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Abstract: The Clear Sky Radiance (CSR) product has been widely used instead of Level 1 (L1)
geostationary imager data in data assimilation for numerical weather prediction due to its many
advantages concerning superobservation methodology. In this study, CSR was produced in two
water vapor channels (channels 9 and channel 10, with wavelengths at 5.8–6.7 µm and 6.9–7.3 µm)
of the Advanced Geostationary Radiation Imager aboard Fengyun 4A. The root mean square error
(RMSE) between CSR observations and backgrounds was used as a quality flag and was predicted
by cloud cover, standard deviation (STD), surface type, and elevation of a CSR field of view (FOV).
Then, a centesimal scoring system based on the predicted RMSE was set to a CSR FOV that indicates
its percentile point in the quality distribution of the whole FOV. Validations of the scoring system
demonstrated that the biases of the predicted RMSE were small for all FOVs and that the score was
consistent with the predicted RMSE, especially for FOVs with high scores. We suggest using this
score for quality control (QC) to replace the QC of cloud cover, STD, and elevation of CSR, and we
propose 40 points as the QC threshold for the two channels, above which the predicted RMSE of a
CSR is superior to the RMSE of averaged clear-sky L1 data.

Keywords: clear sky radiance; superobservation; AGRI water vapor channel; quality control

1. Introduction

Weather analysis and numerical weather prediction (NWP) models have benefitted
from image data and retrieved motion vectors by water vapor (WV) channels at 6.7 µm,
which are usually aboard geostationary satellites [1,2]. To date, all-sky assimilation of
satellite radiance remains a significant challenge [3], and clear-sky radiance still has an
important role in most operational NWP models worldwide. Neutral-to-positive impacts
on forecast skill have been found in both global and regional models when clear-sky WV
radiance or brightness temperature (BT) is assimilated. For example, Szyndel et al. [4]
assimilated the WV radiances of Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
aboard the Meteosat-8 into the NWP model of European Centre for Medium-Range Weather
Forecasts (ECMWF) and found a positive impact on wind and height field forecasts, which
may result from a better assignment of moisture in the vertical direction. Stengel et al. [5]
demonstrated the benefit of a regional NWP model’s analysis and forecasts gained by the
assimilation of SEVIRI infrared radiances. The main direct impacts on the analysis were
tropospheric humidity and wind increment, and positive impacts were revealed for almost
all upper tropospheric variables in forecast verifications. Rani et al. [6] assimilated the clear-
sky BTs of WV channels of the INSAT-3D imager into the assimilation and forecast system
of the National Centre for Medium Range Weather Forecasting (NCMRWF), demonstrating
a positive impact on the humidity and upper tropospheric wind fields, whereas the impact
on the temperature field, particularly over the tropics, was neutral. Moreover, studies
have shown that assimilating WV radiances would improve the forecasting of convective
processes [7], coastal quantitative precipitation [8,9], and the overall tracking and intensity
of tropical storms [10].
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The Clear Sky Radiance (CSR) product for geostationary satellites has been developed
for data assimilation in the NWP model and introduced into operation in ECMWF [11,12]
and Japan Meteorological Agency (JMA) [13,14]. In a predefined assembly of pixels for
imager WV channels, CSR, by a so-called superobservation methodology, is the average
of the radiance or BT over all clear pixels in an assembly [15,16]. An advantage of the
superobservation is that it greatly reduces the data volume when upscaling the resolution
of the observation. Moreover, as the resolution of geostationary satellite imagers generally
exceeds that of global models, the representation errors will also be reduced to gain consis-
tency in the resolutions between the NWP model and satellite observations [17] when CSR
is assimilated in NWP compared with L1 data. In another way, observations are assumed
to be independent of each other in assimilation, and satellite data with high resolution must
be thinned to reduce correlations with neighboring observations before they can be used in
assimilations [18]. Studies have been conducted on thinning methods, such as uniformly
spaced sampling, superobservation, and many adaptive thinning algorithms [19,20]. The
superobservation method has been widely used in assimilations due to its simple algorithm,
high ratio of data utilization, and low uncorrelated random error [21]. However, extra
errors would be introduced by superobservations when using the averaged radiance or BT
of clear-sky pixels to represent the whole segment in clear-sky situations.

