Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = sky background radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3703 KiB  
Article
Detection Capability Analysis of Field of View-Gated Optical Imaging System for All-Time Star Sensor
by Liang Fang, Hui Zhang, Xin Cheng, Zhenjie Fan, Zhiyuan Liao, Qiang Zhang and Rujin Zhao
Photonics 2024, 11(12), 1118; https://doi.org/10.3390/photonics11121118 - 26 Nov 2024
Viewed by 917
Abstract
The field of view (FOV)-gated optical imaging system can relieve the contradiction between a wide FOV and the effective suppression of sky background radiation, making it particularly suitable for all-time star sensors. The detection capability of this novel optical imaging system during daytime [...] Read more.
The field of view (FOV)-gated optical imaging system can relieve the contradiction between a wide FOV and the effective suppression of sky background radiation, making it particularly suitable for all-time star sensors. The detection capability of this novel optical imaging system during daytime differs significantly from that of traditional optical systems. This paper presents the principle of suppressing sky background radiation through FOV-gated imaging. Subsequently, the detection capabilities, including detectable limiting stellar magnitude and the probability of detecting at least three stars, are analyzed for applications on airborne platforms operating at altitudes of no less than 3km. Based on the analysis results, an FOV-gated imaging system operating in the shortwave infrared wavelength band was designed. Additionally, stray light analysis software, ASAP, was employed to simulate the illumination of stellar signals and sky background radiation on the detector. The evaluation of the detection capability of the designed FOV-gated optical system, based on simulation data, aligns with the theoretical analysis value. It demonstrates the system’s ability to detect multiple stars with a high probability during the daytime, thereby providing a theoretical foundation for the practical application of the FOV-gated optical imaging system on airborne platforms. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

16 pages, 2934 KiB  
Article
Real-Time Simulation of Clear Sky Background Radiation in Gas Infrared Remote Sensing Monitoring
by Shengquan Shu, Jianguo Liu, Liang Xu, Yuhao Wang, Yasong Deng and Yongfeng Sun
Photonics 2024, 11(10), 904; https://doi.org/10.3390/photonics11100904 - 26 Sep 2024
Cited by 2 | Viewed by 983
Abstract
During the process of infrared remote sensing monitoring, obtaining real-time measurements of sky background radiation is extremely inconvenient. The current methods incur a certain amount of lag. In this study, within the existing theoretical framework, a fast transmittance calculation method using interpolation was [...] Read more.
During the process of infrared remote sensing monitoring, obtaining real-time measurements of sky background radiation is extremely inconvenient. The current methods incur a certain amount of lag. In this study, within the existing theoretical framework, a fast transmittance calculation method using interpolation was adopted, and a simplified transmission model was established. This led to the development of a new and simplified method for rapid temperature and humidity retrieval. Compared to the line-by-line integration method, the interpolation method significantly improves the speed of transmittance calculation by several tens of times, while maintaining a high level of accuracy. The relative deviation between the results obtained using the interpolation method and those obtained through line-by-line integration is less than 1 ‱. With the proposed method, temperature and humidity profile information can be retrieved from measured spectra within 5 min and corresponding background spectra can be obtained. The differences between the calculated background radiation and the measured spectra using the new method are smaller, making it more suitable for calculating sky background radiation. Additionally, the rapid retrieval results of the temperature profiles in the lower atmosphere have a certain level of accuracy (the mean deviation is less than 2 K). Full article
Show Figures

Figure 1

13 pages, 4440 KiB  
Article
Error Model for the Assimilation of All-Sky FY-4A/AGRI Infrared Radiance Observations
by Dongchuan Pu and Yali Wu
Sensors 2024, 24(8), 2572; https://doi.org/10.3390/s24082572 - 17 Apr 2024
Viewed by 1228
Abstract
The Advanced Geostationary Radiation Imager (AGRI) carried by the FengYun-4A (FY-4A) satellite enables the continuous observation of local weather. However, FY-4A/AGRI infrared satellite observations are strongly influenced by clouds, which complicates their use in all-sky data assimilation. The presence of clouds leads to [...] Read more.
The Advanced Geostationary Radiation Imager (AGRI) carried by the FengYun-4A (FY-4A) satellite enables the continuous observation of local weather. However, FY-4A/AGRI infrared satellite observations are strongly influenced by clouds, which complicates their use in all-sky data assimilation. The presence of clouds leads to increased uncertainty, and the observation-minus-background (OB) differences can significantly deviate from the Gaussian distribution assumed in the variational data assimilation theory. In this study, we introduce two cloud-affected (Ca) indices to quantify the impact of cloud amount and establish dynamic observation error models to address biases between OB and Gaussian distributions when assimilating all-sky data from FY-4A/AGRI observations. For each Ca index, we evaluate two dynamic observation error models: a two-segment and a three-segment linear model. Our findings indicate that the three-segment linear model we propose better conforms to the statistical characteristics of FY-4A/AGRI observations and improves the Gaussianity of the OB probability density function. Dynamic observation error models developed in this study are capable of handling cloud-free or cloud-affected FY-4A/AGRI observations in a uniform manner without cloud detection. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

