Efficiency of Ozone Applied in Flow and at Low Pressures in the Inactivation of Salmonella in Black Peppercorns (Piper nigrum L.) and the Effects of Ozone Treatment on Grain Quality and Essential Oil Composition
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material Procurement and Initial Characterization
2.2. Preparation of Inoculated Black Pepper Samples
2.2.1. Microbial Cultures and Growth Conditions
2.2.2. Inoculum Preparation and Black Pepper Inoculation
2.3. Ozone Gas Treatment in a Flow System
2.4. Ozone Gas Application in a Closed Low-Pressure System
2.5. Microbiological Analyses
2.5.1. Quantitative Test for Salmonella Analysis
2.5.2. Qualitative Test for Salmonella Analysis (Presence/Absence in 25 g of Sample)
2.6. Analysis of Bioactive Compounds and Quality of Black Pepper
2.6.1. Preparation of Black Pepper Extracts for Bioactive Compound Analysis
2.6.2. Total Phenolic Contents (TPC)
2.6.3. Antioxidant Activity (DPPH*)
2.7. pH and Total Titratable Acidity (TTA)
2.8. Color
2.9. Moisture Content
2.10. Extraction of Black Peppercorn Essential Oil
2.10.1. Identification of Major Compounds in Black Pepper Essential Oil
2.10.2. Quantification of the Major Compounds of Black Pepper Essential Oil
2.11. Statistical Analyses
3. Results
3.1. Ozonation in Flow
3.1.1. Microbiological Analyses
3.1.2. TPC, Antioxidant Activity Using the DPPH Method, and Quality Analyses
3.2. Ozone Gas Application in a Closed Low-Pressure System
3.2.1. Microbiological Analyses
3.2.2. TPC, Antioxidant Activity Using the DPPH* Method, and Quality Analyses
3.3. Essential Oil Yield and Composition of Black Pepper Ozonized in Flow and at Low Pressure
4. Discussion
4.1. Flow Ozonation
4.1.1. Microbiological Analyses
4.1.2. TPC, Antioxidant Activity Using the DPPH* Method, and Quality Analyses
4.2. Ozone Application in a Closed Low-Pressure System
4.2.1. Microbiological Analyses
4.2.2. TPC, Antioxidant Activity Using the DPPH* Method, and Quality Analyses
4.3. Extraction Yield and Composition of Essential Oil Constituents from Black Pepper Treated with Ozone in Flow and Low Pressure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, T.A. Health Benefits of Culinary Herbs and Spices. J. AOAC Int. 2019, 102, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Bhamu, P.; Dabi, S. Indian Spices. In Phytopharmaceuticals and Biotechnology of Herbal Plants; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Nair, K.P. The Geography of Black Pepper (Piper Nigrum); Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Nedspice. Harvest Calendar. 2020. Available online: https://www.nedspice.com/app/uploads/2020/07/203529_Harvestcalendar_DEF.pdf (accessed on 18 March 2025).
- FAO Publications Catalogue 2022; FAO: Rome, Italy, 2022.
