Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (250)

Search Parameters:
Keywords = smart home appliance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4852 KiB  
Article
Series Arc Fault Detection Method Based on Time Domain Imaging and Long Short-Term Memory Network for Residential Applications
by Ruobo Chu, Schweitzer Patrick and Kai Yang
Algorithms 2025, 18(8), 497; https://doi.org/10.3390/a18080497 - 11 Aug 2025
Viewed by 287
Abstract
This article presents a novel method for detecting series arc faults (SAFs) in residential applications using time-domain imaging (TDI) and Long Short-Term Memory (LSTM) networks. The proposed method transforms current signals into grayscale images by filtering out the fundamental frequency, allowing key arc [...] Read more.
This article presents a novel method for detecting series arc faults (SAFs) in residential applications using time-domain imaging (TDI) and Long Short-Term Memory (LSTM) networks. The proposed method transforms current signals into grayscale images by filtering out the fundamental frequency, allowing key arc fault characteristics—such as high-frequency noise and waveform distortions—to become visually apparent. The use of Ensemble Empirical Mode Decomposition (EEMD) helped isolate meaningful signal components, although it was computationally intensive. To address real-time requirements, a simpler yet effective TDI method was developed for generating 2D images from current data. These images were then used as inputs to an LSTM network, which captures temporal dependencies and classifies both arc faults and appliance types. The proposed TDI-LSTM model was trained and tested on 7000 labeled datasets across five common household appliances. The experimental results show an average detection accuracy of 98.1%, with reduced accuracy for loads using thyristors (e.g., dimmers). The method is robust across different appliance types and conditions; comparisons with prior methods indicate that the proposed TDI-LSTM approach offers superior accuracy and broader applicability. Trade-offs in sampling rates and hardware implementation were discussed to balance accuracy and system cost. Overall, the TDI-LSTM approach offers a highly accurate, efficient, and scalable solution for series arc fault detection in smart home systems. Full article
(This article belongs to the Special Issue AI and Computational Methods in Engineering and Science)
Show Figures

Graphical abstract

45 pages, 2170 KiB  
Article
EnergiQ: A Prescriptive Large Language Model-Driven Intelligent Platform for Interpreting Appliance Energy Consumption Patterns
by Christoforos Papaioannou, Ioannis Tzitzios, Alexios Papaioannou, Asimina Dimara, Christos-Nikolaos Anagnostopoulos and Stelios Krinidis
Sensors 2025, 25(16), 4911; https://doi.org/10.3390/s25164911 - 8 Aug 2025
Viewed by 280
Abstract
The increased usage of smart sensors has introduced both opportunities and complexities in managing residential energy consumption. Despite advancements in sensor data analytics and machine learning (ML), existing energy management systems (EMS) remain limited in interpretability, adaptability, and user engagement. This paper presents [...] Read more.
The increased usage of smart sensors has introduced both opportunities and complexities in managing residential energy consumption. Despite advancements in sensor data analytics and machine learning (ML), existing energy management systems (EMS) remain limited in interpretability, adaptability, and user engagement. This paper presents EnergiQ, an intelligent, end-to-end platform that leverages sensors and Large Language Models (LLMs) to bridge the gap between technical energy analytics and user comprehension. EnergiQ integrates smart plug-based IoT sensing, time-series ML for device profiling and anomaly detection, and an LLM reasoning layer to deliver personalized, natural language feedback. The system employs statistical feature-based XGBoost classifiers for appliance identification and hybrid CNN-LSTM autoencoders for anomaly detection. Through dynamic user feedback loops and instruction-tuned LLMs, EnergiQ generates context-aware, actionable recommendations that enhance energy efficiency and device management. Evaluations demonstrate high appliance classification accuracy (94%) using statistical feature-based XGBoost and effective anomaly detection across varied devices via a CNN-LSTM autoencoder. The LLM layer, instruction-tuned on a domain-specific dataset, achieved over 91% agreement with expert-written energy-saving recommendations in simulated feedback scenarios. By translating complex consumption data into intuitive insights, EnergiQ empowers consumers to engage with energy use more proactively, fostering sustainability and smarter home practices. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 299
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