23 pages, 11502 KiB  
Article
Evaluation of VIIRS Thermal Emissive Bands Long-Term Calibration Stability and Inter-Sensor Consistency Using Radiative Transfer Modeling
by Feng Zhang, Xi Shao, Changyong Cao, Yong Chen, Wenhui Wang, Tung-Chang Liu and Xin Jing
Remote Sens. 2024, 16(7), 1271; https://doi.org/10.3390/rs16071271 - 4 Apr 2024
Cited by 3 | Viewed by 1642
Abstract
This study investigates the long-term stability of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate-resolution Thermal Emissive Bands (M TEBs; M12–M16) covering a period from February 2012 to August 2020. It also assesses inter-sensor consistency of the VIIRS [...] Read more.
This study investigates the long-term stability of the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate-resolution Thermal Emissive Bands (M TEBs; M12–M16) covering a period from February 2012 to August 2020. It also assesses inter-sensor consistency of the VIIRS M TEBs among three satellites (S-NPP, NOAA-20, and NOAA-21) over eight months spanning from 18 March to 30 November 2023. The field of interest is limited to the ocean surface between 60°S and 60°N, specifically under clear-sky conditions. Taking radiative transfer modeling (RTM) as the transfer reference, we employed the Community Radiative Transfer Model (CRTM) to simulate VIIRS TEB brightness temperature (BTs), incorporating European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data as inputs. Our results reveal two key findings. Firstly, the reprocessed S-NPP VIIRS TEBs exhibit a robust long-term stability, as demonstrated through analyses of the observation minus background BT differences (O-B ∆BTs) between VIIRS measurements (O) and CRTM simulations (B). The drifts of the O-B BT differences are consistently less than 0.102 K/Decade across all S-NPP VIIRS M TEB bands. Notably, observations from VIIRS M14 and M16 stand out with drifts well within 0.04 K/Decade, reinforcing their exceptional reliability for climate change studies. Secondly, excellent inter-sensor consistency among these three VIIRS instruments is confirmed through the double-difference analysis method (O-O). This method relies on the O-B BT differences obtained from daily VIIRS operational data. The mean inter-VIIRS O-O BT differences remain within 0.08 K for all M TEBs, except for M13. Even in the case of M13, the O-O BT differences between NOAA-21 and NOAA-20/S-NPP have values of 0.312 K and 0.234 K, respectively, which are comparable to the 0.2 K difference observed in overlapping TEBs between VIIRS and MODIS. These disparities are primarily attributed to the significant differences in the Spectral Response Function (SRF) of NOAA-21 compared to NOAA-20 and S-NPP. It is also found that the remnant scene temperature dependence of NOAA-21 versus NOAA-20/S-NPP M13 O-O BT difference after accounting for SRF difference is ~0.0033 K/K, an order of magnitude smaller than the corresponding rates in the direct BT comparisons between NOAA-21 and NOAA-20/S-NPP. Our study confirms the versatility and effectiveness of the RTM-based TEB quality evaluation method in assessing long-term sensor stability and inter-sensor consistency. The double-difference approach effectively mitigates uncertainties and biases inherent to CRTM simulations, establishing a robust mechanism for assessing inter-sensor consistency. Moreover, for M12 operating as a shortwave infrared channel, it is found that the daytime O-B BT differences of S-NPP M12 exhibit greater seasonal variability compared to the nighttime data, which can be attributed to the idea that M12 radiance is affected by the reflected solar radiation during the daytime. Furthermore, in this study, we’ve also characterized the spatial distributions of inter-VIIRS BT differences, identifying variations among VIIRS M TEBs, as well as spatial discrepancies between the daytime and nighttime data. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

