Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (546)

Search Parameters:
Keywords = sliding-mode controller (SMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3001 KiB  
Article
Tractor Path Tracking Control Method Based on Prescribed Performance and Sliding Mode Control
by Liwei Zhu, Weiming Sun, Qian Zhang, En Lu, Jialin Xue and Guohui Sha
Agriculture 2025, 15(15), 1663; https://doi.org/10.3390/agriculture15151663 - 1 Aug 2025
Viewed by 82
Abstract
In addressing the challenges of low path tracking accuracy and poor robustness during tractor autonomous operation, this paper proposes a path tracking control method for tractors that integrates prescribed performance with sliding mode control (SMC). A key feature of this control method is [...] Read more.
In addressing the challenges of low path tracking accuracy and poor robustness during tractor autonomous operation, this paper proposes a path tracking control method for tractors that integrates prescribed performance with sliding mode control (SMC). A key feature of this control method is its inherent immunity to system parameter perturbations and external disturbances, while ensuring path tracking errors are constrained within a predefined range. First, the tractor is simplified into a two-wheeled vehicle model, and a path tracking error model is established based on the reference operation trajectory. By defining a prescribed performance function, the constrained tracking control problem is transformed into an unconstrained stability control problem, guaranteeing the boundedness of tracking errors. Then, by incorporating SMC theory, a prescribed performance sliding mode path tracking controller is designed to achieve robust path tracking and error constraint for the tractor. Finally, both simulation and field experiments are conducted to validate the method. The results demonstrate that compared with the traditional SMC method, the proposed method effectively mitigates the impact of complex farmland conditions, reducing path tracking errors while enforcing strict error constraints. Field experiment data shows the proposed method achieves an average absolute error of 0.02435 m and a standard deviation of 0.02795 m, confirming its effectiveness and superiority. This research lays a foundation for the intelligent development of agricultural machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 2136 KiB  
Article
Mitigating Intermittency in Offshore Wind Power Using Adaptive Nonlinear MPPT Control Techniques
by Muhammad Waqas Ayub, Inam Ullah Khan, George Aggidis and Xiandong Ma
Energies 2025, 18(15), 4041; https://doi.org/10.3390/en18154041 - 29 Jul 2025
Viewed by 220
Abstract
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To [...] Read more.
This paper addresses the challenge of maximizing power extraction in offshore wind energy systems through the development of an enhanced maximum power point tracking (MPPT) control strategy. Offshore wind energy is inherently intermittent, leading to discrepancies between power generation and electricity demand. To address this issue, we propose three advanced control algorithms to perform a comparative analysis: sliding mode control (SMC), the Integral Backstepping-Based Real-Twisting Algorithm (IBRTA), and Feed-Back Linearization (FBL). These algorithms are designed to handle the nonlinear dynamics and aerodynamic uncertainties associated with offshore wind turbines. Given the practical limitations in acquiring accurate nonlinear terms and aerodynamic forces, our approach focuses on ensuring the adaptability and robustness of the control algorithms under varying operational conditions. The proposed strategies are rigorously evaluated through MATLAB/Simulink 2024 A simulations across multiple wind speed scenarios. Our comparative analysis demonstrates the superior performance of the proposed methods in optimizing power extraction under diverse conditions, contributing to the advancement of MPPT techniques for offshore wind energy systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

27 pages, 3529 KiB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 185
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