- Sinha, N.; Ray, S. Scope of Black Pepper Piper nigrum L. Extract Inpest Control. Int. J. Pharmacogn. 2021, 8, 351–360. [Google Scholar]
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Vinha, M.B.; De Melo Lima, I.; Secundino, W. Contaminantes Que Comprometem a Segurança Da Pimenta-Do-Reino Ao Longo de Sua Cadeia Produtiva. RsearchGate 2017, 8, 55–67. [Google Scholar]
- Dhas, P.A.; Korikanthimath, V.S. Processing and Quality of Black Pepper: A Review. J. Spices Aromat. Crops 2003, 12, 1–13. [Google Scholar]
- ASTA. Guidance from the American Spice Trade Association; ASTA: Alexandria, VA, USA, 2017; Volume 12. [Google Scholar]
- Ristori, C.A.; dos Santos Pereira, M.A.; Gelli, D.S. Behavior of Salmonella Rubislaw on Ground Black Pepper (Piper nigrum L.). Food Control 2007, 18, 268–272. [Google Scholar] [CrossRef]
- Keller, S.E.; VanDoren, J.M.; Grasso, E.M.; Halik, L.A. Growth and Survival of Salmonella in Ground Black Pepper (Piper Nigrum). Food Microbiol. 2013, 34, 182–188. [Google Scholar] [CrossRef]
- Liu, S.; Rojas, R.V.; Gray, P.; Zhu, M.J.; Tang, J. Enterococcus faecium as a Salmonella Surrogate in the Thermal Processing of Wheat Flour: Influence of Water Activity at High Temperatures. Food Microbiol. 2018, 74, 92–99. [Google Scholar] [CrossRef]
- Shinohara, N.K.S.; De Barros, V.B.; Jimenez, S.M.C.; Machado, E.D.C.L.; Dutra, R.A.F.; De Lima Filho, J.L. Salmonella spp., Important Pathogenic Agent Transmitted through Foodstuffs. Cienc. E Saude Coletiva 2008, 13, 1675–1683. [Google Scholar] [CrossRef]
- Eng, S.K.; Pusparajah, P.; Ab Mutalib, N.S.; Ser, H.L.; Chan, K.G.; Lee, L.H. Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Front Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef]
- Song, W.J.; Sung, H.J.; Kim, S.Y.; Kim, K.P.; Ryu, S.; Kang, D.H. Inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in Black Pepper and Red Pepper by Gamma Irradiation. Int. J. Food Microbiol. 2014, 172, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J. Irradiation for Better Foods. Trends Food Sci. Technol. 2006, 17, 148–152. [Google Scholar] [CrossRef]
- Schweiggert, U.; Carle, R.; Schieber, A. Conventional and Alternative Processes for Spice Production—A Review. Trends Food Sci. Technol. 2007, 18, 260–268. [Google Scholar] [CrossRef]
- Rahmati, E.; Khoshtaghaza, M.H.; Banakar, A.; Ebadi, M.T. Decontamination Technologies for Medicinal and Aromatic Plants: A Review. Food Sci. Nutr. 2022, 10, 784–799. [Google Scholar] [CrossRef]
- Gibson, K.E.; Almeida, G.; Jones, S.L.; Wright, K.; Lee, J.A. Inactivation of Bacteria on Fresh Produce by Batch Wash Ozone Sanitation. Food Control 2019, 106, 106747. [Google Scholar] [CrossRef]
- Cuerda-Correa, E.M.; Alexandre-Franco, M.F.; Fernández-Gonzáles, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water: An Overview. Water 2020, 12, 102. [Google Scholar] [CrossRef]
- Cattel, F.; Giordano, S.; Bertiond, C.; Lupia, T.; Corcione, S.; Scaldaferri, M.; Angelone, L.; De Rosa, F.G. Ozone Therapy in COVID-19: A Narrative Review. Virus Res. 2021, 291, 198207. [Google Scholar] [CrossRef] [PubMed]
- Pandiselvam, R.; Subhashini, S.; Banuu Priya, E.P.; Kothakota, A.; Ramesh, S.V.; Shahir, S. Ozone Based Food Preservation: A Promising Green Technology for Enhanced Food Safety. Ozone Sci. Eng. 2019, 41, 17–34. [Google Scholar] [CrossRef]
- Mohamed, Z.; Barbara, R. Inactivation of Microbes by Ozone in the Food Industry: A Review. Afr. J. Food Sci. 2021, 15, 113–120. [Google Scholar] [CrossRef]