17 pages, 48768 KiB  
Article
Development of a Machine Learning Forecast Model for Global Horizontal Irradiation Adapted to Tibet Based on Visible All-Sky Imaging
by Lingxiao Wu, Tianlu Chen, Nima Ciren, Dui Wang, Huimei Meng, Ming Li, Wei Zhao, Jingxuan Luo, Xiaoru Hu, Shengjie Jia, Li Liao, Yubing Pan and Yinan Wang
Remote Sens. 2023, 15(9), 2340; https://doi.org/10.3390/rs15092340 - 28 Apr 2023
Cited by 6 | Viewed by 2645
Abstract
The Qinghai-Tibet Plateau is rich in renewable solar energy resources. Under the background of China’s “dual-carbon” strategy, it is of great significance to develop a global horizontal irradiation (GHI) prediction model suitable for Tibet. In the radiation balance budget process of the Earth-atmosphere [...] Read more.
The Qinghai-Tibet Plateau is rich in renewable solar energy resources. Under the background of China’s “dual-carbon” strategy, it is of great significance to develop a global horizontal irradiation (GHI) prediction model suitable for Tibet. In the radiation balance budget process of the Earth-atmosphere system, clouds, aerosols, air molecules, water vapor, ozone, CO2 and other components have a direct influence on the solar radiation flux received at the surface. For the descending solar shortwave radiation flux in Tibet, the attenuation effect of clouds is the key variable of the first order. Previous studies have shown that using Artificial intelligence (AI) models to build GHI prediction models is an advanced and effective research method. However, regional localization optimization of model parameters is required according to radiation characteristics in different regions. This study established a set of AI prediction models suitable for Tibet based on ground-based solar shortwave radiation flux observation and cloud cover observation data of whole sky imaging in the Yangbajing area, with the key parameters sensitively tested and optimized. The results show that using the cloud cover as a model input variable can significantly improve the prediction accuracy, and the RMSE of the prediction accuracy is reduced by more than 20% when the forecast horizon is 1 h compared with a model without the cloud cover input. This conclusion is applicable to a scenario with a forecast horizon of less than 4 h. In addition, when the forecast horizon is 1 h, the RMSE of the random forest and long short-term memory models with a 10-min step decreases by 46.1% and 55.8%, respectively, compared with a 1-h step. These conclusions provide a reference for studying GHI prediction models based on ground-based cloud images and machine learning. Full article
(This article belongs to the Special Issue New Challenges in Solar Radiation, Modeling and Remote Sensing)
Show Figures

Figure 1

12 pages, 2551 KiB  
Article
Fusion2Fusion: An Infrared–Visible Image Fusion Algorithm for Surface Water Environments
by Cheng Lu, Hongde Qin, Zhongchao Deng and Zhongben Zhu
J. Mar. Sci. Eng. 2023, 11(5), 902; https://doi.org/10.3390/jmse11050902 - 23 Apr 2023
Cited by 5 | Viewed by 1938
Abstract
Infrared images can rely on the thermal radiation of objects for imaging, independent of lighting conditions. Furthermore, because the thermal radiation produced by targets such as people, vehicles, and boats differs greatly from the background, it is able to distinguish objects from their [...] Read more.
Infrared images can rely on the thermal radiation of objects for imaging, independent of lighting conditions. Furthermore, because the thermal radiation produced by targets such as people, vehicles, and boats differs greatly from the background, it is able to distinguish objects from their environment as well. These characteristics of infrared can be complemented with visible images, which are rich in color information but vulnerable to lighting conditions. Therefore, the fusion of IR and visible images can provide a better perception of the environment. In this paper, we propose a new infrared–visible fusion algorithm. It consists of three parts: feature extraction, fusion, and reconstruction. The attention mechanism is introduced into the feature extraction to better extract features and we propose a new way of describing the fusion task. The relationship between the two inputs is balanced by introducing a fused image obtained by summing the infrared and visible images. It is also optimized for sky layering and water surface ripples, which are common in water environments. The edge information is enhanced in the loss function and noise reduction is performed. Through comparison experiments, our algorithm achieves better results. Full article
(This article belongs to the Special Issue Advances in Marine Vehicles, Automation and Robotics)
Show Figures