Quality control (QC) is a primary process used in data assimilation. Generally, four
QC processes must be implemented for the assimilation of clear-sky radiances. First, the
quality of satellite L1 data closely corresponds to the parameters of instruments during their
observation, and QC methods are necessary for these observations based on the working
characteristics, which include the status of the satellite and instrument environment, the
observational geometry, and the correctness of instrument calibration [22]. Second, a cloud
detection method is necessary to remove the radiances contaminated by clouds. Spatial
variability, represented by standard deviation (STD), is often used in cloud screening
algorithm [23,24]. Next, limitations are often set to satellite observations, such as latitude,
altitude, and surface type, for satellite field of views (FOV) so that the received radiances
do not contain emissions of complicated surfaces. Setting a threshold on the observation
minus background (O-B) is the last primary QC in assimilation. Large O-B may result from
complex scatter radiative transfer in clouds or scale mismatches between observations and
simulations. Even correct data should sometimes be rejected if they reflect processes that
cannot be resolved on the scale of the grid system used in the analysis [25]. For the CSR
product, the representativeness of averaged clear-sky pixels in superobservation segment
should be considered for a large number of FOVs that are partly contaminated, and the QC
scheme should be designed accordingly.

Fengyun 4A, the first satellite of the second-generation geostationary meteorological
satellite in China, was launched on December 11, 2016 and located at 104.7◦E. Among the
four payloads on Fengyun 4A, the Advanced Geostationary Radiation Imager (AGRI) has
a comparable performance with the most cutting-edge geostationary imager [26]. Fourteen
channels were set in the AGRI, and there were two WV channels, 5.8–6.7 µm (channel 9) and
6.9–7.3 µm (channel 10), to detect the layer water vapor content in the mid-atmosphere with
a 4-km resolution at nadir [27]. The remote sensing products of AGRI are highly qualified
and have been widely utilized in many fields of atmospheric science [28,29]. For data
assimilation, the impact on bias correction has been analyzed for AGRI radiance [30,31].
In this paper, CSR products were developed for the two WV channels of AGRI, and a
scoring system was designed to indicate the CSR quality. Then, a QC scheme was set
based on the score. In Section 2, an introduction to the CSR product and its quality flags is
presented. Validations of the clear-sky screening and scoring system are shown in Section 3.
In Section 4, we discuss the application of the CSR score. Conclusions and some discussion
are given in Section 5.
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2. Methodology
2.1. Superobservation of FY4A CSR

Duan et al. [21] pointed out that the larger the superobservation segment is, the smaller
the uncorrelated random error of observation will be. However, fewer synoptic features
would be presented in an observation with lower resolution. In this paper, we designed
a superobservation strategy based on a resolution of 15 km for the operational Global
and Regional Assimilation in Numerical Model and Prediction System (GRAPES) [32] of
the China Meteorological Administration. Therefore, 3 × 3-pixel image segmentation is
applied to AGRI L1 raw data, making the resolution 12 km at nadir, and all 3 × 3 pixels
are referred to as the CSR FOV. Then, the geolocation, zenith angle, as well as azimuth
angle to the sensor and sun for a CSR FOV were set to the fifth (i.e., central) pixel in the
superobservation box. The FOVs with sensor zenith angles larger than 60◦ were removed.
We identified the surface type using the following rule: a CSR FOV is over land (sea) only if
all the AGRI pixels inside it are over land (sea), and it is over the coast when both terrestrial
and marine pixels are found in it.

To calculate the cloud cover in a CSR FOV, the four-level cloud masks of AGRI
pixels that were described as cloudy, probably cloudy, probably clear, and clear should be
dichotomized as cloudy and clear. Actually, ‘probably cloudy’ would be found at the edge
of the cloud and could undoubtedly be considered ‘cloudy’. ‘Probably clear’ would be
taken as ‘clear’ to increase the number of CSR data without significantly degrading quality
(a detailed evaluation will be indicated in Section 3). Then, cloud cover (f ) of CSR could be
defined as follows:

f = Ncld

Nclr+Ncld (1)

where N is the number of pixels inside a CSR FOV, and the superscripts ‘cld’ and ‘clr’
represent pixels in cloudy or clear situations. In practice, cloud cover is represented by an
integer arithmetic sequence from 0 to 88 spaced by 11, meaning there are no cloudy pixels
to 8 cloudy pixels in a CSR FOV. The main scientific data set (SDS) of the CSR product is the
averaged BT of clear-sky pixels in each FOV, denoted as BTclr. The averaged BT of cloudy
pixels (BTcld) was also calculated, and the averaged BT of the CSR FOV (BTave) could be
obtained by the following equation:

BTave = (1 − f )·BTclr + f ·BTcld (2)

In addition, the STD of the nine AGRI pixels’ BT (BTAGRI) was calculated to represent
the homogeneity of a CSR FOV, which is defined as follows:

STD =

√
∑9

i=1(BTAGRI
i −BTave)

2

9
(3)

In summary, four kinds of SDS, BT, geographical and geometric information, surface
type, and quality flag were involved in the CSR product. The BT subset included the
averaged BT of clear, cloudy, and whole pixels of the CSR FOV. The geographical and
geometric information subset included latitude, longitude, and the zenith/azimuth angle
to the sensor and sun. The quality flag subset included cloud cover, STD, predicted root
mean square error (RMSE), and score. The last two SDSs are specific to BTclr and will be
elaborated in the next section.

2.2. The Quality Flags of Clear-Sky BT

Obviously, when there is less cloud coverage and the CSR FOV is more homogeneous,
BTclr is more representative of the BT of the whole segment in a clear situation. Previous
works tended to set empirical thresholds on the cloud cover and STD in the QC process [33].
However, few studies have quantified the influence of the two parameters. In this paper,
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the RMSE between the observation and background fields was used to indicate the quality
of BT clr, which is:

RMSE =

√
1
M

M
∑

j=1
(BTclr

j − BTB
j )

2
(4)

where BTB
j is the BT simulated by radiative transfer for TOVS (RTTOV) [34] in a clear situa-

tion using the atmospheric and surface states of ERA5 reanalysis data with 0.25◦ horizontal
resolution [35], and M is the number of CSR FOVs in a specific group characterized by one
parameter, such as cloud cover or STD. By calculating the RMSE in each group divided by
this parameter, its influence on the quality of BTclr can be illustrated.

Cloud cover and STD have been demonstrated to robustly influence the RMSE of
BTclr and therefore used to make RMSE lookup-tables (LUT) so that the RMSE of any FOVs
could be predicted. Taking into account the impact of surface on RMSE, terrestrial and
marine RMSE LUTs were made separately. In addition, the influence of altitude, which
could be calculated by means of the altitude of nine pixels inside a CSR FOV, on BTclr was
examined. When the altitude of a CSR FOV was lower than a predefined threshold, Hl,
the altitude was considered to have no effect on BTclr. On the other hand, a tremendous
impact would be introduced to BTclr from the surface when the altitude of an FOV is higher
than a predefined threshold, Hh. Therefore, this FOV should be rejected in the QC process.
For FOVs with altitudes higher than Hl and lower than Hh, a linear correction is made on
the LUT-derived RMSE. Therefore, the RMSE of any BTclr with altitude h (h < Hh) can be
predicted by Equation (5):

RMSEp =

{
RMSELUT , h ≤ Hl

RMSELUT + l·(h − Hl), Hl < h ≤ Hh

}
(5)

where RMSELUT is the RMSE value predicted from RMSE LUTs by cloud cover and STD.
The parameter ‘l’ is preacquired from linear fitting of the relationship between altitude and
RMSE and is different in different months for different channels. Fixed RMSE LUTs and
l-parameters were derived in January, April, July, and October of a year and were used in
DJF, MAM, JJA, and SON to introduce the seasonal variations in the RMSE of BTclr.

