Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = slag inclusion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9104 KiB  
Article
Analysis and Chromium Recovery from Ferrochrome Waste (Stockpiled Refined Ferrochrome Slags)
by Otegen Sariyev, Lyazat Tolymbekova, Murat Dossekenov, Bauyrzhan Kelamanov, Dauren Yessengaliyev, Assel Davletova and Assylbek Abdirashit
Metals 2025, 15(7), 740; https://doi.org/10.3390/met15070740 - 30 Jun 2025
Viewed by 224
Abstract
This study investigates the effectiveness of various beneficiation methods for recovering chromium from refined ferrochrome slag. Dry magnetic separation at different field intensities (0.45 T and 0.8 T) showed that selective extraction of metallic chromium (Crmet) is more efficient at 0.45 [...] Read more.
This study investigates the effectiveness of various beneficiation methods for recovering chromium from refined ferrochrome slag. Dry magnetic separation at different field intensities (0.45 T and 0.8 T) showed that selective extraction of metallic chromium (Crmet) is more efficient at 0.45 T, achieving a recovery rate of up to 90.05%. Pneumatic separation using SEPAIR technology demonstrated promising results, especially for wide particle size fractions (0–20 mm), where chromium recovery reached 40.32% due to density differences between slag particles and metallic inclusions. Enrichment on a shaking table proved to be the most selective method, producing a concentrate with 29.9% Cr and 90.7% recovery, although the yield was low (3.8%). SEM-EDX and SEM-BSE analyses confirmed the heterogeneous phase composition of slag grains, revealing chromium–iron alloys embedded in oxide matrices. Based on laboratory experiments and material characterization, it is concluded that magnetic separation can be used for preliminary concentration, pneumatic classification is effective for processing bulk slag with economic potential, and gravity concentration on shaking tables is suitable for producing high-grade concentrates. The resulting tailings, low in chromium, are suitable for reuse in the production of building materials after carbonation treatment. Full article
Show Figures

Figure 1

20 pages, 14395 KiB  
Article
An Experimental Investigation on the Mechanical Performance of Engineered Cementitious Composites with Different Types of Steel Fibers
by Mohammad Maldar, Reza Kianoush, Hocine Siad and Mohamed Lachemi
Materials 2025, 18(13), 2990; https://doi.org/10.3390/ma18132990 - 24 Jun 2025
Viewed by 428
Abstract
Engineered cementitious composites (ECCs), known for their superior ductility and strain-hardening behavior compared to conventional concrete, have been predominantly studied with polyvinyl alcohol (PVA) fibers. However, the potential economic and technical advantages of incorporating steel fibers into ECCs have been largely overlooked in [...] Read more.
Engineered cementitious composites (ECCs), known for their superior ductility and strain-hardening behavior compared to conventional concrete, have been predominantly studied with polyvinyl alcohol (PVA) fibers. However, the potential economic and technical advantages of incorporating steel fibers into ECCs have been largely overlooked in the literature. This study investigates the mechanical performance of ECC reinforced with different types of steel fibers, including straight, twisted, hooked, and hybrid fibers of different lengths, as compared to PVA. The inclusion of various supplementary cementitious materials (SCMs) such as slag and fly ash with each type of steel fiber was also considered at a constant fiber volume fraction of 2%. The mechanical properties were assessed through compressive strength, splitting tensile strength, and four-point flexural tests along with calculations of toughness, ductility, and energy absorption capacity indices. This study compares the mechanical properties of different ECC compositions, revealing that ECCs with hybrid steel fibers (short and long) achieved more than twice the tensile strength, 12.7% higher toughness, and 36.4% greater energy absorption capacity compared to ECCs with PVA fibers, while exhibiting similar multiple micro-cracking behavior at failure. The findings highlight the importance of fiber type and distribution in enhancing an ECC’s mechanical properties, providing valuable insights for developing more cost-effective and resilient construction. Full article
Show Figures

