameters on current density and process duration were established. Stepwise changes in the anolyte pH were recorded, indirectly confirming changes in the composition of the Na2WO4 solution, including the formation of polytungstates of variable composition and the production of H2WO4 via electrodialysis at pH < 2. The resulting tungstic acid solutions were also analyzed. The conducted studies on the processing of sodium tungstate solutions using electrodialysis made it possible to obtain alkaline solutions and tungstic acid at a current density of 500–1500 A/m2, without the use of acid for neutralization. Yellow tungstic acid was obtained from the tungstic acid solution by evaporation. Full article
Show Figures

Figure 1

15 pages, 1518 KiB  
Article
Machine Learning-Based Prediction of Scale Inhibitor Efficiency in Oilfield Operations
by Seyed Hossein Hashemi and Farshid Torabi
Processes 2025, 13(7), 1964; https://doi.org/10.3390/pr13071964 - 21 Jun 2025
Viewed by 362
Abstract
Water injection is widely recognized as one of the most important operational approaches for enhanced oil recovery in oilfields. However, this process faces significant challenges due to the formation of sulfate and carbonate mineral scales caused by high salinity in both injected water [...] Read more.
Water injection is widely recognized as one of the most important operational approaches for enhanced oil recovery in oilfields. However, this process faces significant challenges due to the formation of sulfate and carbonate mineral scales caused by high salinity in both injected water and formation water. To address this issue, the use of mineral scale inhibitors has emerged as a valuable solution. In this study, we evaluated the performance of seven machine learning algorithms (Gradient Boosting Machine; k-Nearest Neighbors; Decision Tree; Random Forest; Linear Regression; Neural Network; and Gaussian Process Regression) to predict inhibitor efficiency. The models were trained on a comprehensive dataset of 661 samples (432 for training; 229 for testing) with 66 features including temperature; concentrations of various ions (sodium; calcium, magnesium; barium; strontium; chloride; sulfate; bicarbonate; carbonate, etc.), and inhibitor dosage levels (DTPMP, PPCA, PBTC, EDTMP, BTCA, etc.). The results showed that GPR achieved the highest prediction accuracy with R2 = 0.9608, followed by Neural Network (R2 = 0.9230) and Random Forest (R2 = 0.8822). These findings demonstrate the potential of machine learning approaches for optimizing scale inhibitor performance in oilfield operations Full article
(This article belongs to the Special Issue Recent Advances in Heavy Oil Reservoir Simulation and Fluid Dynamics)
Show Figures

Figure 1

31 pages, 7823 KiB  
Article
Influence of Alkaline Activator Properties on Corrosion Mechanisms and Durability of Steel Reinforcement in Geopolymer Binders
by Mihail Chira, Adrian-Victor Lăzărescu, Andreea Hegyi, Horatiu Vermesan, Alexandra Csapai, Bradut Alexandru Ionescu, Tudor Panfil Toader and Carmen Florean
Coatings 2025, 15(6), 734; https://doi.org/10.3390/coatings15060734 - 19 Jun 2025
Viewed by 595
Abstract
The durability of steel reinforcement in geopolymer composites is significantly influenced by the chemical characteristics of the alkaline medium in which they are embedded. This research offers detailed insights into the corrosion kinetics and mechanisms of geopolymers derived from various fly ash and [...] Read more.
The durability of steel reinforcement in geopolymer composites is significantly influenced by the chemical characteristics of the alkaline medium in which they are embedded. This research offers detailed insights into the corrosion kinetics and mechanisms of geopolymers derived from various fly ash and alkaline activator formulations, considering their inherent microstructural and chemical heterogeneity. This study investigates the effect of the molarity of sodium hydroxide (NaOH) solution and the ratio of sodium silicate to sodium hydroxide (Na2SiO3/NaOH) on the corrosion behavior of steel reinforcement in geopolymer matrix under the action of chloride ions. Corrosion of steel reinforcement embedded in geopolymer binder prepared by alkaline activation of fly ash with alkaline activator prepared with different Na2SiO3/NaOH ratios (1:1, 1:2, 2:1) and different molar concentrations of NaOH solution (6 M, 8 M and 10 M) was analyzed in terms of process kinetics using Open Circuit Potential (OCP) and Linear Polarization (LP) and mechanism by Electrochemical Impedance Spectroscopy (EIS). The study demonstrates that a Na2SiO3:NaOH ratio of 1:2 and an 8 M NaOH solution yield the most favorable combination of physical and mechanical properties and corrosion resistance, confirmed by the highest apparent density, lowest water absorption, and significantly reduced corrosion current densities (as low as 0.72 μA/cm2), as well as highlighting porosity and pH as key factors influencing steel protection in geopolymer matrices. Full article
Show Figures