33 pages, 1867 KiB  
Article
AI-Enhanced Non-Intrusive Load Monitoring for Smart Home Energy Optimization and User-Centric Interaction
by Xiang Li, Yunhe Chen, Xinyu Jia, Fan Shen, Bowen Sun, Shuqing He and Jia Guo
Informatics 2025, 12(2), 55; https://doi.org/10.3390/informatics12020055 - 17 Jun 2025
Viewed by 916
Abstract
Non-Intrusive Load Monitoring (NILM) technology, enabled by high-precision electrical data acquisition sensors at household entry points, facilitates real-time monitoring of electricity consumption, enhancing user interaction with smart home systems and reducing electrical safety risks. However, the growing diversity of household appliances and limitations [...] Read more.
Non-Intrusive Load Monitoring (NILM) technology, enabled by high-precision electrical data acquisition sensors at household entry points, facilitates real-time monitoring of electricity consumption, enhancing user interaction with smart home systems and reducing electrical safety risks. However, the growing diversity of household appliances and limitations in NILM accuracy and robustness necessitate innovative solutions. Additionally, outdated public datasets fail to capture the rapid evolution of modern appliances. To address these challenges, we constructed a high-sampling-rate voltage–current dataset, measuring 15 common household appliances across diverse scenarios in a controlled laboratory environment tailored to regional grid standards (220 V/50 Hz). We propose an AI-driven NILM method that integrates power-mapped, color-coded voltage–current (V–I) trajectories with frequency-domain features to significantly improve load recognition accuracy and robustness. By leveraging deep learning frameworks, this approach enriches temporal feature representation through chromatic mapping of instantaneous power and incorporates frequency-domain spectrograms to capture dynamic load behaviors. A novel channel-wise attention mechanism optimizes multi-dimensional feature fusion, dynamically prioritizing critical information while suppressing noise. Comparative experiments on the custom dataset demonstrate superior performance, particularly in distinguishing appliances with similar load profiles, underscoring the method’s potential for advancing smart home energy management, user-centric energy feedback, and social informatics applications in complex electrical environments. Full article
Show Figures

Figure 1

26 pages, 9618 KiB  
Article
Predicting Energy Consumption and Time of Use of Home Appliances in an HEMS Using LSTM Networks and Smart Meters: A Case Study in Sincelejo, Colombia
by Zurisaddai Severiche-Maury, Carlos Uc-Ríos, Javier E. Sierra and Alejandro Guerrero
Sustainability 2025, 17(11), 4749; https://doi.org/10.3390/su17114749 - 22 May 2025
Cited by 1 | Viewed by 677
Abstract
Rising household electricity consumption, driven by technological advances and increased indoor activity, has led to higher energy costs and an increased reliance on non-renewable sources, exacerbating the carbon footprint. Home energy management systems (HEMS) are positioning themselves as an efficient alternative by integrating [...] Read more.
Rising household electricity consumption, driven by technological advances and increased indoor activity, has led to higher energy costs and an increased reliance on non-renewable sources, exacerbating the carbon footprint. Home energy management systems (HEMS) are positioning themselves as an efficient alternative by integrating artificial intelligence to improve their accuracy. Predictive algorithms that provide accurate data on the future behavior of energy consumption and appliance usage time are required in these HEMS to achieve this goal. This study presents a predictive model based on recurrent neural networks with long short-term memory (LSTM), known to capture nonlinear relationships and long-term dependencies in time series data. The model predicts individual and total household energy consumption and appliance usage time. Training data were collected for 12 months from an HEMS installed in a typical Colombian house, using smart meters developed in this research. The model’s performance is evaluated using the mean squared error (MSE), reaching a value of 0.0168 kWh2. The results confirm the effectiveness of HEMS and demonstrate that the integration of LSTM-based predictive models can significantly improve energy efficiency and optimize household energy consumption. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