Figure 1

22 pages, 5821 KiB  
Article
Experimental Investigation on the Mechanical Properties of Geopolymer Recycled Aggregate Concrete Reinforced with Steel-Polypropylene Hybrid Fiber
by Lili Ma, Cheng Zhen, Qingxin Zeng and Biao Li
Buildings 2025, 15(10), 1723; https://doi.org/10.3390/buildings15101723 - 19 May 2025
Cited by 2 | Viewed by 455
Abstract
Geopolymer recycled aggregate concrete (GRAC) is an eco-friendly material utilizing industrial byproducts (slag, fly ash) and substituting natural aggregates with recycled aggregates (RA). Incorporating steel-polypropylene hybrid fibers into GRAC to produce hybrid-fiber-reinforced geopolymer recycled aggregate concrete (HFRGRAC) can bridge cracks across multi-scales and [...] Read more.
Geopolymer recycled aggregate concrete (GRAC) is an eco-friendly material utilizing industrial byproducts (slag, fly ash) and substituting natural aggregates with recycled aggregates (RA). Incorporating steel-polypropylene hybrid fibers into GRAC to produce hybrid-fiber-reinforced geopolymer recycled aggregate concrete (HFRGRAC) can bridge cracks across multi-scales and multi-levels to synergistically improve its mechanical properties. This paper aims to investigate the mechanical properties of HFRGRAC with the parameters of steel fiber (SF) volume fraction (0%, 0.5%, 1%, 1.5%) and aspect ratio (40, 60, 80), polypropylene fiber (PF) volume fraction (0%, 0.05%, 0.1%, 0.15%), and RA substitution rate (0%, 25%, 50%, 75%, 100%) considered. Twenty groups of HFRGRAC specimens were designed and fabricated to evaluate the compressive splitting tensile strengths and flexural behavior emphasizing failure pattern, load–deflection curve, and toughness. The results indicated that adding SF enhances the specimen ductility, mechanical strength, and flexural toughness, with improvements proportional to SF content and aspect ratio. In contrast, a higher percentage of RA substitution increased fine cracks and reduced mechanical performance. Moreover, the inclusion of PF causes cracks to exhibit a jagged profile while slightly improving the concrete strength. The significant synergistic effect of SF and PF on mechanical properties of GRAC is observed, with SF playing a dominant role due to its high elasticity and crack-bridging capacity. However, the hydrophilic nature of SF combined with the hydrophobic property of PF weakens the bonding of the fiber–matrix interface, which degrades the concrete mechanical properties to some extent. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 3780 KiB  
Article
The Properties of Self-Compacting Ultra-High Performance Concrete with Different Types of Mineral Admixtures
by Lin Wang, Xiying Tian, Yuefan Pan, Dingyuan Wu, Shengli Xu, Hangyang Wang, Xiaolu Tian, Yubo Xu, Hong Guo and Min Zou
Coatings 2025, 15(5), 591; https://doi.org/10.3390/coatings15050591 - 16 May 2025
Viewed by 544
Abstract
This paper investigates the effects of silica fume, cenosphere, fly ash, and ground slag powder on the rheological properties and mechanical strengths of self-compacting ultra-high performance concrete (UHPC). The mass ratio of each mineral admixture varies from 0% to 15%, while the water-binder [...] Read more.
This paper investigates the effects of silica fume, cenosphere, fly ash, and ground slag powder on the rheological properties and mechanical strengths of self-compacting ultra-high performance concrete (UHPC). The mass ratio of each mineral admixture varies from 0% to 15%, while the water-binder ratios are set at 0.18, 0.20, and 0.22. The slump flow and plastic viscosity of fresh UHPC are measured, and the corresponding flexural and compressive strengths of UHPC cured for 3 days and 28 days are determined. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) are employed to elucidate the mechanisms underlying the observed performance changes. The results indicate that the addition of silica fume and mineral powder negatively impacts the fluidity of fresh UHPC but positively affects its plastic viscosity. Conversely, the inclusion of cenosphere and fly ash enhances the fluidity of fresh UHPC while having the opposite effect on its plastic viscosity. Increasing the water-binder ratio improves the fluidity of fresh UHPC but reduces its plastic viscosity. Mechanically, silica fume enhances the strengths of UHPC. In contrast, the cenosphere, fly ash, and mineral powder decrease the strengths of UHPC cured for 3 days but increase those cured for 28 days. UHPC containing silica fume exhibits the most compact hydration products and the lowest content of Ca(OH)2. Full article
Show Figures