RMSEp quantified the quality of BTclr, but its value could not show whether an FOV
was good or bad intuitively. Therefore, we designed a centesimal score system in which
the score of an FOV indicates its percentile point in the quality distribution of the whole
FOV. For example, an FOV score of 80 points means it is approximately superior to 80%
FOVs overall. The FOV with predicted RMSEp score will be determined as follows:

score =


100, RMSEp = RMSEmin

100 ∗ exp
[
−k ∗

(
RMSEp − RMSEmin

)]
, RMSEmin < RMSEp < 3K

0, RMSEp ≥ 3K

 (6)

where RMSEmin is the minimum value of RMSE LUTs and is constant for a channel. The
parameter ‘k’ is preacquired from fitting the relationship between RMSE and score, which
is also constant for a channel. Any FOVs with RMSEp larger than 3 K would be scored as
zero because the RMSEp of 99% FOVs was less than 3 K. In addition, coastal FOVs and
FOVs with elevations above Hh also scored zero, as they are generally removed in the QC
process. A detailed explanation of the RMSEp and the scoring system will be given in the
next section.

3. Validation

In the superobservation process, taking the ‘probably clear’ pixels as clear, namely
use both ‘probably clear’ and ‘clear’ pixels to make BTclr, actually lower the threshold to
make BTclr comparing to that taking the ‘probably clear’ pixels as cloudy, i.e., only use
‘clear’ pixels to make BTclr. The former would bring us more FOVs but may degrade the
quality of BTclr comparing to the latter. To determine whether the ‘probably clear’ pixels
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should be treated as clear or cloudy, we made two kinds of BTclr, processing the ‘probably
clear’ pixels as clear (BTclr-I) and cloudy (BTclr-II) respectively. One-month (January of
2019) FOVs of the two kinds of BTclr were partitioned into different groups according to
cloud cover and STD, and the RMSE to background of each group was calculated. Then,
the cumulative FOV numbers against the RMSE were counted. The terrestrial and marine
results of channel 9 are shown in Figure 1, and the results of channel 10 are similar (not
shown). For the FOVs over land, there were more FOVs in BTclr-II than in BTclr-I when
the RMSE was less than 0.75 K (Figure 1a), meaning BTclr-II brought us more high-quality
observations. In a range of RMSEs between 0.8 K and 1 K, a tiny difference was found
between the cumulative FOV numbers of the two cases. The cumulative numbers of BTclr-I
prevailed over BTclr-II when the RMSE was larger than 1 K and did not change significantly
beyond 2 K. Overall, the FOV number of BTclr-I was about 50,000 more than that of BTclr-II.
This is because BTclr-I calculate BT at some FOVs that BTclr-II does not. For example, if
a FOV contains 4 ‘probably cloudy’ pixels and 5 ‘probably clear’ pixels. BTclr-II would
take this FOV as totally cloudy and has no value. Whereas BTclr-I would take this FOV as
partially clear and produce a value as the average BT of the 5 ‘probably clear’ pixels. On
the other hand, the marine FOV numbers of BTclr-I were greater than those of BTclr-II to
any RMSE (Figure 1b). Beyond 1.6 K, the numbers became stable, and the FOV number of
BTclr-I was about 500,000 more than that of BTclr-II in total. In summary, BTclr-II had more
high-quality FOVs over land, but the total FOV numbers were less than BTclr-I and did not
have any advantage over sea. The advantage of BTclr-II further weakened as we developed
a scoring system to filter out high-quality data. Therefore, the ‘probably clear’ pixels were
treated as clear in the superobservation process of CSR.d.

Figure 1. (a) Terrestrial and (b) marine cumulative numbers of channel-9 BTclr-I (considering
‘probably clear’ pixels to be clear) and BTclr-II (considering ‘probably clear’ pixels to be cloudy)
against RMSE.

Usually, a weighting function can be used to determine the most sensitive pressure
layer in a satellite sounding channel, which can be defined as (7):

wf = ∂τk
∂ ln(pk−pk+1)

(7)

where τk is the transmittance between level pk and level pk+1. Layer transmittances of
channels 9 and 10 were calculated by RTTOV using a US standard atmosphere profile. The
transmittances of the two channels were both close to zero near the surface and increased
dramatically in the mid-troposphere (Figure 2a), and the weighting functions peaked at
approximately 350 hPa and 450 hPa (Figure 2b). To ensure that the WV-channel observed
radiance did not contain too much surface emission, a threshold of height (Hh) was defined
at a level at which both the transmittance and its variability were not significantly different
from zero, which were 700 hPa and 850 hPa, or approximately 3 km and 1.5 km for channel
9 and channel 10 of the AGRI, respectively.
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Figure 2. (a) Layer transmittances from different pressure levels to the top of the atmosphere and
(b) the weighting function for channels 9 and 10 of the AGRI.