Figure 1

16 pages, 5814 KiB  
Article
An Electromagnetic-Driven Microshutter Array in a Field-of-View Gated Image System for All-Time Star Sensors
by Liang Fang, Weimin Wang, Qiang Wang, Shuliang Tan, Hui Zhang, Rujin Zhao and Enhai Liu
Micromachines 2023, 14(2), 452; https://doi.org/10.3390/mi14020452 - 15 Feb 2023
Cited by 1 | Viewed by 1816
Abstract
Aiming at the application requirements of a field of view (FOV) gated imaging system for all-time star sensors, a key device of a microshutter array with large unit size, high duty cycle, and fast response speed based on the electromagnetic actuation is designed. [...] Read more.
Aiming at the application requirements of a field of view (FOV) gated imaging system for all-time star sensors, a key device of a microshutter array with large unit size, high duty cycle, and fast response speed based on the electromagnetic actuation is designed. The proposed microshutter array adopts the principle that the current-carrying coil is subjected to the magnetic force in the magnetic field. The coil element is deflected by the loading current and acts as a light barrier in realizing the optical switch function. The effects of the coil element parameters on the magnetic force torque, torsion beam resistance torque, and switch response time are analyzed, and the structural parameters of the coil element are determined. A sample of the proposed microshutter array based on the electromagnetic actuation with a 4-mm period and a 2.8-mm aperture is fabricated and tested. The test results demonstrate the good switching function of the proposed microshutter array and show that the switch response time of the microshutter element is approximately 2.5 ms. This proposed microshutter array is used to gate an instantaneous small FOV to suppress the sky’s background radiation and make a FOV-gated imaging system realize the multi-stars detection by switching the gated FOV rapidly. This will solve the problem that only one star can be detected within the FOV by a traditional all-time star tracker and promote the all-time star sensor to realize star pattern recognition and autonomous astronomical navigation in the daytime. Full article
Show Figures

Figure 1

10 pages, 3150 KiB  
Article
A Multi-Spectral Thermal Gas Detection Imager Using Uncooled Infrared Camera
by Fang-Xiao Cui, Yue Zhao, An-Jing Wang, Feng-Xiang Ma, Jun Wu, Yang-Yu Li, Da-Cheng Li and Wang-Chao Dong
Optics 2022, 3(4), 473-482; https://doi.org/10.3390/opt3040040 - 12 Dec 2022
Cited by 7 | Viewed by 3323
Abstract
Gas remote detection is useful for early warning of gas leakage and toxic chemicals. Optical gas imaging (OGI) built with an uncooled infrared camera is superior to cooled detectors in terms of cost. Current mainstream OGI technologies fall short in their detection of [...] Read more.
Gas remote detection is useful for early warning of gas leakage and toxic chemicals. Optical gas imaging (OGI) built with an uncooled infrared camera is superior to cooled detectors in terms of cost. Current mainstream OGI technologies fall short in their detection of gases at ambient temperature and their ability to classify multiple gases. A multi-spectral uncooled imager is developed to try to solve these problems, which is constructed from a commercial uncooled thermal camera and wide band filters. To solve filter self-radiation and unevenness, a correction method is devised, with an ambient temperature blackbody placed in front and subtracted from the measured image. Based on waveband cutoffs, filters are classified into target-sensitive filters and background filters. Multi-spectra are simulated according to wide band filter transmittance, which can be used in gas classification. A sulfur hexafluoride (SF6) experiment is conducted outdoors at a distance of 10 m. An SVM model is trained to classify gas release in real time. Detection with a cold sky background is improved with the aid of data cube differences in a time sequence. The SF6 outdoor experiment concluded with preliminary effective results of ambient temperature gas remote detection. Full article
Show Figures