Figure 1

22 pages, 7934 KiB  
Article
Macroscopic and Microscopic Properties of Alkali-Activated Slag Recycled Cementitious Material
by Jing Zhu, Zhiming Li, Ying Huang and Yuankai Li
Materials 2025, 18(10), 2212; https://doi.org/10.3390/ma18102212 - 10 May 2025
Viewed by 366
Abstract
Alkali-activated slag recycled cementitious material (ASRCM) has emerged as a sustainable construction material alternative due to its potential for industrial byproduct valorization and reduced carbon footprint. To study the effect of recycled material content on ASRCM performance, this paper systematically investigates the optimal [...] Read more.
Alkali-activated slag recycled cementitious material (ASRCM) has emerged as a sustainable construction material alternative due to its potential for industrial byproduct valorization and reduced carbon footprint. To study the effect of recycled material content on ASRCM performance, this paper systematically investigates the optimal dosages of recycled stone powder, recycled rubber, and flax fiber in ASRCM with a controlled variable method. The synergistic effects of the inclusion of recycled stone powder, recycled rubber, and flax fiber on macro-microstructural properties on the ASRCM have been analyzed. The results show that the incorporation of recycled materials can significantly enhance both the mechanical properties and workability of the composite, thereby improving the overall stability and performance characteristics of the material system. However, challenges remain in standardizing recycled material reactivity assessment and mitigating long-term durability concerns. More research is needed to investigate the service life and field-scale implementation of ASRCM to accelerate circular economy transitions of the construction sector in the future. Full article
(This article belongs to the Collection Alkali‐Activated Materials for Sustainable Construction)
Show Figures

Figure 1

24 pages, 10646 KiB  
Article
Influence of Silicate Modulus and Eggshell Powder on the Expansion, Mechanical Properties, and Thermal Conductivity of Lightweight Geopolymer Foam Concrete
by Mohamed Abdellatief, Mohamed Mortagi, Hassan Hamouda, Krzysztof Skrzypkowski, Krzysztof Zagórski and Anna Zagórska
Materials 2025, 18(9), 2088; https://doi.org/10.3390/ma18092088 - 2 May 2025
Cited by 5 | Viewed by 632
Abstract
To address the demands of the low-carbon era, this study proposed a solution by using eggshell powder (ESP), fly ash, and ground granulated blast furnace slag together with alkaline solution in the preparation of lightweight geopolymer foam concrete (LWGFC). The aim of this [...] Read more.
To address the demands of the low-carbon era, this study proposed a solution by using eggshell powder (ESP), fly ash, and ground granulated blast furnace slag together with alkaline solution in the preparation of lightweight geopolymer foam concrete (LWGFC). The aim of this study is to investigate the influence of replacing precursor materials with 5–20% ESP on the expansion behavior, physical, mechanical characteristics, and thermal conductivity of LWGFC. Additionally, the study examines the effect of varying the silicate modulus (SiO2/Na2O ratios of 1.0, 1.25, and 1.5) on the properties of LWGFC. Incorporating ESP from 5% to 20% with a constant SiO2/Na2O ratio reduced the initial setting time, while a high SiO2/Na2O ratio controlled the setting time and expansion volume. The high SiO2/Na2O ratio decreased the porosity and enhanced the compressive strength of the LWGFC but increased the thermal conductivity. The inclusion of more than 10% ESP content negatively affected compressive strength; however, a high SiO2/Na2O ratio can mitigate this detrimental effect. The thermal conductivity of optimal-content ESP mixtures with a SiO2/Na2O ratio of 1.0 was about 0.84 W/m·K, which is 2.1% lower than mixtures with a ratio of 1.25 and 18.6% lower than those with a ratio of 1.5. High-content ESP mixtures had a density of 1707 kg/m3, 0.97 W/m·K, and a compressive strength of 18.9 MPa at a low SiO2/Na2O ratio. Finally, the inclusion of ESP in the LWGFC, along with the use of an appropriate silicate modulus, resulted in improved strength development while decreasing porosity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 2771 KiB  
Article
Obtaining Composite Zinc Phosphate Cement with the Addition of Phosphoric Slag
by Aidana Abdullin, Nurgali Zhanikulov, Bakhitzhan Taimasov, Ekaterina Potapova, Yana Alfereva, Dmitry Ksenofontov and Bibol Zhakipbayev
J. Compos. Sci. 2025, 9(5), 200; https://doi.org/10.3390/jcs9050200 - 22 Apr 2025
Viewed by 782
Abstract
The feasibility of producing high-quality zinc phosphate cement based on a frit-sintered mixture of ZnO, SiO2, MgO, and Bi2O3 oxides, with the addition of phosphorous slag and an aqueous solution of orthophosphoric acid as the mixing liquid, was [...] Read more.
The feasibility of producing high-quality zinc phosphate cement based on a frit-sintered mixture of ZnO, SiO2, MgO, and Bi2O3 oxides, with the addition of phosphorous slag and an aqueous solution of orthophosphoric acid as the mixing liquid, was demonstrated. The raw materials used for zinc phosphate cement preparation were investigated using various physicochemical analysis methods. It was found that the phosphorous slag contains silicon oxide (37.6%), aluminum oxide (4.49%), calcium oxide (42.4%), magnesium oxide (2.19%), as well as fluorine (1.94%) and calcium fluoride (4.91%). The slag predominantly consists of an amorphous glassy phase with minor inclusions of crystalline components. During the sintering process, the addition of 1.5–3.0 wt.% phosphorous slag to the frit promotes the formation of low-melting eutectics due to the presence of fluorides, resulting in a 100 °C reduction in the sintering temperature. An optimal zinc phosphate cement powder composition was developed, comprising: ZnO—83.0%, MgO—9.0%, SiO2—3.5%, Bi2O3—3.0%, and phosphorous slag—1.5%. The resulting sintered product exhibited a whiteness of 97.8%, which exceeds that of the reference sample by 2.6%. Upon mixing the powder with the mixing liquid, zinc ions are released first, initiating a chemical reaction that leads to the formation of zinc, magnesium, and aluminum phosphates. The compressive strength of the resulting composite cements ranged from 101.8 to 111.9 MPa, fully complying with the requirements for cement grade as specified in GOST 31578-2012. Full article
Show Figures