Graphical abstract

27 pages, 4959 KiB  
Article
Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence
by Pavel Belkin, Sergey Blinov, Elena Drobinina, Elena Menshikova, Sergey Vaganov, Roman Perevoshchikov and Elena Tomilina
Minerals 2025, 15(6), 662; https://doi.org/10.3390/min15060662 - 19 Jun 2025
Viewed by 204
Abstract
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, [...] Read more.
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, and contains alkaline saline industrial wastes. The origin of this waste was related to sludge from the Solvay soda production process, which had been deposited in this pond over a long period of time. However, along with the soda waste, the pond also received wastewater from other industries. As a result, the accumulated sediment is characterized by variation in morphological properties both in depth and laterally. Five undisturbed columns were taken to study the composition of the accumulated sediment. The obtained samples were analyzed by X-ray diffraction (XRD), synchronous thermal analysis (STA), and X-ray fluorescence (XRF) analysis. The results showed that the mineral composition of bottom sediments in each layer of all studied columns is characterized by the predominance of calcite precipitated from wastewater. Along with calcite, due to the presence of magnesium and sodium in the solution, other carbonates precipitated—dolomite and soda (natron), as well as complex transitional carbonate phases (northupite and trona). Together with carbonate minerals, the chloride salts halite and sylvin, sulfate minerals gypsum and bassanite, and pyrite and nugget sulfur were established. The group of terrigenous mineral components is represented by quartz, feldspars, and aluminosilicates. The chemical composition of sediments in the upper part of the section generally corresponds to the mineral composition. In the lower sediment layers, the role of amorphous phase and non-mineral compounds increased, which was determined by the results of thermal analysis. The content of heavy metals and metalloids also increases in the middle and lower sediment layers. When categorized according to the Igeo value, an excessive degree of contamination (class 6) was observed in all investigated columns for copper content (Igeo 5.2–6.1). Chromium content corresponds to class 5 (Igeo 4.1–4.6), antimony to class 4 (Igeo 3.0–4.0), and lead, arsenic, and vanadium to classes 2 and 3 (moderately polluted and highly polluted). The data obtained on variations in the mineral and chemical composition of sediments represent the initial information for the selection of methods of accumulated waste management. Full article
Show Figures