25 pages, 674 KiB  
Article
Sensor Fault Detection and Reliable Control of Singular Stochastic Systems with Time-Varying Delays
by Yunling Shi, Haosen Yang, Gang Liu, Xiaolin He and Jajun Wang
Sensors 2025, 25(15), 4667; https://doi.org/10.3390/s25154667 - 28 Jul 2025
Viewed by 164
Abstract
In unmanned systems, especially in large-scale and complex ones, sensor and communication failures occur from time to time and are hard to avoid. Therefore, this paper studies the fault detection problem of a class of unknown nonlinear singular uncertain time-varying delay Markov jump [...] Read more.
In unmanned systems, especially in large-scale and complex ones, sensor and communication failures occur from time to time and are hard to avoid. Therefore, this paper studies the fault detection problem of a class of unknown nonlinear singular uncertain time-varying delay Markov jump systems (UNSUTVDMJSs). Firstly, the corresponding sliding mode controller (SMC) is designed by using the equivalent control principle, and the unknown nonlinearity is equivalently replaced by changing the system input. Then, a fault detection filter adapted to this system is designed, thereby obtaining the unknown nonlinear stochastic singular uncertain Augmented filter residual system (UNSSUAFRS) model. To obtain the sufficient conditions for the random admissibility of this augmented system, a weak infinitesimal generator was used to design the required Lyapunov-Krasovskii functional. With the help of the Lyapunov principle and H performance analysis method, the sufficient conditions for the random admissibility of UNSSUAFRS under the H performance index γ were derived. Finally, with the aid of the designed residual evaluation function and threshold, simulation analysis was conducted on the examples of DC servo motors and numerical calculation examples to verify the effectiveness and practicability of this fault detection filter. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

32 pages, 5721 KiB  
Review
Control Strategies for Two-Wheeled Self-Balancing Robotic Systems: A Comprehensive Review
by Huaqiang Zhang and Norzalilah Mohamad Nor
Robotics 2025, 14(8), 101; https://doi.org/10.3390/robotics14080101 - 26 Jul 2025
Viewed by 255
Abstract
Two-wheeled self-balancing robots (TWSBRs) are underactuated, inherently nonlinear systems that exhibit unstable dynamics. Due to their structural simplicity and rich control challenges, TWSBRs have become a standard platform for validating and benchmarking various control algorithms. This paper presents a comprehensive and structured review [...] Read more.
Two-wheeled self-balancing robots (TWSBRs) are underactuated, inherently nonlinear systems that exhibit unstable dynamics. Due to their structural simplicity and rich control challenges, TWSBRs have become a standard platform for validating and benchmarking various control algorithms. This paper presents a comprehensive and structured review of control strategies applied to TWSBRs, encompassing classical linear approaches such as PID and LQR, modern nonlinear methods including sliding mode control (SMC), model predictive control (MPC), and intelligent techniques such as fuzzy logic, neural networks, and reinforcement learning. Additionally, supporting techniques such as state estimation, observer design, and filtering are discussed in the context of their importance to control implementation. The evolution of control theory is analyzed, and a detailed taxonomy is proposed to classify existing works. Notably, a comparative analysis section is included, offering practical guidelines for selecting suitable control strategies based on system complexity, computational resources, and robustness requirements. This review aims to support both academic research and real-world applications by summarizing key methodologies, identifying open challenges, and highlighting promising directions for future development. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

12 pages, 3174 KiB  
Article
Modeling and Control for an Aerial Work Quadrotor with a Robotic Arm
by Wenwu Zhu, Fanzeng Wu, Haibo Du, Lei Li and Yao Zhang
Actuators 2025, 14(7), 357; https://doi.org/10.3390/act14070357 - 21 Jul 2025
Viewed by 247
Abstract
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian [...] Read more.
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian energy conservation principle is adopted. By treating the quadrotor and robotic arm as a unified system, an integrated dynamic model is developed, which accurately captures the coupled dynamics between the aerial platform and the manipulator. The innovative approach fills the gap in existing research where model expressions are incomplete and parameters are ambiguous. Next, to reduce the adverse effects of the robotic arm’s motion on the entire system stability, a finite-time disturbance observer and a fast non-singular terminal sliding mode controller (FNTSMC) are designed. Lyapunov theory is used to prove the finite-time stability of the closed-loop system. It breaks through the limitations of the traditional Lipschitz framework and, for the first time at both the theoretical and methodological levels, achieves finite-time convergence control for the aerial work quadrotor with a robotic arm system. Finally, comparative simulations with the integral sliding mode controller (ISMC), sliding mode controller (SMC), and PID controller demonstrate that the proposed algorithm reduces the regulation time by more than 45% compared to ISMC and SMC, and decreases the overshoot by at least 68% compared to the PID controller, which improves the convergence performance and disturbance rejection capability of the closed-loop system. Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
Show Figures