Figure 1

16 pages, 8443 KiB  
Article
Wavelet-Enhanced YOLO for Intelligent Detection of Welding Defects in X-Ray Films
by Wenyong Wu, Hongyu Cheng, Jiancheng Pan, Lili Zhong and Qican Zhang
Appl. Sci. 2025, 15(8), 4586; https://doi.org/10.3390/app15084586 - 21 Apr 2025
Cited by 1 | Viewed by 1120
Abstract
Welding defects threaten structural integrity, demanding efficient and accurate detection methods. Traditional radiographic testing defects interpretation is subjective, necessitating automated solutions to improve accuracy and efficiency. This study integrates wavelet transform convolutions (WTConv) into YOLOv11n, creating WT-YOLO, to enhance defect detection in X-ray [...] Read more.
Welding defects threaten structural integrity, demanding efficient and accurate detection methods. Traditional radiographic testing defects interpretation is subjective, necessitating automated solutions to improve accuracy and efficiency. This study integrates wavelet transform convolutions (WTConv) into YOLOv11n, creating WT-YOLO, to enhance defect detection in X-ray films. Wavelet transforms enable multi-resolution analysis, extracting both high-frequency and low-frequency features critical for detecting various welding defects. WT-YOLO replaces standard convolutional layers with WTConv, improving multi-scale feature extraction and noise suppression. Trained on 7000 radiographic images, WT-YOLO achieved a 0.0212 increase in mAP75 and a 0.0479 improvement in precision compared to YOLOv11n. On a test set of 200 images per defect category across seven defect types, WT-YOLO showed precision improvements of 0.0515 for cracks, 0.0784 for lack of fusion, 0.0067 for incomplete penetration, 0.1180 for concavity, 0.0516 for undercut, and 0.0204 for porosity, while experiencing a slight 0.0028 decline for slag inclusion. Compared to manual inspection, WT-YOLO achieved higher precision for cracks (0.0037), undercut (0.1747), slag inclusion (0.1129), and porosity (0.1074), with an inference speed 300 times faster than manual inspection. WT-YOLO enhances weld defect detection capabilities, providing the possibility for a robust solution for industrial applications. Full article
Show Figures