Figure 1

23 pages, 12059 KiB  
Article
Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides
by Tatiana V. Safronova, Alexandra S. Sultanovskaya, Sergei A. Savelev, Tatiana B. Shatalova, Yaroslav Y. Filippov, Olga V. Boytsova, Vadim B. Platonov, Tatiana V. Filippova, Albina M. Murashko, Xinyan Feng and Muslim R. Akhmedov
Compounds 2025, 5(2), 22; https://doi.org/10.3390/compounds5020022 - 16 Jun 2025
Viewed by 374
Abstract
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or [...] Read more.
Powders with phase composition including quasi-amorphous phases and calcium carbonate CaCO3 in the form of calcite or aragonite and sodium halite NaCl as a reaction by-product were synthesized from 0.5M aqua solutions of sodium silicate and 0.5M aqua solutions of calcium and/or magnesium chlorides. Starting solutions were taken in quantities which could provide precipitation of hydrated calcium and/or magnesium silicates with molar ratios Ca/Si = 1 (CaSi), Mg/Si = 1 (MgSi) or (Ca+Mg)/Si = 1 (CaMgSi). Hydrated calcium and/or magnesium silicates, hydrated silica, magnesium carbonate, hydrated magnesium carbonate or hydrated magnesium silicate containing carbonate ions are suspected as components of quasi-amorphous phases presented in synthesized powders. Heat treatment of synthesized powders at 400, 600, 800 °C and pressed preceramic samples at 900, 1000, 1100 and 1200 °C were used for investigation of thermal evolution of the phase composition and microstructure of powders and ceramic samples. Mass loss of powder samples under investigation during heat treatment was provided due to evacuation of H2O (m/z = 18), CO2 (m/z = 44) and NaCl at temperatures above its melting point. After sintering at 1100 °C, the phase composition of ceramic samples included wollastonite CaSiO3 (CaSi_1100); enstatite MgSiO3, clinoenstatite MgSiO3 and forsterite Mg2SiO4 (MgSi_1100); and diopside CaMgSi2O6 (CaMgSi_1100). After sintering at 1200 °C, the phase composition of ceramics CaSi_1200 included pseudo-wollastonite CaSiO3. After heat treatment at 1300 °C, the phase composition of MgSi_1300 powder included preferably protoenstatite MgSiO3. The phase composition of all samples after heat treatment belongs to the oxide system CaO–MgO–SiO2. Ceramic materials in this system are of interest for use in different areas, including refractories, construction materials and biomaterials. Powders prepared in the present investigation, both via precipitation and via heat treatment, can be used for the creation of materials with specific properties and in model experiments as lunar regolith simulants. Full article
Show Figures