Figure 1

19 pages, 12234 KiB  
Article
Non-Singular Terminal Sliding Mode Control for a Three-Phase Inverter Connected to an Ultra-Weak Grid
by Abdullah M. Noman, Abu Sufyan, Mohsin Jamil and Sulaiman Z. Almutairi
Electronics 2025, 14(14), 2894; https://doi.org/10.3390/electronics14142894 - 19 Jul 2025
Viewed by 176
Abstract
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly [...] Read more.
The quality of a grid-injected current in LCL-type grid-connected inverters (GCI) degrades under ultra-weak grid conditions, posing serious challenges to the stability of the GCI system. For this purpose, the sliding mode control (SMC) approach has been utilized to integrate DC energy seamlessly into the grid. The control performance of a GCI equipped with an LCL filter is greatly reduced when it is operating in a power grid with varying impedance and fluctuating grid voltages, which may result in poor current quality and possible instability in the system. A non-singular double integral terminal sliding mode (DIT-SMC) control is presented in this paper for a three-phase GCI with an LCL filter. The proposed method is presented in the α, β frame of reference without adopting an active or passive damping approach, reducing the computational burden. MATLAB/Simulink Version R2023b is leveraged to simulate the mathematical model of the proposed control system. The capability of the DIT-SMC method is validated through the OPAL-RT hardware-in-loop (HIL) platform. The effectiveness of the proposed method is first compared with SMC and integral terminal SMC, and then the DIT-SMC method is rigorously analyzed under resonance frequency events, grid impedance variation, and grid voltage distortions. It is demonstrated by the experimental results that the proposed control is highly effective in delivering a high-quality current into the grid, in spite of the simultaneous occurrence of power grid impedance variations in 6 mH and large voltage distortions. Full article
(This article belongs to the Topic Power Electronics Converters, 2nd Edition)
Show Figures

Figure 1

17 pages, 4656 KiB  
Article
Improved Super-Twisting Sliding Mode Control of a Brushless Doubly Fed Induction Generator for Standalone Ship Shaft Power Generation Systems
by Xueran Fei, Minghao Zhou, Yingyi Jiang, Longbin Jiang, Yi Liu and Yan Yan
J. Mar. Sci. Eng. 2025, 13(7), 1358; https://doi.org/10.3390/jmse13071358 - 17 Jul 2025
Viewed by 209
Abstract
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused [...] Read more.
This study proposes an improved super-twisting sliding mode (STSM) control method for a brushless doubly fed induction generator (BDFIG) used in standalone ship shaft power generation systems. Focusing on the problem of the low tracking accuracy of the power winding (PW) voltages caused by the parameter perturbation of BDFIG systems, a mismatched uncertain model of the BDFIG is constructed. Additionally, an improved STSM control method is proposed to address the power load variation and compensate for the mismatched uncertainty through virtual control technology. Based on the direct vector control of the control winding (CW), the proposed method ensured that the voltage amplitude error of the power winding could converge to the equilibrium point rather than the neighborhood. Finally, in the experimental investigation of the BDFIG-based ship shaft independent power system, the dynamic performance in the startup and power load changing conditions were analyzed. The experimental results show that the proposed improved STSM controller has a faster dynamic response and higher steady-state accuracy than the proportional integral control and the linear sliding mode control, with strong robustness to the mismatched uncertainties caused by parameter perturbations. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

16 pages, 1998 KiB  
Article
Marginal Design of a Pneumatic Stage Position Using Filtered Right Coprime Factorization and PPC-SMC
by Tomoya Hoshina, Yusaku Tanabata and Mingcong Deng
Axioms 2025, 14(7), 534; https://doi.org/10.3390/axioms14070534 - 15 Jul 2025
Viewed by 166
Abstract
In recent years, pneumatic stages have attracted attention as stages for semiconductor manufacturing equipment due to their low cost and minimal maintenance requirements. However, pneumatic stages include nonlinear elements such as friction and air compressibility, making precise control challenging. To address this issue, [...] Read more.
In recent years, pneumatic stages have attracted attention as stages for semiconductor manufacturing equipment due to their low cost and minimal maintenance requirements. However, pneumatic stages include nonlinear elements such as friction and air compressibility, making precise control challenging. To address this issue, this paper aims to achieve high-precision positioning by applying a nonlinear position control method to pneumatic stages. To achieve this, we propose a control method that combines filtered right coprime factorization and Prescribed Performance Control–Sliding Mode Control (PPC-SMC). Filtered right coprime factorization not only stabilizes and simplifies the plant but also reduces noise. Furthermore, PPC-SMC enables safer and faster control by constraining the system state within a switching surface that imposes limits on the error range. Through experiments on the actual system, it was confirmed that the proposed method achieves dramatically higher precision and faster tracking compared to conventional methods. Full article
(This article belongs to the Special Issue New Perspectives in Control Theory)
Show Figures