28 pages, 9195 KiB  
Article
Enhancing Sealing Performance Predictions: A Comprehensive Study of XGBoost and Polynomial Regression Models with Advanced Optimization Techniques
by Weiru Zhou and Zonghong Xie
Materials 2025, 18(10), 2392; https://doi.org/10.3390/ma18102392 - 20 May 2025
Cited by 1 | Viewed by 598
Abstract
Motors, as the core carriers of pollution-free power, realize efficient electric energy conversion in clean energy systems such as electric vehicles and wind power generation, and are widely used in industrial automation, smart home appliances, and rail transit fields with their low-noise and [...] Read more.
Motors, as the core carriers of pollution-free power, realize efficient electric energy conversion in clean energy systems such as electric vehicles and wind power generation, and are widely used in industrial automation, smart home appliances, and rail transit fields with their low-noise and zero-emission operating characteristics, significantly reducing the dependence on fossil energy. As the requirements of various application scenarios become increasingly complex, it becomes particularly important to accurately and quickly design the sealing structure of motors. However, traditional design methods show many limitations when facing such challenges. To solve this problem, this paper proposes hybrid models of machine learning that contain polynomial regression and optimization XGBOOST models to rapidly and accurately predict the sealing performance of motors. Then, the hybrid model is combined with the simulated annealing algorithm and multi-objective particle swarm optimization algorithm for optimization. The reliability of the results is verified by the mutual verification of the results of the simulated annealing algorithm and the particle swarm optimization algorithm. The prediction accuracy of the hybrid model for data outside the training set is within 2.881%. Regarding the prediction speed of this model, the computing time of ML is less than 1 s, while the computing time of FEA is approximately 9 h, with an efficiency improvement of 32,400 times. Through the cross-validation of single-objective optimization and multi-objective optimization algorithms, the optimal design scheme is a groove depth of 0.8–0.85 mm and a pre-tightening force of 80 N. The new method proposed in this paper solves the limitations in the design of motor sealing structures, and this method can be extended to other fields for application. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

15 pages, 727 KiB  
Article
The Impact of Power Definitions on the Disaggregation of Home Loads for Smart Meter Measurements
by Vitor Fernão Pires, Armando Cordeiro, Tito G. Amaral, João. F. Martins and Ilhami Colak
Appl. Sci. 2025, 15(9), 5004; https://doi.org/10.3390/app15095004 - 30 Apr 2025
Viewed by 344
Abstract
The use of load-monitoring systems in residential homes is fundamental in the context of smart homes and smart grids. Specifically, these systems will allow, for example, the provision of efficient energy management and/or load forecasting for residential homes. To achieve this goal, these [...] Read more.
The use of load-monitoring systems in residential homes is fundamental in the context of smart homes and smart grids. Specifically, these systems will allow, for example, the provision of efficient energy management and/or load forecasting for residential homes. To achieve this goal, these systems can be based on the concept of a smart meter. However, a smart meter provides aggregate power consumption, which makes it extremely complex to identify individual home appliances, even using advanced algorithms. In line with this, this paper proposes to analyze the impact of power definitions on the disaggregation of home appliance loads. Moreover, it will also consider the distortion of the voltage grid, which is usually not addressed in the resolution of this problem. This effect will be verified through an approach that is based on a genetic algorithm. The approach will be tested through the use of several scenarios, in which an aggregation of home appliances is used. Full article
(This article belongs to the Special Issue Smart Energy Systems for Carbon-Neutral Urban Communities)
Show Figures