Figure 1

20 pages, 9522 KiB  
Article
Preparation of Low-Salt-Rejection Membrane by Sodium Hypochlorite Chlorination for Concentration of Low-Concentration Magnesium Chloride Solution
by Zhengyang Wu, Zongyu Feng, Longsheng Zhao, Zheng Li, Meng Wang and Chao Xia
Materials 2025, 18(12), 2824; https://doi.org/10.3390/ma18122824 - 16 Jun 2025
Viewed by 327
Abstract
The precipitation process of rare earth from a rare earth chloride solution using magnesium bicarbonate yields a dilute magnesium chloride (MgCl2) solution. The dilute MgCl2 solution can only be concentrated to a maximum concentration of about 70 g/L by conventional [...] Read more.
The precipitation process of rare earth from a rare earth chloride solution using magnesium bicarbonate yields a dilute magnesium chloride (MgCl2) solution. The dilute MgCl2 solution can only be concentrated to a maximum concentration of about 70 g/L by conventional reverse osmosis (RO), which is insufficient for recycling. Low-salt-rejection reverse osmosis (LSRRO) allows for a higher concentration of brine while operating at moderate pressures. However, research on LSRRO for the concentration of MgCl2 solution is still at an initial stage. In this study, polyamide RO membranes were treated with sodium hypochlorite (NaClO) to prepare low-salt-rejection membranes. The effects of NaClO concentration, pH, and chlorination time on the membrane properties were investigated. Under alkaline chlorination conditions, the membrane’s salt rejection decreased, and water flux increased with increasing NaClO concentration and chlorination time. This can be explained by the hydrolysis of polyamide in the alkaline solution to form carboxylic acids and amines, resulting in a decrease in the crosslinking degree of polyamide. The low-salt-rejection membrane was prepared by exposing it to a NaClO solution at a concentration of 15 g/L and a pH of 11 for 3 h, and the salt rejection of MgCl2 was 50.7%. The MgCl2 solution with a concentration of 20 g/L was concentrated using multi-stage LSRRO at the pressure of 5 MPa. The concentration of the concentrated brine reached 120 g/L, which is 87% higher than the theoretical maximum concentration of 64 g/L for conventional RO at the pressure of 5 MPa. The specific energy consumption (SEC) was 4.17 kWh/m3, which decreased by about 80% compared to that of mechanical vapor recompression (MVR). This provides an alternative route for the efficient concentration of a diluted MgCl2 solution with lower energy consumption. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 2511 KiB  
Article
Electrochemical Production of Hypochlorous Acid and Sodium Hydroxide Using Ion Exchange Membranes
by Juan Taumaturgo Medina Collana, Kevin Azorza Guillen, Edgar Williams Villanueva Martinez, Carlos Ancieta Dextre, Luis Carrasco Venegas, Oscar Rodriguez Taranco, Jorge Lopez Herrera, Pablo Diaz Bravo, Jose Porlles Loarte and Jorge Montaño Pisfil
Sustainability 2025, 17(12), 5465; https://doi.org/10.3390/su17125465 - 13 Jun 2025
Viewed by 608
Abstract
Given the problems related to drinking water supplies in rural and economically disadvantaged regions, point-of-use disinfection technologies are a viable alternative to improve access to drinking. Electrochlorinators are devices that produce chlorine-based disinfectants onsite via the electrolysis of a sodium chloride solution. In [...] Read more.
Given the problems related to drinking water supplies in rural and economically disadvantaged regions, point-of-use disinfection technologies are a viable alternative to improve access to drinking. Electrochlorinators are devices that produce chlorine-based disinfectants onsite via the electrolysis of a sodium chloride solution. In this research, we have constructed an innovative laboratory-scale three-compartment cell that includes two ion exchange membranes, fixed between two electrodes; in the anodic compartment, an acidic mixture of chlorine-based species (Cl2, HClO, HCl and ClO) is obtained, and, in the cathodic compartment, an alkaline solution is present (NaOH and hydrogen gas), while the central compartment is fed with a sodium chloride solution. The Taguchi methodology was used to examine the impact of the process operating conditions on the results obtained. The effects of the electrical potential levels (4.5, 6 and 7 V), electrolysis times (30, 60 and 90 min) and initial sodium chloride concentrations (5, 15 and 30 g/L) on the physical and chemical characteristics (concentrations of available chlorine and sodium hydroxide and pH of the solutions) and energy consumption were investigated. Variations in the electrical potential significantly influenced the concentration levels of active chlorine and sodium hydroxide produced, as well as the pH values of the respective solutions. The most favorable conditions for the production of electrolyzed water were an electrical potential of 7 volts, an electrolysis time of 90 min and a concentration of 30 g/L of sodium chloride, which was verified by ANOVA. The maximum concentration of active chlorine reached 290 mg/L and that of sodium hydroxide reached 1450 mg/L without the presence of hypochlorite ions under the best synthesis conditions. The energy consumption was 18.6 kWh/kg Cl2 and 4.4 kWh/kg NaOH, while the average electric current efficiency for sodium hydroxide formation reached 88.9%. Similarly, the maximum conversion of chloride ions reached 24.37% under the best operating conditions. Full article
Show Figures

Figure 1

20 pages, 6335 KiB  
Article
Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance
by Petr Osipov, Roza Shayakhmetova, Danatbek Murzalinov, Azamat Sagyndykov, Ainur Kali, Anar Mukhametzhanova, Galymzhan Maldybayev and Konstantin Mit
Materials 2025, 18(12), 2781; https://doi.org/10.3390/ma18122781 - 13 Jun 2025
Viewed by 406
Abstract
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used [...] Read more.
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used to create Ni-MoO3-WO3 electroplating. Such composite samples formed from an aqueous alcohol solution reduced the content of sodium and ammonium chlorides. The annealing and dehydration of samples at a temperature of 725 °C in an air atmosphere made it possible to achieve the highest level of crystallinity. In this case, an isomorphic substitution of W atoms by Mo occurs, which is confirmed by electron paramagnetic resonance (EPR) spectroscopy studies. The invariance of the shape of the EPR spectrum with a sequential increase in microwave radiation power revealed the stability of the bonds between the particles. The surface morphology of Ni-MoO3-WO3 films deposited on an Al substrate is smooth and has low roughness. In this case, an increased degree of wear resistance has been achieved. Thus, a recipe for the formation of an electroplating with stable bonds between the components and increased wear resistance was obtained. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