The impact of the altitude on BTclr quality was explored by examining the relationships
between RMSEs and altitude in various months. The altitude was discretized with 100 m
intervals from 0 m to Hh. As Figure 3a shows, the RMSE of channel 9 fluctuated by
approximately 0.9–1.2 K in January and October and by approximately 1.3–1.5 K in April
below 1600 m. Then, RMSE increased almost linearly with different slopes in the three
months. However, for RMSE in July, the turning point of RMSE was 1.35 K at 600 m. These
phenomena implied that terrain height may not significantly influence BTclr quality until it
reached a certain altitude. Thus, we introduced another height threshold Hl to determine
whether we should consider the impact of elevation. Hl could be 1600 m in January, April,
and October and 600 m in July for channel 9. Similar results were found for channel 10
(Figure 3b), and the appropriate Hl could be 700 m in January, 500 m in April, and 600 m in
July. For October, as the RMSE did not exhibit an increasing trend under 1500 m, we would
not consider the impact of altitude. Between Hl and Hh, we linearly fit the relationships
between RMSEs and elevation in different months for both channels (solid lines in Figure 3)
and used the slopes (parameter ‘l’ in (5)) to represent the influence of altitude.

Figure 3. Relationships between RMSE and altitude for (a) channel 9 and (b) channel 10 in January,
April, July, and October (markers). Solid lines are the linear fitting of the relationships from altitude
Hl to Hh.

Unlike altitude, cloud cover and STD had robust impacts on the RMSE of BTclr. The
relationships between RMSEs and cloud cover are shown in Figure 4 for the two channels
in all four months both over sea and over land with altitudes less than Hl. Both channels
suggested that the quality of FOVs over sea was significantly better than that over land.
For the channel-9 FOVs over sea, RMSE was approximately 0.8 K in the clear case and grew
with a regular slope to 1.1–1.2 K as the cloud cover increase to 88% in the four months
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(Figure 4a). On the other hand, the RMSE of terrestrial FOVs showed much larger seasonal
variation. The RMSE in clear case was 0.85 K in January and October, 0.95 K in July and
1.15 K in April. It increased rapidly to 1.15 K in January and October, to 1.35 K in July and
to 1.46 K in April when the cloud cover increased to 11%. Then, the increments of RMSE
were approximately 0.5–0.6 K when the cloud cover increased to 88% in all months. Similar
results could be obtained for channel 10 in Figure 4b, although with a weaker seasonal
variation. The impacts of STD on RMSE were demonstrated using the FOVs with STDs
less than 0.6 K, which account for more than 99% total CSR FOVs (Figure 4c,d). Similar
to cloud cover, RMSE increased with STD, and the increasing rates were highest between
0.15 K and 0.45 K. A larger RMSE and seasonal variation could be seen for terrestrial FOVs
than for marine FOVs for the two channels.

Figure 4. Relationships between RMSE and cloud cover for (a) channel 9 and (b) channel 10 in
January, April, July and October. Different colors are used for different months, and solid (dashed)
lines are used for terrestrial (marine) FOVs. (c,d) are the same as (a,b) but for the relationship between
RMSE and STD.

As we had removed the FOVs with sensor zenith angle larger than 60◦, more than
50% FOVs were in the regions between 20◦ S and 20◦ N. Therefore, the seasonal variation
shown in Figure 4 mainly represents the RMSE characteristics of BTclr in tropical and
subtropical regions. We examined the seasonal variation of RMSE in the extratropical
northern hemisphere (ENH, north to 20◦ N), tropical region (TR, between 20◦ S and 20◦ N),
and extratropical southern hemisphere (ESH, south to 20◦ S). The results suggested the
RMSE characteristics in tropics resemble that in ESH but with larger values (not shown).
Comparing to the RMSE in TR, the RMSE in ENH are larger in April and July, whereas they
are smaller in October and January. Based on these results, we supposed the representative
error introduced by spatial and temporal interpolation when calculating the RMSE would
be a key factor affecting the seasonal variation: In tropics and the extratropical regions in
summer, there are more mesoscale convection systems and synoptic processes compared to
the extratropical regions in winter, which would change the atmospheric WV more rapidly
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and at a smaller space scale. Thus, there would be larger differences between WV-channel
observed BT and NWP simulated BT if their scales are different.