Figure 1

37 pages, 37848 KiB  
Article
3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement
by Magdalena Rudziewicz, Adam Hutyra, Marcin Maroszek, Kinga Korniejenko and Marek Hebda
Appl. Sci. 2025, 15(8), 4527; https://doi.org/10.3390/app15084527 - 19 Apr 2025
Viewed by 633
Abstract
This study investigates the influence of various reinforcing fibers, including coconut, basalt, glass, merino wool, and polypropylene, on the properties and processability of cementitious mixtures, with a particular emphasis on their application in 3D printing. The incorporation of fibers at a concentration of [...] Read more.
This study investigates the influence of various reinforcing fibers, including coconut, basalt, glass, merino wool, and polypropylene, on the properties and processability of cementitious mixtures, with a particular emphasis on their application in 3D printing. The incorporation of fibers at a concentration of 1 wt.% was found to significantly hinder the printing process. Specifically, certain fibers, such as polypropylene, rendered extrusion impractical due to nozzle clogging. However, reducing the fiber content to 0.5 wt.% improved material flowability and minimized structural defects during printing. Fiber selection, in addition to its impact on mechanical properties, plays a crucial role in determining overall process efficiency. Mixtures incorporating coal slag as a dense filler, combined with stiff fibers such as basalt or glass, exhibited the highest flexural strength. Moreover, the inclusion of merino wool fibers enhanced the flexural performance of fly ash-based mixtures, achieving strength levels comparable to or exceeding those of stiffer fibers. These findings contribute to the advancement of sustainable construction practices. Notably, samples produced via 3D printing consistently demonstrated higher flexural strength than those fabricated using traditional molding techniques. This enhancement is attributed to microstructural modifications induced by the layer-by-layer deposition process. Depending on the sample composition and the type of reinforcing fiber, water absorption behavior varied significantly. Merino wool and coconut fibers exhibited the highest water absorption due to their hydrophilic nature and capillary action, particularly in 3D-printed samples with open-pore structures. In contrast, glass and basalt fibers, characterized by their higher density and hydrophobicity, exhibited lower water absorption levels. These results underscore the importance of optimizing fiber type, concentration, and processing methodologies to achieve tailored performance in fiber-reinforced cementitious mixtures. Such optimizations align with the principles of sustainable development and hold significant potential for advancing 3D-printed construction applications Full article
(This article belongs to the Special Issue Development and Application of Innovative Construction Materials)
Show Figures

Figure 1

21 pages, 18354 KiB  
Article
On the Morphological Evolution with Cycling of a Ball-Milled Si Slag-Based Electrode for Li-Ion Batteries
by Alexandre Heitz, Victor Vanpeene, Samuel Quéméré, Natalie Herkendaal, Thierry Douillard, Isaac Martens, Marta Mirolo and Lionel Roué
Batteries 2025, 11(4), 151; https://doi.org/10.3390/batteries11040151 - 11 Apr 2025
Viewed by 681
Abstract
A Si/SiC/SiO2 (53/44/3 wt.%) composite is evaluated as an anode material for Li-ion batteries. This material, a result of the high-energy ball-milling of a by-product of the carbothermal reduction of silica (Si slag), is predominantly made up of micrometric particles of amorphous [...] Read more.
A Si/SiC/SiO2 (53/44/3 wt.%) composite is evaluated as an anode material for Li-ion batteries. This material, a result of the high-energy ball-milling of a by-product of the carbothermal reduction of silica (Si slag), is predominantly made up of micrometric particles of amorphous or short-range order Si in which submicrometric SiC inclusions are dispersed. Its capacity is 860 mAh g−1 (1.7 mAh cm−2) after 200 cycles in half-cell configuration and 1.6 mAh cm−2 after 70 cycles in full-cell. The SiC component is not electroactive for lithiation but plays a key role in the electrode stability by preventing the formation of the c-Li15Si4 phase, known to accelerate electrode degradation. It is shown that capacity decay with cycling mainly originates from solid electrolyte interphase (SEI) growth rather than particle disconnections. Complementary wide angle X-ray scattering (WAXS) analyses confirm the SEI grows alongside cycling and allows for the highlighting of its major components, namely, Li2CO3 and LiF. The morphological evolution of the electrode upon cycling is studied by electrochemical dilatometry, operando optical microscopy, and focused ion beam (FIB) and broad ion beam (BIB) scanning electron microscopy (SEM). No particle cracking is observed. However, reconstructed 3D imaging of the electrodes before and after 10 and 200 cycles clearly shows that the particles progressively evolve a dendritic structure. The SEI grows on and within the particles and induces a significant decrease in the electrode’s porosity and an increase in its thickness. Full article
Show Figures