- Uzoma, S.; de Alencar, E.R.; Faroni, L.R.D.A.; de Assis Silva, M.V.; Sitoe, E.d.P.E.; Pandiselvam, R.; Machado, S.G. Association between Low-Temperature Drying and Ozonation Processes to Control Pests and Preserve Maize Quality. Food Control 2024, 156, 110119. [Google Scholar] [CrossRef]
- Kells, S.A.; Mason, L.J.; Maier, D.E.; Woloshuk, C.P. Efficacy and Fumigation Characteristics of Ozone in Stored Maize. J. Stored Prod. Res. 2001, 37, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Hardin, J.A.; Jones, C.L.; Bonjour, E.L.; Noyes, R.T.; Beeby, R.L.; Eltiste, D.A.; Decker, S. Ozone Fumigation of Stored Grain; Closed-Loop Recirculation and the Rate of Ozone Consumption. J. Stored Prod. Res. 2010, 46, 149–154. [Google Scholar] [CrossRef]
- Granella, S.J.; Christ, D.; Werncke, I.; Bechlin, T.R.; Machado Coelho, S.R. Effect of Drying and Ozonation Process on Naturally Contaminated Wheat Seeds. J. Cereal Sci. 2018, 80, 205–211. [Google Scholar] [CrossRef]
- Mendez, F.; Maier, D.E.; Mason, L.J.; Woloshuk, C.P. Penetration of Ozone into Columns of Stored Grains and Effects on Chemical Composition and Processing Performance. J. Stored Prod. Res. 2002, 39, 33–44. [Google Scholar] [CrossRef]
- de Assis Silva, M.V.; Faroni, L.R.D.; de Alencar, E.R.; de Sousa, A.H.; Cecon, P.R.; Nogueira, J.V.F.; Mason Filho, V. Ozone Injection at Low Pressure: Decomposition Kinetics, Control of Sitophilus zeamais, and Popcorn Kernel Quality. Ozone Sci. Eng. 2022, 44, 66–78. [Google Scholar] [CrossRef]
- da Piedade Edmundo Sitoe, E.; de Alencar, E.R.; Faroni, L.R.D.A.; Fontes, E.A.F.; de Assis Silva, M.V.; Machado, F.J.; Pandiselvam, R.; Magalhães, C.G. Application of Ozone at Low-Pressure: Control of Egg and Larval Phases of Zabrotes subfasciatus, Inactivation of Aspergillus flavus and Qualitative Changes in Bean Grains. Food Control 2024, 158, 110238. [Google Scholar] [CrossRef]
- Madheshiya, P.; Gupta, G.S.; Sahoo, A.; Tiwari, S. Role of Elevated Ozone on Development and Metabolite Contents of Lemongrass [Cymbopogon flexuosus (Steud.) (Wats.)]. Metabolites 2023, 13, 597. [Google Scholar] [CrossRef]
- Marchica, A.; Ascrizzi, R.; Flamini, G.; Cotrozzi, L.; Tonelli, M.; Lorenzini, G.; Nali, C.; Pellegrini, E. Ozone as Eustress for Enhancing Secondary Metabolites and Bioactive Properties in Salvia officinalis. Ind. Crops Prod. 2021, 170, 113730. [Google Scholar] [CrossRef]
- Vali Asill, R.; Azizi, M.; Bahreini, M.; Arouiee, H. The Investigation of Decontamination Effects of Ozone Gas on Microbial Load and Essential Oil of Several Medicinal Plants. Not. Sci. Biol. 2013, 5, 34–38. [Google Scholar] [CrossRef]
- Rakness, K.; Gordon, G.; Langlais, B.; Masschelein, W.; Matsumoto, N.; Richard, Y.; Robson, C.M.; Somiya, I. Guideline for Measurement of Ozone Concentration in the Process Gas from an Ozone Generator. Ozone Sci. Eng. 1996, 18, 209–229. [Google Scholar] [CrossRef]
- Jean-Gilles Beaubrun, J.; Flamer, M.L.; Addy, N.; Ewing, L.; Gopinath, G.; Jarvis, K.; Grim, C.; Hanes, D.E. Evaluation of Corn Oil as an Additive in the Pre-Enrichment Step to Increase Recovery of Salmonella enterica from Oregano. Food Microbiol. 2016, 57, 195–203. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833-1:2013; Microbiology of the Food Chain. Horizontal Method for the Enumeration of Micro-Organisms. Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013.
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Yeasts and Molds. Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. ISO: Geneva, Switzerland, 2008.