Figure 1

31 pages, 5128 KiB  
Article
Enhancing Smart Home Efficiency with Heuristic-Based Energy Optimization
by Yasir Abbas Khan, Faris Kateb, Ateeq Ur Rehman, Atif Sardar Khan, Fazal Qudus Khan, Sadeeq Jan and Ali Naser Alkhathlan
Computers 2025, 14(4), 149; https://doi.org/10.3390/computers14040149 - 16 Apr 2025
Cited by 1 | Viewed by 1200
Abstract
In smart homes, heavy reliance on appliance automation has increased, along with the energy demand in developing urban areas, making efficient energy management an important factor. To address the scheduling of appliances under Demand-Side Management, this article explores the use of heuristic-based optimization [...] Read more.
In smart homes, heavy reliance on appliance automation has increased, along with the energy demand in developing urban areas, making efficient energy management an important factor. To address the scheduling of appliances under Demand-Side Management, this article explores the use of heuristic-based optimization techniques (HOTs) in smart homes (SHs) equipped with renewable and sustainable energy resources (RSERs) and energy storage systems (ESSs). The optimal model for minimization of the peak-to-average ratio (PAR), considering user comfort constraints, is validated by using different techniques, such as the Genetic Algorithm (GA), Binary Particle Swarm Optimization (BPSO), Wind-Driven Optimization (WDO), Bacterial Foraging Optimization (BFO) and the Genetic Modified Particle Swarm Optimization (GmPSO) algorithm, to minimize electricity costs, the PAR, carbon emissions and delay discomfort. This research investigates the energy optimization results of three real-world scenarios. The three scenarios demonstrate the benefits of gradually assembling RSERs and ESSs and integrating them into SHs employing HOTs. The simulation results show substantial outcomes, as in the scenario of Condition 1, GmPSO decreased carbon emissions from 300 kg to 69.23 kg, reducing emissions by 76.9%; bill prices were also cut from an unplanned value of 400.00 cents to 150 cents, a 62.5% reduction. The PAR was decreased from an unscheduled value of 4.5 to 2.2 with the GmPSO algorithm, which reduced the value by 51.1%. The scenario of Condition 2 showed that GmPSO reduced the PAR from 0.5 (unscheduled) to 0.2, a 60% reduction; the costs were reduced from 500.00 cents to 200.00 cents, a 60% reduction; and carbon emissions were reduced from 250.00 kg to 150 kg, a 60% reduction by GmPSO. In the scenario of Condition 3, where batteries and RSERs were integrated, the GmPSO algorithm reduced the carbon emission value to 158.3 kg from an unscheduled value of 208.3 kg, a reduction of 24%. The energy cost was decreased from an unplanned value of 500 cents to 300 cents with GmPSO, decreasing the overall cost by 40%. The GmPSO algorithm achieved a 57.1% reduction in the PAR value from an unscheduled value of 2.8 to 1.2. Full article
Show Figures

Figure 1

25 pages, 4434 KiB  
Article
Transforming Building Energy Management: Sparse, Interpretable, and Transparent Hybrid Machine Learning for Probabilistic Classification and Predictive Energy Modelling
by Yiping Meng, Yiming Sun, Sergio Rodriguez and Binxia Xue
Architecture 2025, 5(2), 24; https://doi.org/10.3390/architecture5020024 - 31 Mar 2025
Cited by 1 | Viewed by 932
Abstract
The building sector, responsible for 40% of global energy consumption, faces increasing demands for sustainability and energy efficiency. Accurate energy consumption forecasting is essential to optimise performance and reduce environmental impact. This study introduces a hybrid machine learning framework grounded in Sparse, Interpretable, [...] Read more.
The building sector, responsible for 40% of global energy consumption, faces increasing demands for sustainability and energy efficiency. Accurate energy consumption forecasting is essential to optimise performance and reduce environmental impact. This study introduces a hybrid machine learning framework grounded in Sparse, Interpretable, and Transparent (SIT) modelling to enhance building energy management. Leveraging the REFIT Smart Home Dataset, the framework integrates occupancy pattern analysis, appliance-level energy prediction, and probabilistic uncertainty quantification. The framework clusters occupancy-driven energy usage patterns using K-means and Gaussian Mixture Models, identifying three distinct household profiles: high-energy frequent occupancy, moderate-energy variable occupancy, and low-energy irregular occupancy. A Random Forest classifier is employed to pinpoint key appliances influencing occupancy, with a drop-in accuracy analysis verifying their predictive power. Uncertainty analysis quantifies classification confidence, revealing ambiguous periods linked to irregular appliance usage patterns. Additionally, time-series decomposition and appliance-level predictions are contextualised with seasonal and occupancy dynamics, enhancing interpretability. Comparative evaluations demonstrate the framework’s superior predictive accuracy and transparency over traditional single machine learning models, including Support Vector Machines (SVM) and XGBoost in Matlab 2024b and Python 3.10. By capturing occupancy-driven energy behaviours and accounting for inherent uncertainties, this research provides actionable insights for adaptive energy management. The proposed SIT hybrid model can contribute to sustainable and resilient smart energy systems, paving the way for efficient building energy management strategies. Full article
Show Figures