Figure 1

16 pages, 1503 KiB  
Article
Novel Fast Super Twisting for Dynamic Performance Enhancement of Double-Fed Induction-Generator-Based Wind Turbine: Stability Proof and Steady State Analysis
by Belgacem Kheira, Atig Mebarka, Abdelli Houaria and Mezouar Abdelkader
Energies 2025, 18(14), 3655; https://doi.org/10.3390/en18143655 - 10 Jul 2025
Viewed by 217
Abstract
The Super-Twisting Sliding Mode Controller (STSMC) is regarded as one of the most straightforward and most practical nonlinear control systems, due to its ease of application in industrial systems. Its application helps minimize the chattering problem and significantly improves the resilience of the [...] Read more.
The Super-Twisting Sliding Mode Controller (STSMC) is regarded as one of the most straightforward and most practical nonlinear control systems, due to its ease of application in industrial systems. Its application helps minimize the chattering problem and significantly improves the resilience of the system. This controller possesses multiple deficiencies and issues, as its use does not promote the expected improvement of systems. To overcome these shortcomings and optimize the efficiency and performance of this technique, a new method is suggested for the super-twisting algorithm (STA). This study proposes and uses a new STA approach, named the fast super-twisting algorithm (FSTA), utilized the conventional IFOC technique to mitigate fluctuations in torque, current, and active power. The results from this suggested the IFOC-FSTA method are compared with those of the traditional SMC and STA methods. The results obtained from this study demonstrate that the suggested method, which is based on FSTA, has outperformed the traditional method in terms of ripple ratio and response dynamics. This demonstrates the robustness of the proposed approach to optimize the generator performance and efficiency in the double-fed induction generator-based wind system. Full article
Show Figures