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Zenebon, O.; Pascuet, N.S.; Tiglea, P. (Eds.) Métodos Físico-Químicos Para Análise de Alimentos; Instituto Adolfo Lutz: São Paulo, Brazil, 2008; p. 1020. [Google Scholar]
- AOAC. Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Pub Corp: Carol Stream, IL, USA, 2007; Volume 8. [Google Scholar]
- Gruzdev, N.; Pinto, R.; Sela, S. Effect of Desiccation on Tolerance of Salmonella enterica to Multiple Stresses. Appl. Environ. Microbiol. 2011, 77, 1667–1673. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Sunoj, S.; Manikantan, M.R.; Kothakota, A.; Hebbar, K.B. Application and Kinetics of Ozone in Food Preservation. Ozone Sci. Eng. 2017, 39, 115–126. [Google Scholar] [CrossRef]
- Afsah-Hejri, L.; Hajeb, P.; Ehsani, R.J. Application of Ozone for Degradation of Mycotoxins in Food: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1777–1808. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, K.; Gao, M.; Shi, C.; Ge, C.; Qu, D.; Zhu, J.; Shi, Y.; Han, J. Inactivation of Vibrio parahaemolyticus by Aqueous Ozones. J. Microbiol. Biotechnol. 2018, 28, 1233–1246. [Google Scholar] [CrossRef]
- Girgin Ersoy, Z.; Barisci, S.; Dinc, O. Mechanisms of the Escherichia coli and Enterococcus faecalis Inactivation by Ozone. LWT 2019, 100, 306–313. [Google Scholar] [CrossRef]
- Jodzis, S.; Barczyński, T. Ozone Synthesis and Decomposition in Oxygen-Fed Pulsed DBD System: Effect of Ozone Concentration, Power Density, and Residence Time. Ozone Sci. Eng. 2019, 41, 69–79. [Google Scholar] [CrossRef]
- Zhao, J.; Cranston, P.M. Microbial Decontamination of Black Pepper by Ozone and the Effect of the Treatment on Volatile Oil Constituents of the Spice. J. Sci. Food Agric. 1995, 68, 11–18. [Google Scholar] [CrossRef]
- Raila, A.; Lugauskas, A.; Steponavičius, D.; Railiene, M.; Steponavičiene, A.; Zvicevičius, E. Application of Ozone for Reduction of Mycological Infection in Wheat Grain. Ann. Agric. Environ. Med. 2006, 13, 287–294. [Google Scholar]
- Qi, L.; Li, Y.; Luo, X.; Wang, R.; Zheng, R.; Wang, L.; Li, Y.; Yang, D.; Fang, W.; Chen, Z. Detoxification of Zearalenone and Ochratoxin A by Ozone and Quality Evaluation of Ozonised Corn. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 1700–1710. [Google Scholar] [CrossRef]
- Wu, J.; Doan, H.; Cuenca, M.A. Investigation of Gaseous Ozone as an Anti-Fungal Fumigant for Stored Wheat. J. Chem. Technol. Biotechnol. 2006, 81, 1288–1293. [Google Scholar] [CrossRef]
- Ozkan, R.; Smilanick, J.L.; Karabulut, O.A. Toxicity of Ozone Gas to Conidia of Penicillium Digitatum, Penicillium Italicum, and Botrytis Cinerea and Control of Gray Mold on Table Grapes. Postharvest Biol. Technol. 2011, 60, 47–51. [Google Scholar] [CrossRef]
- Gabriel, A.A.; David, M.M.C.; Elpa, M.S.C.; Michelena, J.C.D. Decontamination of Dried Whole Black Peppercorns Using Ultraviolet-c Irradiation. Food Microbiol. 2020, 88, 103401. [Google Scholar] [CrossRef] [PubMed]
- Song, W.J.; Kang, D.H. Inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium in Black and Red Pepper by Vacuumed Hydrogen Peroxide Vapour. J. Appl. Microbiol. 2022, 132, 290–297. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, J.I.; Kang, D.H. Simultaneous Vacuum Ultra Violet-Amalgam Lamp Radiation and near-Infrared Radiation Heating for a Synergistic Bactericidal Effect against Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in Black Peppercorn. Food Res. Int. 2023, 169, 112827. [Google Scholar] [CrossRef]