Graphical abstract

19 pages, 11671 KiB  
Article
Effect of Oxide Systems on Purity of Tool Steels Fabricated by Electro Slag Remelting
by Josef Walek and Lenka Kunčická
Molecules 2025, 30(6), 1284; https://doi.org/10.3390/molecules30061284 - 13 Mar 2025
Viewed by 618
Abstract
The purity of a steel is an important factor influencing the quality of the final products. Therefore, it is important to optimize the existing and develop new steelmaking technologies that affect the resulting purity. Electro slag remelting is a technology of tertiary metallurgy, [...] Read more.
The purity of a steel is an important factor influencing the quality of the final products. Therefore, it is important to optimize the existing and develop new steelmaking technologies that affect the resulting purity. Electro slag remelting is a technology of tertiary metallurgy, which can advantageously be used to fabricate high quality steels. The study presents selected theoretical aspects of oxide systems and their specific influences on effectiveness of the electro slag remelting technology. The aim of this work was to experimentally analyze the purity of a tool steel fabricated by electro slag remelting using two different oxide systems (fused slags). The core of the study is the determination of the overall presence of elements in the steels, a thorough investigation of the presence of (not only) oxide-based inclusions within the investigated tool steel, and a detailed analysis of their chemical composition, including the size of these non-metallic inclusions, using energy dispersive X-ray (EDX) on the scanning electron microscope (SEM). Last but not least, the determination of the modification of the occurring non-metallic inclusions and verification of the experimentally acquired results as well as the calculation of the liquid and solid temperature and the calculation of the viscosity of the slags using the FactSage calculation software was performed. The results showed that the used slag influenced especially the occurrence of Mg and Al-based oxide inclusions. The CaS-type inclusions were present within all of the examined samples. The slag type influenced not only the typical morphology and size of the inclusions (especially of the CaS type), but also the tendency of the steel to exhibit localized corrosion when exposed to the ambient environment. This research can contribute to a better understanding of the effect of oxidation systems on the resulting purity and properties of ESR steels, thereby advancing the production of tool steels with higher quality and performance requirements. Full article
Show Figures

Figure 1

2 pages, 620 KiB  
Correction
Correction: Liang et al. Effect of Al2O3 on Inclusion Removal in H13 Steels Using High-Basicity LF (Ladle Furnace) Refining Slags. Metals 2023, 13, 1592
by Ting Liang, Zhuo Qin and Linzhu Wang
Metals 2025, 15(3), 252; https://doi.org/10.3390/met15030252 - 27 Feb 2025
Viewed by 460
Abstract
In the original publication [...] Full article
Show Figures

Figure 2

15 pages, 10794 KiB  
Article
Detection of Welding Defects Tracked by YOLOv4 Algorithm
by Yunxia Chen and Yan Wu
Appl. Sci. 2025, 15(4), 2026; https://doi.org/10.3390/app15042026 - 14 Feb 2025
Cited by 2 | Viewed by 709
Abstract
The recall rate of the original YOLOv4 model for detecting internal defects in aluminum alloy welds is relatively low. To address this issue, this paper introduces an enhanced model, YOLOv4-cs1. The improvements include optimizing the stacking method of residual blocks, modifying the activation [...] Read more.
The recall rate of the original YOLOv4 model for detecting internal defects in aluminum alloy welds is relatively low. To address this issue, this paper introduces an enhanced model, YOLOv4-cs1. The improvements include optimizing the stacking method of residual blocks, modifying the activation functions for different convolutional layers, and eliminating the downsampling layer in the PANet (Pyramid Attention Network) to preserve edge information. Building on these enhancements, the YOLOv4-cs2 model further incorporates an improved Spatial Pyramid Pooling (SPP) module after the third and fourth residual blocks. The experimental results demonstrate that the recall rates for pore and slag inclusion detection using the YOLOv4-cs1 and YOLOv4-cs2 models increased by 28.9% and 16.6%, and 45% and 25.2%, respectively, compared to the original YOLOv4 model. Additionally, the mAP values for the two models are 85.79% and 87.5%, representing increases of 0.98% and 2.69%, respectively, over the original YOLOv4 model. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

