1. Introduction
Weather analysis and numerical weather prediction (NWP) models have benefitted from image data and retrieved motion vectors by water vapor (WV) channels at 6.7 μm, which are usually aboard geostationary satellites [
1,
2]. To date, all-sky assimilation of satellite radiance remains a significant challenge [
3], and clear-sky radiance still has an important role in most operational NWP models worldwide. Neutral-to-positive impacts on forecast skill have been found in both global and regional models when clear-sky WV radiance or brightness temperature (BT) is assimilated. For example, Szyndel et al. [
4] assimilated the WV radiances of Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard the Meteosat-8 into the NWP model of European Centre for Medium-Range Weather Forecasts (ECMWF) and found a positive impact on wind and height field forecasts, which may result from a better assignment of moisture in the vertical direction. Stengel et al. [
5] demonstrated the benefit of a regional NWP model’s analysis and forecasts gained by the assimilation of SEVIRI infrared radiances. The main direct impacts on the analysis were tropospheric humidity and wind increment, and positive impacts were revealed for almost all upper tropospheric variables in forecast verifications. Rani et al. [
6] assimilated the clear-sky BTs of WV channels of the INSAT-3D imager into the assimilation and forecast system of the National Centre for Medium Range Weather Forecasting (NCMRWF), demonstrating a positive impact on the humidity and upper tropospheric wind fields, whereas the impact on the temperature field, particularly over the tropics, was neutral. Moreover, studies have shown that assimilating WV radiances would improve the forecasting of convective processes [
7], coastal quantitative precipitation [
8,
9], and the overall tracking and intensity of tropical storms [
10].
The Clear Sky Radiance (CSR) product for geostationary satellites has been developed for data assimilation in the NWP model and introduced into operation in ECMWF [
11,
12] and Japan Meteorological Agency (JMA) [
13,
14]. In a predefined assembly of pixels for imager WV channels, CSR, by a so-called superobservation methodology, is the average of the radiance or BT over all clear pixels in an assembly [
15,
16]. An advantage of the superobservation is that it greatly reduces the data volume when upscaling the resolution of the observation. Moreover, as the resolution of geostationary satellite imagers generally exceeds that of global models, the representation errors will also be reduced to gain consistency in the resolutions between the NWP model and satellite observations [
17] when CSR is assimilated in NWP compared with L1 data. In another way, observations are assumed to be independent of each other in assimilation, and satellite data with high resolution must be thinned to reduce correlations with neighboring observations before they can be used in assimilations [
18]. Studies have been conducted on thinning methods, such as uniformly spaced sampling, superobservation, and many adaptive thinning algorithms [
19,
20]. The superobservation method has been widely used in assimilations due to its simple algorithm, high ratio of data utilization, and low uncorrelated random error [
21]. However, extra errors would be introduced by superobservations when using the averaged radiance or BT of clear-sky pixels to represent the whole segment in clear-sky situations.
Quality control (QC) is a primary process used in data assimilation. Generally, four QC processes must be implemented for the assimilation of clear-sky radiances. First, the quality of satellite L1 data closely corresponds to the parameters of instruments during their observation, and QC methods are necessary for these observations based on the working characteristics, which include the status of the satellite and instrument environment, the observational geometry, and the correctness of instrument calibration [
22]. Second, a cloud detection method is necessary to remove the radiances contaminated by clouds. Spatial variability, represented by standard deviation (STD), is often used in cloud screening algorithm [
23,
24]. Next, limitations are often set to satellite observations, such as latitude, altitude, and surface type, for satellite field of views (FOV) so that the received radiances do not contain emissions of complicated surfaces. Setting a threshold on the observation minus background (O-B) is the last primary QC in assimilation. Large O-B may result from complex scatter radiative transfer in clouds or scale mismatches between observations and simulations. Even correct data should sometimes be rejected if they reflect processes that cannot be resolved on the scale of the grid system used in the analysis [
25]. For the CSR product, the representativeness of averaged clear-sky pixels in superobservation segment should be considered for a large number of FOVs that are partly contaminated, and the QC scheme should be designed accordingly.