Figure 1

29 pages, 8201 KiB  
Article
Improving Energy Efficiency in Buildings with an IoT-Based Smart Monitoring System
by Fateme Dinmohammadi, Anaah M. Farook and Mahmood Shafiee
Energies 2025, 18(5), 1269; https://doi.org/10.3390/en18051269 - 5 Mar 2025
Cited by 2 | Viewed by 5789
Abstract
With greenhouse gas emissions and climate change continuing to be major global concerns, researchers are increasingly focusing on reducing energy consumption as a key strategy to address these challenges. In recent years, various devices and technologies have been developed for residential buildings to [...] Read more.
With greenhouse gas emissions and climate change continuing to be major global concerns, researchers are increasingly focusing on reducing energy consumption as a key strategy to address these challenges. In recent years, various devices and technologies have been developed for residential buildings to implement energy-saving strategies and enhance energy efficiency. This paper presents a real-time IoT-based smart monitoring system designed to optimize energy consumption and enhance residents’ safety through efficient monitoring of home conditions and appliance usage. The system is built on a Raspberry Pi Model 4B as its core platform, integrating various IoT sensors, including the DS18B20 for temperature monitoring, the BH1750 for measuring light intensity, a passive infrared (PIR) sensor for motion detection, and the MQ7 sensor for carbon monoxide detection. The Adafruit IO platform is used for both data storage and the design of a graphical user interface (GUI), enabling residents to remotely control their home environment. Our solution significantly enhances energy efficiency by monitoring the status of lighting and heating systems and notifying users when these systems are active in unoccupied areas. Additionally, safety is improved through IFTTT notifications, which alert users if the temperature exceeds a set limit or if carbon monoxide is detected. The smart home monitoring device is tested in a university residential building, demonstrating its reliability, accuracy, and efficiency in detecting and monitoring various home conditions. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

43 pages, 7920 KiB  
Article
An Expected Value-Based Symmetric–Asymmetric Polygonal Fuzzy Z-MCDM Framework for Sustainable–Smart Supplier Evaluation
by Mohammad Hashemi-Tabatabaei, Maghsoud Amiri and Mehdi Keshavarz-Ghorabaee
Information 2025, 16(3), 187; https://doi.org/10.3390/info16030187 - 28 Feb 2025
Viewed by 739
Abstract
Background: Nowadays, traditional supply chain management (SCM) processes are undergoing a profound transformation enabled by advanced technologies derived from Industry 4.0. The rapid adoption of these technologies has led to the emergence of smart SCM, which integrates modern technologies in sourcing, production, distribution, [...] Read more.
Background: Nowadays, traditional supply chain management (SCM) processes are undergoing a profound transformation enabled by advanced technologies derived from Industry 4.0. The rapid adoption of these technologies has led to the emergence of smart SCM, which integrates modern technologies in sourcing, production, distribution, and sales. Supplier evaluation and selection (SES) in smart SCM is a strategic decision impacting the entire supply chain. Organizations must also incorporate sustainability principles into their strategic decisions alongside smart production and efficiency. Methods: The main objective of this study is to develop a multi-criteria decision-making (MCDM) approach under uncertainty to address sustainable–smart supplier evaluation and selection problems. The approach integrates polygonal fuzzy numbers (POFNs), Z-numbers, expected interval (EI), and expected value (EV) to develop methods such as the logarithmic methodology of additive weights (LMAW) and the weighted aggregated sum product assessment (WASPAS), which are used to prioritize criteria and rank suppliers. Furthermore, novel approaches are introduced for calculating membership functions, a-cut formulations, and the crispification process in POFNs. Results: A real case study in the home appliance industry revealed that cost reduction through smart technologies, green and smart logistics and manufacturing, and smart working environments are the most critical evaluation criteria. Suppliers three and four, excelling in these areas, were identified as top suppliers. Conclusions: The proposed approaches effectively addressed hybrid uncertainty in SES problems within smart SCM. Finally, sensitivity and comparative analysis confirmed their robustness and reliability. Full article
Show Figures