Previous analyses demonstrated RMSE steadily and monotonically increases along
with cloud cover and STD. Therefore, we made terrestrial and marine RMSE LUTs in
different months taking them as independent variables to predict the RMSE of BTclr. The
LUTs of channel 9 and channel 10 in January are shown in Figure 5. For the marine LUT of
channel 9 (Figure 5a), the isolines of RMSE were nearly horizontally distributed when the
STD was less than 0.2 K, meaning that the STD was the dominant factor affecting the quality
of BTclr. This result suggested that BTclr can well represent the BT of the whole FOV despite
a high fraction of clouds if the FOV was homogenous enough. As the STD increased, the
isolines of RMSE became more slantly distributed, meaning that the influence of cloud
coverage increased. The RMSE values with large cloud cover and STD were less reliable
since the FOV numbers used to calculate them were small. However, it would not be a
problem if the RMSE values exhibit an increasing trend along with the increase of cloud
cover and STD. In contrast to the RMSE over sea, the quality of BTclr over land was much
poorer (with a larger RMSE) and more sensitive (with a larger RMSE gradient) to increases
in cloud cover and STD (Figure 5b). In addition, cloud cover always played a key role in
the BTclr quality, as the RMSE of all clear FOVs was significantly less than that of FOVs
with cloudy pixels. The LUTs of channel 10 resembled those of channel 9 (Figure 5c,d).
LUTs in other months were not shown and their main features were similar to the LUTs
in January.

Figure 5. (a) Marine and (b) terrestrial RMSE lookup table of channel 9 in January. (c,d) are the same
as (a,b) but for channel 10.
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Based on the RMSEp, a scoring system was established to indicate the quality of
an FOV intuitively. The steps in this process are described as follows: First, equivalent
amounts of noncoastal FOVs under Hh were selected from January, April, July and October,
and their RMSEs were predicted. Subsequently, the FOVs were ranked according to their
RMSEp values. In practice, RMSEp was discretized by a 0.05 K interval, and the cumulative
numbers of FOVs were counted. The results of channel 9 and channel 10 are shown in
Figure 6a. For both channels, the RMSEp values were no less than 0.55 K. The cumulative
numbers grew rapidly between 0.6 K and 1.5 K, meaning that the RMSEp values of most
FOVs were in this range. Next, the cumulative numbers were normalized by the total
number of FOVs and are denoted by R ranging from 0 to 1. Then, R values were converted
to centesimal scores using (8):

scoreLUT = 100 − 100 × R (8)

and the results are LUT scores for RMSEp (dots in Figure 6b). To score the FOVs with
continuous RMSEp values, we exploited an exponential decay model to fit the relationship
between RMSEp and score in a least squares manner (solid lines in Figure 6b) and derive
parameter ‘k’ in (6).

Figure 6. (a) Cumulative histogram of the FOV number and (b) resulting score (dots) against RMSE
for channel 9 and channel 10. The curves in (b) fit the relationship between the score and RMSE using
the exponential decay model.