- Ozel, M.; Karaca, H. Effects of High Concentration-Short Time and Low Concentration-Long Time Ozone Treatments on Growth and Aflatoxin B1 Production of Aspergillus flavus in Red Pepper. Ozone Sci. Eng. 2024, 46, 217–229. [Google Scholar] [CrossRef]
- El Darra, N.; Xie, F.; Kamble, P.; Khan, Z.; Watson, I. Decontamination of Escherichia coli on Dried Onion Flakes and Black Pepper Using Infra-Red, Ultraviolet and Ozone Hurdle Technologies. Heliyon 2021, 7, e07259. [Google Scholar] [CrossRef]
- Alenisan, M.A.; Alqattan, H.H.; Tolbah, L.S.; Shori, A.B. Antioxidant Properties of Dairy Products Fortified with Natural Additives: A Review. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 24, 101–106. [Google Scholar] [CrossRef]
- Alothman, M.; Kaur, B.; Fazilah, A.; Bhat, R.; Karim, A.A. Ozone-Induced Changes of Antioxidant Capacity of Fresh-Cut Tropical Fruits. Innov. Food Sci. Emerg. Technol. 2010, 11, 666–671. [Google Scholar] [CrossRef]
- Nagy, M.; Socaci, S.A.; Tofană, M.; Pop, C.; Mureşan, C.; Pop Cuceu, A.V.; Salanţă, L.; Rotar, A.M. Determination of Total Phenolics, Antioxidant Capacity and Antimicrobial Activity of Selected Aromatic Spices. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2015, 72, 82–85. [Google Scholar] [CrossRef]
- Shelake, P.S.; Mohapatra, D.; Tripathi, M.K.; Giri, S.K. Explicating the Effect of the Ozonation on Quality Parameters of Onion (Allium cepa L.) in Terms of Pungency, Phenolics, Antioxidant Activity, Colour, and Microstructure. Ozone Sci. Eng. 2023, 45, 75–88. [Google Scholar] [CrossRef]
- Hoigné, J.; Bader, H. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water-II. Dissociating Organic Compounds. Water Res. 1983, 17, 185–194. [Google Scholar] [CrossRef]
- Liu, H.; Xu, L.; Yu, F.; Tan, J.; Cao, L.; Xing, Y.; Xu, Q.; Yang, S.; Liu, X.; Yang, P.; et al. Effects of Different Ozone Treatments on the Storage Quality and Stability of Fresh Peeled Garlic. RSC Adv. 2021, 11, 22530–22543. [Google Scholar] [CrossRef] [PubMed]
- Dogu-Baykut, E.; Gunes, G. Effect Of Ultraviolet (UV-C) Light And Gaseous Ozone On Microbial And Color Qualities Of Whole Black Pepper Seeds (Piper nigrum L.). Carpathian J. Food Sci. Technol. 2022, 14, 122–131. [Google Scholar] [CrossRef]
- Tiwari, B.K.; O’Donnell, C.P.; Muthukumarappan, K.; Cullen, P.J. Anthocyanin and Colour Degradation in Ozone Treated Blackberry Juice. Innov. Food Sci. Emerg. Technol. 2009, 10, 70–75. [Google Scholar] [CrossRef]
- Wang, L.; Shao, H.; Luo, X.; Wang, R.; Li, Y.; Li, Y.; Luo, Y.; Chen, Z. Effect of Ozone Treatment on Deoxynivalenol and Wheat Quality. PLoS ONE 2016, 11, e0147613. [Google Scholar] [CrossRef]
- Sharma, R.; Bhandari, M.; Kaur, K.; Singh, A.; Sharma, S.; Kaur, P. Molecular Interactome and Starch–Protein Matrix, Functional Properties, Phytochemical Constituents, and Antioxidant Activity of Foxtail Millet (Setaria italica) Flour as Influenced during Gaseous Ozonation. Cereal Chem. 2022, 99, 1101–1111. [Google Scholar] [CrossRef]
- Ministério da Agricultura e Pecuária. Sislegis: Sistema de Legislação Agrícola; Biblioteca Nacional de Agricultura (Binagri): Brasília, Brazil, 2006.