Graphical abstract

23 pages, 5269 KiB  
Article
Monitoring Daily Activities in Households by Means of Energy Consumption Measurements from Smart Meters
by Álvaro Hernández, Rubén Nieto, Laura de Diego-Otón, José M. Villadangos-Carrizo, Daniel Pizarro, David Fuentes and María C. Pérez-Rubio
J. Sens. Actuator Netw. 2025, 14(2), 25; https://doi.org/10.3390/jsan14020025 - 27 Feb 2025
Viewed by 1382
Abstract
Non-Intrusive Load Monitoring (NILM) includes a set of methods orientated to disaggregating the power consumption of a household per appliance. It is commonly based on a single metering point, typically a smart meter at the entry of the electrical grid of the building, [...] Read more.
Non-Intrusive Load Monitoring (NILM) includes a set of methods orientated to disaggregating the power consumption of a household per appliance. It is commonly based on a single metering point, typically a smart meter at the entry of the electrical grid of the building, where signals of interest, such as voltage or current, can be measured and analyzed in order to disaggregate and identify which appliance is turned on/off at any time. Although this information is key for further applications linked to energy efficiency and management, it may also be applied to social and health contexts. Since the activation of the appliances in a household is related to certain daily activities carried out by the corresponding tenants, NILM techniques are also interesting in the design of remote monitoring systems that can enhance the development of novel feasible healthcare models. Therefore, these techniques may foster the independent living of elderly and/or cognitively impaired people in their own homes, while relatives and caregivers may have access to additional information about a person’s routines. In this context, this work describes an intelligent solution based on deep neural networks, which is able to identify the daily activities carried out in a household, starting from the disaggregated consumption per appliance provided by a commercial smart meter. With the daily activities identified, the usage patterns of the appliances and the corresponding behaviour can be monitored in the long term after a training period. In this way, every new day may be assessed statistically, thus providing a score about how similar this day is to the routines learned during the training interval. The proposal has been experimentally validated by means of two commercially available smart monitors installed in real houses where tenants followed their daily routines, as well as by using the well-known database UK-DALE. Full article
Show Figures

Figure 1

30 pages, 2817 KiB  
Article
Enhanced Energy Management System in Smart Homes Considering Economic, Technical, and Environmental Aspects: A Novel Modification-Based Grey Wolf Optimizer
by Moslem Dehghani, Seyyed Mohammad Bornapour and Ehsan Sheybani
Energies 2025, 18(5), 1071; https://doi.org/10.3390/en18051071 - 22 Feb 2025
Cited by 2 | Viewed by 979
Abstract
Increasingly, renewable energy resources, energy storage systems (ESSs), and demand response programs (DRPs) are being discussed due to environmental concerns and smart grid developments. An innovative home appliance scheduling scheme is presented in this paper, which incorporates a local energy grid with wind [...] Read more.
Increasingly, renewable energy resources, energy storage systems (ESSs), and demand response programs (DRPs) are being discussed due to environmental concerns and smart grid developments. An innovative home appliance scheduling scheme is presented in this paper, which incorporates a local energy grid with wind turbines (WTs), photovoltaic (PV), and ESS, which is connected to an upstream grid, to schedule household appliances while considering various constraints and DRP. Firstly, the household appliances are specified as non-shiftable and shiftable (interruptible, and uninterruptible) loads, respectively. Secondly, an enhanced mathematical formulation is presented for smart home energy management which considers the real-time price of upstream grids, the price of WT, and PV, and also the sold energy from the smart home to the microgrid. Three objective functions are considered in the proposed energy management: electricity bill, peak-to-average ratio (PAR), and pollution emissions. To solve the optimization problem, a novel modification-based grey wolf optimizer (GWO) is proposed. When the wolves hunt prey, other wild animals try to steal the prey or some part of the prey, hence they should protect the prey; therefore, this modification mimics the battle between the grey wolves and other wild animals for the hunted prey. This modification improves the performance of the GWO in finding the best solution. Simulations are examined and compared under different conditions to explore the effectiveness and efficiency of the suggested scheme for simultaneously optimizing all three objective functions. Also, both GWO and improved GWO (IGWO) are compared under different scenarios, which shows that IGWO improvement has better performance and is more robust. It has been seen in the results that the suggested framework can significantly diminish the energy costs, PAR, and emissions simultaneously. Full article
(This article belongs to the Special Issue Breakthroughs in Sustainable Energy and Economic Development)
Show Figures