Figure 1

16 pages, 3618 KiB  
Article
Polarization Calibration of a Microwave Polarimeter with Near-Infrared Up-Conversion for Optical Correlation and Detection
by Francisco J. Casas, Patricio Vielva, R. Belen Barreiro, Enrique Martínez-González and G. Pascual-Cisneros
Sensors 2022, 22(20), 8080; https://doi.org/10.3390/s22208080 - 21 Oct 2022
Cited by 4 | Viewed by 2112
Abstract
This paper presents a polarization calibration method applied to a microwave polarimeter demonstrator based on a near-infrared (NIR) frequency up-conversion stage that allows both optical correlation and signal detection at a wavelength of 1550 nm. The instrument was designed to measure the polarization [...] Read more.
This paper presents a polarization calibration method applied to a microwave polarimeter demonstrator based on a near-infrared (NIR) frequency up-conversion stage that allows both optical correlation and signal detection at a wavelength of 1550 nm. The instrument was designed to measure the polarization of cosmic microwave background (CMB) radiation from the sky, obtaining the Stokes parameters of the incoming signal simultaneously, in a frequency range from 10 to 20 GHz. A linearly polarized input signal with a variable polarization angle is used as excitation in the polarimeter calibration setup mounted in the laboratory. The polarimeter systematic errors can be corrected with the proposed calibration procedure, achieving high levels of polarization efficiency (low polarization percentage errors) and low polarization angle errors. The calibration method is based on the fitting of polarization errors by means of sinusoidal functions composed of additive or multiplicative terms. The accuracy of the fitting increases with the number of terms in such a way that the typical error levels required in low-frequency CMB experiments can be achieved with only a few terms in the fitting functions. On the other hand, assuming that the calibration signal is known with the required accuracy, additional terms can be calculated to reach the error levels needed in ultrasensitive B-mode polarization CMB experiments. Full article
Show Figures

Figure 1

15 pages, 6549 KiB  
Article
Cloud Detection Method Based on All-Sky Polarization Imaging
by Wunan Li, Yu Cao, Wenjing Zhang, Yu Ning and Xiaojun Xu
Sensors 2022, 22(16), 6162; https://doi.org/10.3390/s22166162 - 17 Aug 2022
Cited by 6 | Viewed by 3049
Abstract
Sky cloud detection has a significant application value in the meteorological field. The existing cloud detection methods mainly rely on the color difference between the sky background and the cloud layer in the sky image and are not reliable due to the variable [...] Read more.
Sky cloud detection has a significant application value in the meteorological field. The existing cloud detection methods mainly rely on the color difference between the sky background and the cloud layer in the sky image and are not reliable due to the variable and irregular characteristics of the cloud layer and different weather conditions. This paper proposes a cloud detection method based on all-sky polarization imaging. The core of the algorithm is the “normalized polarization degree difference index” (NPDDI). Instead of relying on the color difference information, this index identifies the difference between degree of polarization (DoPs) of the cloud sky and the clear sky radiation to achieve cloud recognition. The method is not only fast and straightforward in the algorithm, but also can detect the optical thickness of the cloud layer in a qualitative sense. The experimental results show a good cloud detection performance. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

12 pages, 3548 KiB  
Communication
High-Precision Measurement of Sea Surface Temperature with Integrated Infrared Thermometer
by Kailin Zhang and Xinyu Wang
Sensors 2022, 22(5), 1872; https://doi.org/10.3390/s22051872 - 27 Feb 2022
Cited by 2 | Viewed by 5670
Abstract
The sea surface temperature (SST) is a crucial parameter system in climate monitoring. Satellite remote sensing is currently the most common approach for measuring long-term and large-area sea surface temperatures. The SST data measured by the satellite radiometer include the sea surface skin [...] Read more.
The sea surface temperature (SST) is a crucial parameter system in climate monitoring. Satellite remote sensing is currently the most common approach for measuring long-term and large-area sea surface temperatures. The SST data measured by the satellite radiometer include the sea surface skin temperature (SSTskin) at a depth of approximately 10 μm. Satellite remote sensing measurement data must be compared and validated with on-site measured data. There are various solutions for on-site measuring instruments; the essential components are usually infrared radiation sensors with radiation output. This paper uses an ordinary integrated infrared thermometer without a radiation output function to remotely measure the sea surface temperature to achieve a high-precision measurement. The scheme of integrating infrared thermometers to measure the sea surface temperature is investigated in this paper. Based on Planck’s formula, the bidirectional conversion relationship between temperature and radiation in a certain band is established. The experimental system introduced in this paper uses an integrated infrared thermometer to measure the small blackbody and the target in a cyclic measurement system. We combine it with the sea surface emissivity characteristics and eliminate the influence of sky background radiation on the sea surface to obtain the actual amount of radiation on the sea surface, from which we obtain the actual radiation amount on the sea surface. Accurate SST can be calculated from the actual amount of radiation at the sea surface. The temperature measurement accuracy can reach 0.1 K, allowing it to meet on-site temperature measurement requirements, as well as the comparison measurement requirements confirmed by satellite remote sensing on-site data. There are relatively few products available for sensors with a temperature measurement accuracy of 0.1 K on the market, and temperature measurement equipment with a temperature measurement accuracy of 0.1 K is relatively expensive. Cost is one of the important factors to consider when using in bulk, especially as global warming increases the need for ocean monitoring. The scheme proposed in this paper is beneficial to reduce the volume and weight of measuring instruments, reduce the cost, and promote the large-scale combined application of sea surface temperature change monitoring. Full article
(This article belongs to the Special Issue Ocean Observation)
Show Figures