- Wei, X.; Lau, S.K.; Stratton, J.; Irmak, S.; Subbiah, J. Radiofrequency Pasteurization Process for Inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on Ground Black Pepper. Food Microbiol. 2019, 82, 388–397. [Google Scholar] [CrossRef]
- da Piedade Edmundo Sitoe, E.; Faroni, L.R.D.A.; de Alencar, E.R.; de Assis Silva, M.V.; Salvador, D.V. Low-Pressure Ozone Injection System: Relationship between Reaction Kinetics and Physical Properties of Grains. J. Sci. Food Agric. 2023, 103, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Obadi, M.; Zhu, K.X.; Peng, W.; Noman, A.; Mohammed, K.; Zhou, H.M. Characterization of Oil Extracted from Whole Grain Flour Treated with Ozone Gas. J. Cereal Sci. 2018, 79, 527–533. [Google Scholar] [CrossRef]
- Boateng, J.; Verghese, M.; Walker, L.T.; Ogutu, S. Effect of Processing on Antioxidant Contents in Selected Dry Beans (Phaseolus spp. L.). LWT 2008, 41, 1541–1547. [Google Scholar] [CrossRef]
- Ouf, S.A.; Ali, E.M. Does the Treatment of Dried Herbs with Ozone as a Fungal Decontaminating Agent Affect the Active Constituents? Environ. Pollut. 2021, 277, 116715. [Google Scholar] [CrossRef] [PubMed]
Treatments | Salmonella Determination | |
---|---|---|
Quantitative (log CFU g−1) a | Qualitative (Presence/Absence in 25 g) | |
Control/0 h | 3.87 ± 0.26 | ** |
Control/2 h | 4.21 ± 0.06 | ** |
16 mg L−1/2 h | ˂1.0 * | Present |
Control/4 h | 3.13 ± 0.11 | ** |
16 mg L−1/4 h | ˂1.0 * | Present |
Control/8 h | 4.62 ± 0.07 | ** |
16 mg L−1/8 h | ˂1.0 * | Absent |
Variables | Model Type | Equation | r2/R2 |
---|---|---|---|
TPC | Linear | = 1126.65 − 25.475 * et | 0.8916 |
DPPH* | Square root | = 43.7272 + 0.8146 * et1/2 − 0.1293 ° et | 0.9952 |
Moisture content | - | = 10.01 | - |
pH | Linear | = 5.6266 + 0.0695 ** et | 0.9697 |
TTA | Linear | = 0.1507 + 0.0115 ** et | 0.9767 |
L* | Square root | = 47.26 − 1.8129 ** et1/2 + 0.9713 ** et | 0.9998 |
∆E* | - | = 2.06 | - |
C* | Square root | = 2.2138 − 0.5379 ▪ te1/2 + 0.1206 □ et | 0.9212 |
Variables | TPC 1 | DPPH* 2 | Moisture Content | pH | TTA | L* | ∆E* | C* |
---|---|---|---|---|---|---|---|---|
TPC | 1.000 | −0.130 | 0.239 | 0.163 | −0.204 | −0.373 | −0.021 | −0.356 |
DPPH* | 1.000 | −0.307 | −0.477 | 0.287 | −0.024 | 0.198 | −0.325 | |
Moisture content | 1.000 | −0.412 | 0.484 | 0.279 | 0.386 | −0.048 | ||
pH | 1.000 | −0.922 * | −0.260 | −0.275 | −0.117 | |||
TTA | 1.000 | 0.251 | 0.316 | 0.042 | ||||
L* | 1.000 | 0.036 | 0.313 | |||||
∆E* | 1.000 | −0.388 | ||||||
C* | 1.000 |
Treatments | Salmonella Determination | |
---|---|---|
Quantitative (log CFU g−1) a | Qualitative (Presence/Absence in 25 g) | |
0 injections | 3.87 ± 0.26 | - |
10 injections | 3.25 ± 0.104 | - |
15 injections | ˂1.0 * | Present |
20 injections | ˂1.0 * | Present |
Variables | Model | Equations | r2/R2 |
---|---|---|---|
TPC | Square root | = 1119.69 − 97.8567 * ni1/2 + 8.2652 ° ni | 0.9992 |
DPPH* | Linear | = 55.5732 + 0.1259 ** ni | 0.9922 |
Moisture content | Square root | = 9.9903 + 0.8536 ** ni1/2 − 0.0773 * ni | 0.9999 |
pH | Square root | = 5.6652 − 0.3431 ° ni1/2 + 0.0545 ° ni | 0.9835 |