Figure 1

18 pages, 721 KiB  
Article
A Knowledge Graph-Based Framework for Smart Home Device Action Recommendation and Demand Response
by Wenzhi Chen, Hongjian Sun, Minglei You, Jing Jiang and Marco Rivera
Energies 2025, 18(4), 833; https://doi.org/10.3390/en18040833 - 11 Feb 2025
Viewed by 893
Abstract
Within smart homes, consumers could generate a vast amount of data that, if analyzed effectively, can improve the convenience of consumers and reduce energy consumption. In this paper, we propose to organize household appliance data into a knowledge graph by using the consumers’ [...] Read more.
Within smart homes, consumers could generate a vast amount of data that, if analyzed effectively, can improve the convenience of consumers and reduce energy consumption. In this paper, we propose to organize household appliance data into a knowledge graph by using the consumers’ usage habits, the periods of usage, and the location information for graph modeling. A framework, ‘DARK’ (Device Action Recommendation with Knowledge graphs), is proposed that includes three parts for enabling demand response. Firstly, a household device action recommendation algorithm is proposed that improves the knowledge graph attention algorithm to make accurate household appliance recommendations. Secondly, graph interpretable characteristics are developed in the DARK using trained graph embeddings. Finally, with the recommendation expectation, the consumers’ comfort level and appliances’ average power load are modeled as a multi-objective optimization problem in the DARK to participate in demand response. The results demonstrate that the proposed system can generate appliances’ action recommendations with an average of 93.4% accuracy and reduce power load by up to 20% while providing reasonable interpretations for the device action recommendation results on the customized UK-DALE dataset. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

24 pages, 4904 KiB  
Article
Deep Learning-Based Home Energy Management Incorporating Vehicle-to-Home and Home-to-Vehicle Technologies for Renewable Integration
by Marwan Mahmoud and Sami Ben Slama
Energies 2025, 18(1), 129; https://doi.org/10.3390/en18010129 - 31 Dec 2024
Cited by 3 | Viewed by 1629
Abstract
Smart cities embody a transformative approach to modernizing urban infrastructure and harness the power of deep learning (DL) and Vehicle-to-Home (V2H) technology to redefine home energy management. Neural network-based Q-learning algorithms optimize the scheduling of household appliances and the management of energy storage [...] Read more.
Smart cities embody a transformative approach to modernizing urban infrastructure and harness the power of deep learning (DL) and Vehicle-to-Home (V2H) technology to redefine home energy management. Neural network-based Q-learning algorithms optimize the scheduling of household appliances and the management of energy storage systems, including batteries, to maximize energy efficiency. Data preprocessing techniques, such as normalization, standardization, and missing value imputation, are applied to ensure that the data used for decision making are accurate and reliable. V2H technology allows for efficient energy exchange between electric vehicles (EVs) and homes, enabling EVs to act as both energy storage and supply sources, thus improving overall energy consumption and reducing reliance on the grid. Real-time data from photovoltaic (PV) systems are integrated, providing valuable inputs that further refine energy management decisions and align them with current solar energy availability. The system also incorporates battery storage (BS), which is critical in optimizing energy usage during peak demand periods and providing backup power during grid outages, enhancing energy reliability and sustainability. By utilizing data from a Tunisian weather database, smart cities significantly reduce electricity costs compared to traditional energy management methods, such as Dynamic Programming (DP), Rule-Based Systems, and Genetic Algorithms. The system’s performance is validated through robust AI models, performance metrics, and simulation scenarios, which test the system’s effectiveness under various energy demand patterns and changing weather conditions. These simulations demonstrate the system’s ability to adapt to different operational environments. Full article
(This article belongs to the Special Issue Advances and Optimization of Electric Energy System—2nd Edition)
Show Figures

Figure 1

Back to TopTop