To validate the correctness of the RMSEp, we examined the consistency between the
observed and predicted RMSEs in different score ranges for both channels. The results
of January 2019 are shown in Figure 7, and the same principle could be applied to other
months. In this figure, FOVs were partitioned into ten groups according to their score, with
ten-point intervals in a left open and right closed manner. The RMSEs of BTclr and the
background fields for each group were calculated, namely, the observed RMSEs, which
were taken as independent variables. On the other hand, the RMSEps of all FOVs were
taken as dependent variables. The red tabs were the average RMSEps, and the upper
and lower blue whiskers indicated the maximum and minimum RMSEps in each group.
The average RMSEp values coincided with the observations of both channels for all score
groups. However, the RMSEps exhibited a large distribution for low-score FOVs, as
the minimum RMSEp for the channel 9 (channel 10) BTclr under 10 points was 1.41 K
(1.26 K), and the maximum reached 2.95 K (3.19 K). As score increased, the dispersion of
RMSEp values decreased. For FOVs with scores higher than 90, the difference between
the maximum and minimum RMSEps was approximately 0.02 K (0.03 K) for channel 9
(channel 10). In summary, the method in this paper could consistently predict the RMSE of
BTclr, and the score was coherent with the RMSEp, especially for FOVs with high scores.
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Figure 7. Average values (red markers) of the predicted RMSE against the observed RMSE in each
BTclr group partitioned by 10-point intervals for (a) channel 9 and (b) channel 10 in January 2019.
The upper and lower limits of predicted RMSE in each score range are denoted as blue whiskers.

4. Application of CSR Score

As a demonstration, the BTclr scores over land and sea with altitudes below Hh are
shown in Figure 8 for both channels at 12 UTC on January 15, 2019. The overcast regions
derived from cloud fraction product were denoted as black shading. Large areas of clear
sky could be found in the Western Pacific and the Southern Indian Ocean. The scores of
most FOVs in these areas were higher than 70 points for both channels and decreased to
20–50 points at the edge of the cloud. The impacts of surface type on score were manifested
over the clear-sky regions of northern India and the Arabian Sea, where the score changed
dramatically across the coast. For channel 9, the scores of the majority of FOVs over
northern India were 50–70 points and those over the Arabian Sea were higher than 70
points. By comparison, the score of channel-10 BTclr was lower over land but higher over
sea. When terrestrial FOVs were influenced by cloud, the score would be less than 20 points,
such as on the East-Southeast Asian continent and Australia. Moreover, the influence of
altitude could be seen by the FOVs around the Tibetan Plateau, especially for channel 9,
which was lower than 20 points in a clear situation.

Figure 8. The scores of (a) channel 9 and (b) channel 10 BTclr at 12 UTC on 15 January 2019. Overcast regions were denoted
as black shading.
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The CSR score ranks the FOVs well according to their quality. However, a threshold
is needed to determine whether we should reject an FOV in the QC process. Since CSR
was produced to replace L1 data in the data assimilation, the clear-sky L1 data provided a
natural reference for setting the threshold. The observed RMSE of BTclr (RMSE_BTclr) in
each score range spaced by 10 points for channels 9 and 10 are shown in Figure 9, and the
lines with various colors represent the observed RMSE to radiance of AGRI pixel (RMSE_L1)
under clear skies in January, April, July, and October. For channel 9, the RMSE_L1 was
largest in April (1.08 K) and smallest in January (0.76 K), and the averaged value of the four
months was 0.90 K. In comparison, the RMSE_BTclr values under 20 points were larger
than the RMSE_L1 in April, the RMSE_BTclr values above 60 points were smaller than
the RMSE_L1 in January, and the RMSE_BTclr values above 40 points were smaller than
the averaged RMSE_L1. Therefore, the quality of CSR above 60 points can be assured,
as they were better than the best performance of the L1 data. However, the number of
FOVs above 60 points was less than 40% of the total number, and too many FOVs would
be discarded if we selected 60 points as the threshold. Therefore, we propose to set the
threshold as 40 points, at which the RMSE_BTclr would be better than the average RMSE_L1
to obtain the balance between amount and quality. For channel 10, the seasonal variation
in RMSE_L1 was smaller, with a maximum in April (1.00 K) and a minimum in October
(0.75 K), and the average value of the four months was approximately equal to that of
channel 9 (0.88 K). The RMSE_BTclr of channel 10 was similar to channel 9, and above
40 points the RMSE_BTclr would be significantly less than the average RMSE_L1. Thus,
40 points are proposed as the QC threshold for both channels, which means about 40%
data would be discarded in the QC process.

Figure 9. RMSEs in different score ranges for (a) channel 9 and (b) channel 10. The dotted lines
of different colors are the RMSE of clear-sky L1 data for backgrounds in different months, and the
average RMSE of the four months is denoted as a black solid line.