TTA | Quadratic | = 0.1565 + 0.0158 ** ni − 0.0007 ** ni2 | 0.9996 |
L* | Square root | = 47.2132 – 1.2412 ° ni1/2 + 0.4312 ° ni | 0.5762 |
∆E* | Quadratic | = 1.9399 + 0.1185 ° ni − 0.0075 ° ni2 | 0.7379 |
C* | Quadratic | = 2.2280 − 0.0557 * ni + 0.0009 * ni2 | 0.9993 |
Variables | TPC 1 | DPPH* 2 | Moisture Content | pH | TTA | L* | ∆E* | C* |
---|---|---|---|---|---|---|---|---|
TPC | 1.000 | 0.182 | 0.304 | −0.135 | 0.271 | −0.330 | 0.224 | −0.491 |
DPPH* | 1.000 | 0.906 * | −0.753 * | 0.479 | 0.457 | −0.029 | −0.031 | |
Moisture content | 1.000 | −0.917 * | 0.708 * | 0.353 | −0.100 | 0.002 | ||
pH | 1.000 | −0.842 * | −0.236 | 0.040 | −0.126 | |||
TTA | 1.000 | 0.174 | 0.081 | 0.038 | ||||
L* | 1.000 | −0.370 | 0.384 | |||||
∆E* | 1.000 | −0.353 | ||||||
C* | 1.000 |
Variables | Model | Equations | R2 |
---|---|---|---|
Flow | |||
Yield | - | = 0.7368 | - |
β-pinene | - | = 117.99 | - |
Limonene | - | = 90.34 | - |
Hypobaric chamber | |||
Yield | - | = 0.7868 | - |
β-pinene | Square root | = 131.08 − 29.2906 ° ni1/2 + 4.9403 ° ni | 0.9058 |
Limonene | Quadratic | = 97.9042 − 5.587 * ni + 0.2651 * ni2 | 0.9887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langa Massango, H.d.G.L.; Faroni, L.R.D.; Vanetti, M.C.D.; Alencar, E.R.d.; Silva, M.V.d.A.; Rodrigues, A.A.Z.; Cecon, P.R.; Magalhães, C.G.; Teixeira, D.A.; Rossi, L.E. Efficiency of Ozone Applied in Flow and at Low Pressures in the Inactivation of Salmonella in Black Peppercorns (Piper nigrum L.) and the Effects of Ozone Treatment on Grain Quality and Essential Oil Composition. Foods 2025, 14, 2215. https://doi.org/10.3390/foods14132215
Langa Massango HdGL, Faroni LRD, Vanetti MCD, Alencar ERd, Silva MVdA, Rodrigues AAZ, Cecon PR, Magalhães CG, Teixeira DA, Rossi LE. Efficiency of Ozone Applied in Flow and at Low Pressures in the Inactivation of Salmonella in Black Peppercorns (Piper nigrum L.) and the Effects of Ozone Treatment on Grain Quality and Essential Oil Composition. Foods. 2025; 14(13):2215. https://doi.org/10.3390/foods14132215
Chicago/Turabian StyleLanga Massango, Handina da Graça Lurdes, Lêda Rita D’Antonino Faroni, Maria Cristina Dantas Vanetti, Ernandes Rodrigues de Alencar, Marcus Vinícius de Assis Silva, Alessandra Aparecida Zinato Rodrigues, Paulo Roberto Cecon, Carollayne Gonçalves Magalhães, Daniele Almeida Teixeira, and Letícia Elisa Rossi. 2025. "Efficiency of Ozone Applied in Flow and at Low Pressures in the Inactivation of Salmonella in Black Peppercorns (Piper nigrum L.) and the Effects of Ozone Treatment on Grain Quality and Essential Oil Composition" Foods 14, no. 13: 2215. https://doi.org/10.3390/foods14132215
APA StyleLanga Massango, H. d. G. L., Faroni, L. R. D., Vanetti, M. C. D., Alencar, E. R. d., Silva, M. V. d. A., Rodrigues, A. A. Z., Cecon, P. R., Magalhães, C. G., Teixeira, D. A., & Rossi, L. E. (2025). Efficiency of Ozone Applied in Flow and at Low Pressures in the Inactivation of Salmonella in Black Peppercorns (Piper nigrum L.) and the Effects of Ozone Treatment on Grain Quality and Essential Oil Composition. Foods, 14(13), 2215. https://doi.org/10.3390/foods14132215