Fengyun 4A, the first satellite of the second-generation geostationary meteorological satellite in China, was launched on December 11, 2016 and located at 104.7°E. Among the four payloads on Fengyun 4A, the Advanced Geostationary Radiation Imager (AGRI) has a comparable performance with the most cutting-edge geostationary imager [
26]. Fourteen channels were set in the AGRI, and there were two WV channels, 5.8–6.7 μm (channel 9) and 6.9–7.3 μm (channel 10), to detect the layer water vapor content in the mid-atmosphere with a 4-km resolution at nadir [
27]. The remote sensing products of AGRI are highly qualified and have been widely utilized in many fields of atmospheric science [
28,
29]. For data assimilation, the impact on bias correction has been analyzed for AGRI radiance [
30,
31]. In this paper, CSR products were developed for the two WV channels of AGRI, and a scoring system was designed to indicate the CSR quality. Then, a QC scheme was set based on the score. In
Section 2, an introduction to the CSR product and its quality flags is presented. Validations of the clear-sky screening and scoring system are shown in
Section 3. In
Section 4, we discuss the application of the CSR score. Conclusions and some discussion are given in
Section 5.
3. Validation
In the superobservation process, taking the ‘probably clear’ pixels as clear, namely use both ‘probably clear’ and ‘clear’ pixels to make
BTclr, actually lower the threshold to make
BTclr comparing to that taking the ‘probably clear’ pixels as cloudy, i.e., only use ‘clear’ pixels to make
BTclr. The former would bring us more FOVs but may degrade the quality of
BTclr comparing to the latter. To determine whether the ‘probably clear’ pixels should be treated as clear or cloudy, we made two kinds of
BTclr, processing the ‘probably clear’ pixels as clear (
BTclr-I) and cloudy (
BTclr-II) respectively. One-month (January of 2019) FOVs of the two kinds of
BTclr were partitioned into different groups according to cloud cover and STD, and the RMSE to background of each group was calculated. Then, the cumulative FOV numbers against the RMSE were counted. The terrestrial and marine results of channel 9 are shown in
Figure 1, and the results of channel 10 are similar (not shown). For the FOVs over land, there were more FOVs in
BTclr-II than in
BTclr-I when the RMSE was less than 0.75 K (
Figure 1a), meaning
BTclr-II brought us more high-quality observations. In a range of RMSEs between 0.8 K and 1 K, a tiny difference was found between the cumulative FOV numbers of the two cases. The cumulative numbers of
BTclr-I prevailed over
BTclr-II when the RMSE was larger than 1 K and did not change significantly beyond 2 K. Overall, the FOV number of
BTclr-I was about 50,000 more than that of
BTclr-II. This is because
BTclr-I calculate BT at some FOVs that
BTclr-II does not. For example, if a FOV contains 4 ‘probably cloudy’ pixels and 5 ‘probably clear’ pixels.
BTclr-II would take this FOV as totally cloudy and has no value. Whereas
BTclr-I would take this FOV as partially clear and produce a value as the average BT of the 5 ‘probably clear’ pixels. On the other hand, the marine FOV numbers of
BTclr-I were greater than those of
BTclr-II to any RMSE (
Figure 1b). Beyond 1.6 K, the numbers became stable, and the FOV number of
BTclr-I was about 500,000 more than that of
BTclr-II in total. In summary,
BTclr-II had more high-quality FOVs over land, but the total FOV numbers were less than
BTclr-I and did not have any advantage over sea. The advantage of
BTclr-II further weakened as we developed a scoring system to filter out high-quality data. Therefore, the ‘probably clear’ pixels were treated as clear in the superobservation process of CSR.d.
Usually, a weighting function can be used to determine the most sensitive pressure layer in a satellite sounding channel, which can be defined as (7):
where
is the transmittance between level
and level
. Layer transmittances of channels 9 and 10 were calculated by RTTOV using a US standard atmosphere profile. The transmittances of the two channels were both close to zero near the surface and increased dramatically in the mid-troposphere (
Figure 2a), and the weighting functions peaked at approximately 350 hPa and 450 hPa (
Figure 2b). To ensure that the WV-channel observed radiance did not contain too much surface emission, a threshold of height (
Hh) was defined at a level at which both the transmittance and its variability were not significantly different from zero, which were 700 hPa and 850 hPa, or approximately 3 km and 1.5 km for channel 9 and channel 10 of the AGRI, respectively.
The impact of the altitude on
BTclr quality was explored by examining the relationships between RMSEs and altitude in various months. The altitude was discretized with 100 m intervals from 0 m to
Hh. As
Figure 3a shows, the RMSE of channel 9 fluctuated by approximately 0.9–1.2 K in January and October and by approximately 1.3–1.5 K in April below 1600 m. Then, RMSE increased almost linearly with different slopes in the three months. However, for RMSE in July, the turning point of RMSE was 1.35 K at 600 m. These phenomena implied that terrain height may not significantly influence
BTclr quality until it reached a certain altitude. Thus, we introduced another height threshold
Hl to determine whether we should consider the impact of elevation.