Figure 1

23 pages, 6307 KiB  
Article
Enhanced Sliding Mode Control for Dual MPPT Systems Integrated with Three-Level T-Type PV Inverters
by Farzaneh Bagheri, Jakson Bonaldo, Naki Guler, Marco Rivera, Patrick Wheeler and Rogerio Lima
Energies 2025, 18(13), 3344; https://doi.org/10.3390/en18133344 - 26 Jun 2025
Viewed by 361
Abstract
Dual Maximum Power Point Tracking (MPPT) inverters are essential in residential and small commercial solar power systems, optimizing power extraction from two independent solar panel arrays to enhance efficiency and energy harvesting. On the other hand, the Three-Level T-Type Voltage Source Inverter (3L [...] Read more.
Dual Maximum Power Point Tracking (MPPT) inverters are essential in residential and small commercial solar power systems, optimizing power extraction from two independent solar panel arrays to enhance efficiency and energy harvesting. On the other hand, the Three-Level T-Type Voltage Source Inverter (3L T-Type VSI) is known for its reduced switching losses, improved harmonic distortion, and reduced part count in comparison to other three-level topologies. In this paper, a novel architecture is proposed to integrate the dual MPPT structure directly to each DC-side split capacitor of the 3L T-Type VSI, taking advantage of the intrinsic characteristics of the inverter’s topology. Further performance enhancement is achieved by integrating a classical MPPT strategy to the control framework to make it feasible for a real-case grid integration. The combination of these methods ensures faster and stable tracking under dynamic irradiance conditions. Considering that strategies dedicated to balancing the DC-link capacitor’s voltage slightly affect the AC-side current waveform, an enhanced sliding mode control (SMC) strategy tailored for dual MPPT and 3L T-Type VSI is deployed, combining the simplicity of conventional PI controllers used in the independent MPPT-based DC-DC converters with the superior robustness and dynamic performance of SMC. Real-time results obtained using the OPAL-RT Hardware-in-the-Loop platform validated the performance of the proposed control strategy under realistic test scenarios. The current THD was maintained below 4.8% even under highly distorted grid conditions, and the controller achieved a steady state within approximately 15 ms following perturbations in the DC-link voltage, sudden irradiance variations, and voltage sags and swells. Additionally, the power factor remained unitary, enhancing power transfer from the renewable source to the grid. The proposed system was able to achieve efficient power extraction while maintaining high power quality (PQ) standards for the output, positioning it as a practical and flexible solution for advanced solar PV systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 2094 KiB  
Article
Fuzzy-Adaptive Nonsingular Terminal Sliding Mode Control for the High-Speed Aircraft Actuator Trajectory Tracking
by Tieniu Chen, Xiaozhou He, Yunjiang Lou, Houde Liu, Lunfei Liang and Kunfeng Zhang
Aerospace 2025, 12(7), 578; https://doi.org/10.3390/aerospace12070578 - 26 Jun 2025
Viewed by 376
Abstract
High-speed aircraft actuators are critical for precise control of aerodynamic surfaces, demanding fast response, accuracy, and robustness against uncertainties and disturbances. However, the complex nonlinear dynamics of these systems pose significant challenges for conventional control methods. Sliding mode control (SMC) offers robust performance [...] Read more.
High-speed aircraft actuators are critical for precise control of aerodynamic surfaces, demanding fast response, accuracy, and robustness against uncertainties and disturbances. However, the complex nonlinear dynamics of these systems pose significant challenges for conventional control methods. Sliding mode control (SMC) offers robust performance and rapid transient response but is hindered by chattering, which can degrade performance. To address this, this paper proposes an innovative nonlinear control strategy that integrates global nonsingular terminal sliding mode control (NTSMC) for finite-time convergence with fuzzy logic-based adaptive gain tuning to mitigate chattering and suppress oscillations. A prototype actuator and experimental platform were developed to validate the approach. Experimental results demonstrate superior dynamic response and disturbance rejection compared to traditional methods, highlighting the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

18 pages, 1451 KiB  
Article
Sustainable Trajectory Tracking Control for Underactuated Ships Using Non-Singular Fast Terminal Sliding Mode Control
by Minjie Zheng, Qianqiang Chen, Yulai Su and Guoquan Chen
Sustainability 2025, 17(13), 5866; https://doi.org/10.3390/su17135866 - 26 Jun 2025
Viewed by 278
Abstract
Accurate and robust trajectory tracking is essential for ensuring the safety and efficiency of underactuated ships operating in complex marine environments. However, conventional sliding mode control (SMC) methods often suffer from issues such as chattering and slow convergence, limiting their practical application. To [...] Read more.
Accurate and robust trajectory tracking is essential for ensuring the safety and efficiency of underactuated ships operating in complex marine environments. However, conventional sliding mode control (SMC) methods often suffer from issues such as chattering and slow convergence, limiting their practical application. To address these challenges, this paper proposes a novel non-singular fast terminal sliding mode control (NFTSMC) strategy for sustainable trajectory tracking of underactuated ships. The proposed approach first designs a virtual control law based on surge and sway position errors, and then develops a non-singular fast terminal sliding mode control law using an exponential reaching strategy, guaranteeing finite-time convergence and eliminating singularities. The Lyapunov-based stability analysis proves the boundedness and convergence of tracking errors under external disturbances. The simulation results demonstrate that the proposed non-singular fast terminal sliding mode control outperforms traditional sliding mode control in terms of convergence speed, tracking accuracy, and control smoothness, especially under wind, wave, and current disturbances. Full article
Show Figures