15 pages, 3346 KiB  
Article
Effects of Post-Fire Rehydration on the Mechanical Properties of Slag-Modified Concrete
by Guilherme Palla Teixeira, José Carlos Lopes Ribeiro, Leonardo Gonçalves Pedroti and Gustavo Henrique Nalon
Buildings 2025, 15(1), 136; https://doi.org/10.3390/buildings15010136 - 4 Jan 2025
Cited by 1 | Viewed by 1119
Abstract
Although previous research has examined the mechanical properties of concrete exposed to high temperatures, further investigation is needed into the effects of post-fire curing on the recovery of strength and stiffness of sustainable concretes produced with slag-modified cement. This study conducted an experimental [...] Read more.
Although previous research has examined the mechanical properties of concrete exposed to high temperatures, further investigation is needed into the effects of post-fire curing on the recovery of strength and stiffness of sustainable concretes produced with slag-modified cement. This study conducted an experimental analysis of the residual compressive strength and modulus of elasticity of different types of concrete (20 MPa or 30 MPa) exposed to varying maximum temperature levels (200 °C, 400 °C, 600 °C, 800 °C) and post-fire treatments (with or without rehydration). The concrete specimens were produced using Portland cement CP II-E-32. The rehydration method involved one day of water curing, followed by 14 days of air curing. Statistical analyses revealed potential improvements in the mechanical properties of concretes produced with slag-modified cement due to rehydration processes after exposure to different temperatures levels. The highest values of the relative residual strength factor (Φc) were observed in specimens exposed to a maximum temperature of 600 °C, ranging from 0.862 to 0.905. The highest values of the relative residual elastic modulus factor (ψc) were verified for a maximum temperature of 200 °C, ranging from 0.720 to 0.778. The experimental results were compared with strength and stiffness predictions of design codes. The inclusion of slag in concrete reduced microcracking during the rehydration process due to the reduced amount of calcium hydroxide in the cementitious matrix, increasing the concrete’s relative residual strength and stiffness after post-fire curing. Full article
Show Figures

Figure 1

7 pages, 5190 KiB  
Proceeding Paper
Sustainable Structures Unveiled: Navigating the Environmental Landscape of 3D Printing in Construction
by Arash Motalebi, Mohammad Abu Hasan Khondoker and Golam Kabir
Eng. Proc. 2024, 76(1), 44; https://doi.org/10.3390/engproc2024076044 - 28 Oct 2024
Viewed by 1093
Abstract
This study addresses the imperative for sustainability in the construction industry, focusing on the environmental impact of a specific 3D printing method. Leveraging insights from an engineering-orientated 3D printing project, diverse scenarios are explored, and a cradle-to-gate life cycle assessment (LCA) is conducted [...] Read more.
This study addresses the imperative for sustainability in the construction industry, focusing on the environmental impact of a specific 3D printing method. Leveraging insights from an engineering-orientated 3D printing project, diverse scenarios are explored, and a cradle-to-gate life cycle assessment (LCA) is conducted using SimaPro 9.5.0 software. The study reveals the efficacy of a mix design with fly ash and furnace slag as a binder, demonstrating lower environmental impacts in various categories. However, the inclusion of silicate in geo-polymer concrete raises ecological concerns due to the high energy requirements for production. Additionally, substituting sand with sawdust results in a substantial reduction in CO2 emissions, highlighting the environmental benefits of incorporating by-product materials into building practices. Full article
Show Figures

Figure 1

Back to TopTop