Figure 1

7 pages, 526 KiB  
Article
Impact of Warm Dark Matter on the Cosmic Neutrino Background Anisotropies
by Christopher G. Tully and Gemma Zhang
Universe 2022, 8(2), 118; https://doi.org/10.3390/universe8020118 - 12 Feb 2022
Cited by 4 | Viewed by 2507
Abstract
The Cosmic Neutrino Background (CνB) anisotropies for massive neutrinos are a unique probe of large-scale structure formation. The redshift-distance measure is completely different for massive neutrinos as compared to electromagnetic radiation. The CνB anisotropies in massive neutrinos grow in [...] Read more.
The Cosmic Neutrino Background (CνB) anisotropies for massive neutrinos are a unique probe of large-scale structure formation. The redshift-distance measure is completely different for massive neutrinos as compared to electromagnetic radiation. The CνB anisotropies in massive neutrinos grow in response to non-relativistic motion in gravitational potentials seeded by relatively high k-modes. Differences in the early phases of large-scale structure formation in warm dark matter (WDM) versus cold dark matter (CDM) cosmologies have an impact on the magnitude of the CνB anisotropies for contributions to the angular power spectrum that peak at high k-modes. We take the examples of WDM consisting of 2, 3, or 7 keV sterile neutrinos and show that the CνB anisotropies for 0.05 eV neutrinos drop off at high-l multipole moment in the angular power spectrum relative to CDM. At the same angular scales that one can observe baryonic acoustical oscillations in the CMB, the CνB anisotropies begin to become sensitive to differences in WDM and CDM cosmologies. The precision measurement of high-l multipoles in the CνB neutrino sky map is a potential possibility for the PTOLEMY experiment with thin film targets of spin-polarized atomic tritium superfluid that exhibit significant quantum liquid amplification for non-relativistic relic neutrino capture. Full article
Show Figures

Figure 1

13 pages, 594 KiB  
Review
Probing Gamma-Ray Burst VHE Emission with the Southern Wide-Field-of-View Gamma-Ray Observatory
by Giovanni La Mura, Ulisses Barres de Almeida, Ruben Conceição, Alessandro De Angelis, Francesco Longo, Mário Pimenta, Bernardo Tomé and Davide Miceli
Galaxies 2021, 9(4), 98; https://doi.org/10.3390/galaxies9040098 - 8 Nov 2021
Cited by 1 | Viewed by 2828
Abstract
Recent observations have confirmed that Gamma-Ray Burst (GRB) afterglows produce Very High-Energy radiation (VHE, E>100GeV). This highly anticipated discovery opens new scenarios in the interpretation of GRBs and in their role as probes of Extragalactic Background Light (EBL) and Lorentz [...] Read more.
Recent observations have confirmed that Gamma-Ray Burst (GRB) afterglows produce Very High-Energy radiation (VHE, E>100GeV). This highly anticipated discovery opens new scenarios in the interpretation of GRBs and in their role as probes of Extragalactic Background Light (EBL) and Lorentz Invariance Violation (LIV). However, some fundamental questions about the actual nature of VHE emission in GRBs and its evolution during the burst are still unsolved. These questions will be difficult to address, even with future imaging Cherenkov telescopes, such as the Cherenkov Telescope Array (CTA). Here we investigate the prospects of gamma-ray sky monitoring with Extensive Air Showers arrays (EAS) to address these problems. We discuss the theoretical aspects connected with VHE radiation emission and the implications that its temporal evolution properties have on the interpretation of GRBs. By revisiting the high-energy properties of some Fermi-LAT detected GRBs, we estimate the typical fluxes expected in the VHE band and compare them with a range of foreseeable instrument performances, based on the Southern Wide Field-of-view Gamma-ray Observatory concept (SWGO). We focus our analysis on how different instrument capabilities affect the chances to explore the burst onset and early evolution in VHE, providing invaluable complementary information with respect to Cherenkov telescope observations. We show that under the assumption of conditions already observed in historical events, the next-generation ground monitoring detectors can actually contribute to answer several key questions. Full article
(This article belongs to the Special Issue Gamma-Ray Burst Science in 2030)
Show Figures