Figure 1

16 pages, 3808 KiB  
Article
Mechanical Design, Control, and Laboratory Test of a Two-Degrees-of-Freedom Elbow Prosthesis
by Ramsés Hernández-Cerero, Juan Alejandro Flores-Campos, José Juan Mojica-Martínez, Adolfo Angel Casarez-Duran, Luis Angel Guerrero-Hernández and Christopher René Torres-SanMiguel
Bioengineering 2025, 12(7), 695; https://doi.org/10.3390/bioengineering12070695 - 25 Jun 2025
Viewed by 379
Abstract
This study presents the design and experimental testing of a two-degrees-of-freedom (2DOF) elbow prosthesis prototype designed to replicate the movement patterns of a native or normal human elbow. Two methods of the control of the prosthesis, namely, the proportional–integral–derivative method (PID; a well-established [...] Read more.
This study presents the design and experimental testing of a two-degrees-of-freedom (2DOF) elbow prosthesis prototype designed to replicate the movement patterns of a native or normal human elbow. Two methods of the control of the prosthesis, namely, the proportional–integral–derivative method (PID; a well-established method) and a combination of sliding mode control with a time base generator strategy (SMC + TBG; an advanced method), were compared on the basis of various performance metrics of the prosthesis, as obtained in laboratory tests. Among these metrics were the angular displacement and velocity as a function of time. The mechanical design combined 3D-printed components with custom-designed joints, featuring a worm gear transmission with a crown gear for flexion–extension, enhanced by torsional springs, and a pinion gear with a crown gear for pronation–supination and control. Sensors for voltage and current data acquisition enabled real-time monitoring and control. The prosthesis was tested in the laboratory with a range of motion of 100–120° for flexion–extension, 50° for supination, and 75° for pronation, demonstrating the adaptability of the actuators and validating their autonomy through battery-powered operation. The results showed that control using SMC + TBG resulted in biomimetic patterns for angular displacement and angular velocity of the prosthesis, whereas control using PID did not. Thus, the prosthesis with control provided using an SMC + TBG strategy may have been promised for use by people who have undergone transhumeral amputation. Full article
(This article belongs to the Special Issue Joint Biomechanics and Implant Design)
Show Figures

Figure 1

25 pages, 4507 KiB  
Article
Adaptive Dynamic Programming-Based Intelligent Finite-Time Flexible SMC for Stabilizing Fractional-Order Four-Wing Chaotic Systems
by Mai The Vu, Seong Han Kim, Duc Hung Pham, Ha Le Nhu Ngoc Thanh, Van Huy Pham and Majid Roohi
Mathematics 2025, 13(13), 2078; https://doi.org/10.3390/math13132078 - 24 Jun 2025
Viewed by 461
Abstract
Fractional-order four-wing (FO 4-wing) systems are of significant importance due to their complex dynamics and wide-ranging applications in secure communications, encryption, and nonlinear circuit design, making their control and stabilization a critical area of study. In this research, a novel model-free finite-time flexible [...] Read more.
Fractional-order four-wing (FO 4-wing) systems are of significant importance due to their complex dynamics and wide-ranging applications in secure communications, encryption, and nonlinear circuit design, making their control and stabilization a critical area of study. In this research, a novel model-free finite-time flexible sliding mode control (FTF-SMC) strategy is developed for the stabilization of a particular category of hyperchaotic FO 4-wing systems, which are subject to unknown uncertainties and input saturation constraints. The proposed approach leverages fractional-order Lyapunov stability theory to design a flexible sliding mode controller capable of effectively addressing the chaotic dynamics of FO 4-wing systems and ensuring finite-time convergence. Initially, a dynamic sliding surface is formulated to accommodate system variations. Following this, a robust model-free control law is designed to counteract uncertainties and input saturation effects. The finite-time stability of both the sliding surface and the control scheme is rigorously proven. The control strategy eliminates the need for explicit system models by exploiting the norm-bounded characteristics of chaotic system states. To optimize the parameters of the model-free FTF-SMC, a deep reinforcement learning framework based on the adaptive dynamic programming (ADP) algorithm is employed. The ADP agent utilizes two neural networks (NNs)—action NN and critic NN—aiming to obtain the optimal policy by maximizing a predefined reward function. This ensures that the sliding motion satisfies the reachability condition within a finite time frame. The effectiveness of the proposed methodology is validated through comprehensive simulations, numerical case studies, and comparative analyses. Full article
Show Figures

Figure 1

Back to TopTop