16 pages, 3162 KiB  
Article
A Study of the Influence of Sodium Alginate Molecular Weight and Its Crosslinking on the Properties of Potato Peel Waste-Based Films
by Mohsen Sadeghi-Shapourabadi, Mathieu Robert and Said Elkoun
Appl. Sci. 2025, 15(12), 6385; https://doi.org/10.3390/app15126385 - 6 Jun 2025
Viewed by 458
Abstract
This study develops a sustainable biopolymer film derived from potato peel waste (PW), enhanced with low- and high-viscosity sodium alginate (SA) through a solution casting method. The effect of calcium chloride crosslinking on the PW/SA composites was also evaluated. Scanning electron microscopy (SEM) [...] Read more.
This study develops a sustainable biopolymer film derived from potato peel waste (PW), enhanced with low- and high-viscosity sodium alginate (SA) through a solution casting method. The effect of calcium chloride crosslinking on the PW/SA composites was also evaluated. Scanning electron microscopy (SEM) analysis revealed that SA incorporation improved the film’s cohesion and uniformity, with both low- and high-viscosity SA showing nearly similar effects. Both the addition of SA and crosslinking led to enhanced tensile strength, as well as improved moisture barrier properties, by lowering the water vapor permeability (WVP) factor. The inclusion of high-viscosity SA (hvSA) resulted in superior mechanical and moisture barrier properties compared to the low-viscosity SA (lvSA), achieving a tensile strength of 5.34 MPa, with a 68% improvement compared to the pure PW film. The WVP analysis showed that hvSA had a superior impact, leading to a 32% reduction in WVP compared to the pure film. Crosslinking further boosted the tensile strength and moisture barrier properties. The crosslinked hvSA/PW composite shows the highest tensile strength among all samples, measuring 6.47 MPa, which accounts for a 104% enhancement compared to the pure film. It also led to a 34% reduction in WVP, reaching a value of 1.58 × 10−12 g/(Pa·cm·s). The findings demonstrate that PW/SA composites, especially the crosslinked hvSA/PW, offer the highest mechanical and barrier properties, making them suitable for biodegradable packaging and biomedical applications. Full article
(This article belongs to the Special Issue Design, Characterization, and Applications of Biodegradable Polymers)
Show Figures

Figure 1

16 pages, 2741 KiB  
Article
Preparation of Highly Antibacterial MXene Nanofiltration Membranes and Investigation of Their Separation Performance
by Na Meng, Jinxin Liu, Jialing Mi, Xuan Chen, Rong Rong, Junjie Hang and Zihan Jiang
Polymers 2025, 17(11), 1493; https://doi.org/10.3390/polym17111493 - 27 May 2025
Cited by 1 | Viewed by 430
Abstract
In this study, polyethersulfone (PES)/sulfonated polyethersulfone (SPES) composite nanofiltration membranes doped with different contents of monolayer titanium carbide nanosheets (Ti3C2TX) were prepared by the nonsolvent induced phase inversion (NIPS) method. The effects of Ti3C2 [...] Read more.
In this study, polyethersulfone (PES)/sulfonated polyethersulfone (SPES) composite nanofiltration membranes doped with different contents of monolayer titanium carbide nanosheets (Ti3C2TX) were prepared by the nonsolvent induced phase inversion (NIPS) method. The effects of Ti3C2TX on membrane structure, separation performance and antibacterial activity were investigated systematically. The results demonstrated that the viscosity of the casting solution increased significantly with the increasing content of Ti3C2TX. In addition, the pore size of the membrane surface first decreased and then increased; porosity and hydrophilicity were optimized synchronously; and the density of negative charges on the surface increased. The M2 membrane showed a rejection rate of more than 90% for Metanil yellow (MY) and methylene blue (MEB). The order of salt ion rejection rates was magnesium sulfate (MgSO4) > sodium sulfate (Na2SO4) > sodium chloride (NaCl), and water flux reached the peak (18.5 L/m2·h·bar). The antibacterial activity of the M2 membrane was significantly enhanced, and its antibacterial rate against Bacillus subtilis increased from 15% (M0) to 58%. This phenomenon was attributed to the synergistic mechanism of the Ti3C2TX physical capture effect, reactive oxygen species (ROS) generation and sharp edge damage to bacterial cell membranes. This study provides theoretical support and a technical path for the development of MXene composite membranes with high separation efficiency and excellent antibacterial properties. Full article
(This article belongs to the Special Issue Polymer-Based Membranes: Innovation in Separation Technology)
Show Figures