Figure 1

15 pages, 45512 KiB  
Article
Quality Scoring of the Fengyun 4A Clear Sky Radiance Product
by Tianlei Yu, Gang Ma, Feng Lu, Xiaohu Zhang and Peng Zhang
Remote Sens. 2021, 13(18), 3658; https://doi.org/10.3390/rs13183658 - 13 Sep 2021
Cited by 3 | Viewed by 2178
Abstract
The Clear Sky Radiance (CSR) product has been widely used instead of Level 1 (L1) geostationary imager data in data assimilation for numerical weather prediction due to its many advantages concerning superobservation methodology. In this study, CSR was produced in two water vapor [...] Read more.
The Clear Sky Radiance (CSR) product has been widely used instead of Level 1 (L1) geostationary imager data in data assimilation for numerical weather prediction due to its many advantages concerning superobservation methodology. In this study, CSR was produced in two water vapor channels (channels 9 and channel 10, with wavelengths at 5.8–6.7 μm and 6.9–7.3 μm) of the Advanced Geostationary Radiation Imager aboard Fengyun 4A. The root mean square error (RMSE) between CSR observations and backgrounds was used as a quality flag and was predicted by cloud cover, standard deviation (STD), surface type, and elevation of a CSR field of view (FOV). Then, a centesimal scoring system based on the predicted RMSE was set to a CSR FOV that indicates its percentile point in the quality distribution of the whole FOV. Validations of the scoring system demonstrated that the biases of the predicted RMSE were small for all FOVs and that the score was consistent with the predicted RMSE, especially for FOVs with high scores. We suggest using this score for quality control (QC) to replace the QC of cloud cover, STD, and elevation of CSR, and we propose 40 points as the QC threshold for the two channels, above which the predicted RMSE of a CSR is superior to the RMSE of averaged clear-sky L1 data. Full article
(This article belongs to the Special Issue Remote Sensing of Clouds and Precipitation at Multiple Scales)
Show Figures

Figure 1

18 pages, 1604 KiB  
Article
Our Peculiar Motion Inferred from Number Counts of Mid Infra Red AGNs and the Discordance Seen with the Cosmological Principle
by Ashok K. Singal
Universe 2021, 7(4), 107; https://doi.org/10.3390/universe7040107 - 20 Apr 2021
Cited by 18 | Viewed by 3226
Abstract
According to the Cosmological Principle, the Universe is isotropic and no preferred direction would be seen by an observer that might be stationary with respect to the expanding cosmic fluid. However, because of observer’s partaking in the solar system peculiar motion, there would [...] Read more.
According to the Cosmological Principle, the Universe is isotropic and no preferred direction would be seen by an observer that might be stationary with respect to the expanding cosmic fluid. However, because of observer’s partaking in the solar system peculiar motion, there would appear in some of the observed properties of the Cosmos a dipole anisotropy, which could in turn be exploited to determine the peculiar motion of the solar system. The dipole anisotropy in the Cosmic Microwave Background Radiation (CMBR) has given a peculiar velocity vector 370 km s1 along l=264,b=48. However, some other dipoles, for instance, from the number counts, sky brightness or redshift distributions in large samples of distant Active Galactic Nuclei (AGNs), have yielded values of the peculiar velocity many times larger than that from the CMBR, though surprisingly, in all cases the directions agreed with the CMBR dipole. Here we determine our peculiar motion from a sample of 0.28 million AGNs, selected from the Mid Infra Red Active Galactic Nuclei (MIRAGN) sample comprising more than a million sources. From this, we find a peculiar velocity, which is more than four times the CMBR value, although the direction seems to be within ∼2σ of the CMBR dipole. A genuine value of the solar peculiar velocity should be the same irrespective of the data or the technique employed to estimate it. Therefore, such discordant dipole amplitudes might mean that the explanation for these dipoles, including that of the CMBR, might in fact be something else. The observed fact that the direction in all cases is the same, though obtained from completely independent surveys using different instruments and techniques, by different sets of people employing different computing routines, might nonetheless indicate that these dipoles are not merely due to some systematics, otherwise why would they all be pointing along the same direction. It might instead suggest a preferred direction in the Universe, implying a genuine anisotropy, which would violate the Cosmological Principle, the core of the modern cosmology. Full article
Show Figures

Figure 1

Back to TopTop