Notably, the score only indicated the quality of BTclr in a statistical sense. The con-
sistency between observed and background BTclr in January was examined by their joint
probability distributions for both channels, and each is shown in 10 figures with 10-point
intervals for the score (Figure 10). The results of other months were similar and not be
shown. Low BT (approximately 220 K for channel 9 and 235 K for channel 10) was detected
in a score range between 0 and 10, and the lowest BT increased according to the increase in
score (approximately 230 K for channel 9 and 240 K for channel 10 in the 90–100 score range).
Moreover, the variance in O-B monotonically decreased with increasing score, which was
2.66 K (3.02 K) at a score of 0–10 and 0.33 K (0.26 K) at a score of 90–100 for channel 9 (10).
In another way, the probability of small O-B (absolute value < 0.5 K) was calculated to
represent the probability of a good BTclr. The value monotonically increased from 28.7%
(27.6%) to 66.2% (64.7%) for channel 9 (10) as the score changed from 10 to 100. When the
40 points that were identified in Figure 9 were used as the QC threshold, the variance of
O-B would be less than 0.72 K (0.58 K), and the probability of small O-B would be more
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than 51.4% (52.5%) for channel 9 (10). It is noted there were some significant outliers in the
high-score range (Figure 10i,s). These outliers were over the desert in western and central
Australia. In consideration of it is in summer season (January), and the observational BTclr

values are higher than that of background, we believe these outliers were caused by the
strong emission of hyperthermal desert surface. These FOVs contaminated by surface
emission were scored high because they were all-clear and very homogenous. We could set
many criteria to filter out those FOVs and mark them as low score, whereas these outliers
were quite easy to remove by setting a threshold on O-B. Our score system was designed to
replace the QC of cloud cover and STD of CSR, rather than replace all the QC procedures.
Thus, we did not make any corrections for those outliers and suggest using the score and
setting a threshold for O-B simultaneously in the QC scheme before assimilation.

Figure 10. (a–j) are joint probability distributions (in percent) of channel 9 BTclr and background BT
in different score ranges for January, 2019. The score range, FOV numbers (denoted as N), variance
in O-B (denoted as V) and the probability of O-B in the range of -0.5 K to 0.5 K (denoted as P) are
labeled at the top left, top right and bottom right, respectively, in each subfigure. (k–t) are the same
as (a–j) but for channel 10. Totally, more than 28 (27) million FOVs were used for channel 9 (10).
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5. Discussion

As far as we know, European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) has made a quality index (QI) for their CSR product [15]. This
index, ranging from 0 to 100, is calculated from two quality indexes based on cloud fraction
(QI f ) and STD (QISTD) as follows:

QI =
(

QI f ∗ QISTD

)
/100 (9)

where:

QI f =


[

tan h

(
f C f

B f

)]A f
 ∗ 100 (10)

QISTD =

{[
tan h

(
BSTD

STDCSTD

)]ASTD
}
∗ 100 (11)

The tanh function was used because it is monotonic and bounded between 0 and 1
for non-negative values. A f , B f , C f and ASTD, BSTD, CSTD are configurable parameters
and empirically determined by tuning how quickly the values move from 0 to 1 (personal
communication with EUMETSAT user services). The QI has considered the influence of
cloud cover and STD on the quality of CSR. In comparison, our scoring system further
included the impact of surface type, elevation, and seasonal variation. By using RMSE to
indicate the quality of BTclr, the influence of these factors was evaluated more objectively.

However, we should note that the RMSEp is specific to the background, namely ERA5
reanalysis data in our case. We had taken the background as a reference, but it is not the
truth. The error of the background was embedded in the RMSE LUTs so that the RMSEp
would change if we use another background. In any case, the RMSE LUTs could reflect
how the quality of BTclr changes along with cloud cover and STD. Therefore, at least the
relative quality of BTclr could be correctly estimated. That is one reason why we convert
RMSEp to score to represent the quality of BTclr in a relative sense. At present, CSR FOVs
are assigned the same observation errors in data assimilation, and further improvement is
needed to make the observation errors specific [33]. In addition to use for QC, the score
may be also used to weight the observation error so that a more accurate assimilation can
be achieved, and that will be studied in the future.
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