Figure 1

22 pages, 5189 KiB  
Article
Inversion of Hydrogeological Parameters of Polluted Sites Based on Coupled Hydrothermal Salt-Tracer Tests
by Junwei Yang, Changsheng Chen, Guojiao Huang, Jintao Huang and Zhou Chen
Water 2025, 17(11), 1607; https://doi.org/10.3390/w17111607 - 26 May 2025
Viewed by 376
Abstract
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for [...] Read more.
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for the acquisition of pollutant transport and transformation data, which incorporated three-dimensional multifield coupling, alongside a numerical model that also accounted for multiphysical field interactions. The numerical simulations employed Darcy’s law, the heat conduction equation, and convective–dispersive equations to analyze the seepage field, heat transfer, and solute transport processes, respectively. The findings from both physical and numerical tests indicate that variations in groundwater temperature and solute concentration significantly influence solute transport dynamics. Specifically, an increase in groundwater temperature correlates with an accelerated migration rate of sodium chloride (NaCl) solute, resulting in a reduced time for the solute to achieve equivalent concentrations in observation wells. Conversely, when the concentration of NaCl in groundwater rises, the temperature of the groundwater also increases when the solute reaches the same concentration in the observation wells. This phenomenon can be attributed to the decrease in the specific heat capacity of groundwater with higher solute concentrations. Moreover, as the concentration of sodium chloride in groundwater increases, the rate of temperature elevation in the groundwater accelerates due to a decrease in specific heat capacity associated with higher solute concentrations, thereby requiring less thermal energy for the groundwater to attain the same temperature. The results further reveal that the hydraulic conductivity of the target aquifer, specifically the pulverized clay layer, ranges from 6.72 to 8.52 × 10−6 m/s, with an effective thermal conductivity of 2.2 W/(m·K), a longitudinal dispersion of 0.554 m, and a transverse dispersion of 0.05 m. Full article
Show Figures

Figure 1

18 pages, 3587 KiB  
Article
Enhanced Dual-Tag Coupled RFID Technology for Sensing Mixed Inorganic Salt Solutions: Incorporating the Impact of Water Velocity on Dielectric Measurements
by Jiang Peng, Ammara Iqbal, Renhai Feng and Muhammad Zain Yousaf
Electronics 2025, 14(11), 2124; https://doi.org/10.3390/electronics14112124 (registering DOI) - 23 May 2025
Viewed by 319
Abstract
Accurate parameter estimation is essential for effective monitoring and treatment of high-salinity industrial wastewater. Traditional methods such as spectroscopy, ion chromatography, and electrochemical analysis offer high sensitivity but are often complex, costly, and unsuitable for real-time monitoring. This research integrates Deep Neural Networks [...] Read more.
Accurate parameter estimation is essential for effective monitoring and treatment of high-salinity industrial wastewater. Traditional methods such as spectroscopy, ion chromatography, and electrochemical analysis offer high sensitivity but are often complex, costly, and unsuitable for real-time monitoring. This research integrates Deep Neural Networks (DNNs) with the Levenberg–Marquardt (LM) algorithm to develop an advanced RFID-based sensing system for real-time monitoring of sodium chloride solutions in wastewater. The DNN extracts essential features from raw data, while the LM algorithm optimizes parameter estimation for enhanced precision and stability. Experimental results show that the dielectric constant sample variance at various flow rates under wireless frequency is 0.08509, while the sample total variance is 0.06807, both below 0.1. Additionally, the sample standard deviation and total standard deviation are both below 0.3, at 0.26090 and 0.29169, respectively. These findings confirm that the proposed system is robust against flow rate variations, ensuring accurate, real-time monitoring and supporting sustainable industrial practices. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

Back to TopTop