Hl could be 1600 m in January, April, and October and 600 m in July for channel 9. Similar results were found for channel 10 (
Figure 3b), and the appropriate
Hl could be 700 m in January, 500 m in April, and 600 m in July. For October, as the RMSE did not exhibit an increasing trend under 1500 m, we would not consider the impact of altitude. Between
Hl and
Hh, we linearly fit the relationships between RMSEs and elevation in different months for both channels (solid lines in
Figure 3) and used the slopes (parameter ‘
l’ in (5)) to represent the influence of altitude.
Unlike altitude, cloud cover and STD had robust impacts on the RMSE of
BTclr. The relationships between RMSEs and cloud cover are shown in
Figure 4 for the two channels in all four months both over sea and over land with altitudes less than
Hl. Both channels suggested that the quality of FOVs over sea was significantly better than that over land. For the channel-9 FOVs over sea, RMSE was approximately 0.8 K in the clear case and grew with a regular slope to 1.1–1.2 K as the cloud cover increase to 88% in the four months (
Figure 4a). On the other hand, the RMSE of terrestrial FOVs showed much larger seasonal variation. The RMSE in clear case was 0.85 K in January and October, 0.95 K in July and 1.15 K in April. It increased rapidly to 1.15 K in January and October, to 1.35 K in July and to 1.46 K in April when the cloud cover increased to 11%. Then, the increments of RMSE were approximately 0.5–0.6 K when the cloud cover increased to 88% in all months. Similar results could be obtained for channel 10 in
Figure 4b, although with a weaker seasonal variation. The impacts of STD on RMSE were demonstrated using the FOVs with STDs less than 0.6 K, which account for more than 99% total CSR FOVs (
Figure 4c,d). Similar to cloud cover, RMSE increased with STD, and the increasing rates were highest between 0.15 K and 0.45 K. A larger RMSE and seasonal variation could be seen for terrestrial FOVs than for marine FOVs for the two channels.
As we had removed the FOVs with sensor zenith angle larger than 60°, more than 50% FOVs were in the regions between 20° S and 20° N. Therefore, the seasonal variation shown in
Figure 4 mainly represents the RMSE characteristics of
BTclr in tropical and subtropical regions. We examined the seasonal variation of RMSE in the extratropical northern hemisphere (ENH, north to 20° N), tropical region (TR, between 20° S and 20° N), and extratropical southern hemisphere (ESH, south to 20° S). The results suggested the RMSE characteristics in tropics resemble that in ESH but with larger values (not shown). Comparing to the RMSE in TR, the RMSE in ENH are larger in April and July, whereas they are smaller in October and January. Based on these results, we supposed the representative error introduced by spatial and temporal interpolation when calculating the RMSE would be a key factor affecting the seasonal variation: In tropics and the extratropical regions in summer, there are more mesoscale convection systems and synoptic processes compared to the extratropical regions in winter, which would change the atmospheric WV more rapidly and at a smaller space scale. Thus, there would be larger differences between WV-channel observed BT and NWP simulated BT if their scales are different.
Previous analyses demonstrated RMSE steadily and monotonically increases along with cloud cover and STD. Therefore, we made terrestrial and marine RMSE LUTs in different months taking them as independent variables to predict the RMSE of
BTclr. The LUTs of channel 9 and channel 10 in January are shown in
Figure 5. For the marine LUT of channel 9 (
Figure 5a), the isolines of RMSE were nearly horizontally distributed when the STD was less than 0.2 K, meaning that the STD was the dominant factor affecting the quality of
BTclr. This result suggested that
BTclr can well represent the BT of the whole FOV despite a high fraction of clouds if the FOV was homogenous enough. As the STD increased, the isolines of RMSE became more slantly distributed, meaning that the influence of cloud coverage increased. The RMSE values with large cloud cover and STD were less reliable since the FOV numbers used to calculate them were small. However, it would not be a problem if the RMSE values exhibit an increasing trend along with the increase of cloud cover and STD. In contrast to the RMSE over sea, the quality of
BTclr over land was much poorer (with a larger RMSE) and more sensitive (with a larger RMSE gradient) to increases in cloud cover and STD (
Figure 5b). In addition, cloud cover always played a key role in the
BTclr quality, as the RMSE of all clear FOVs was significantly less than that of FOVs with cloudy pixels. The LUTs of channel 10 resembled those of channel 9 (
Figure 5c,d). LUTs in other months were not shown and their main features were similar to the LUTs in January.
Based on the
, a scoring system was established to indicate the quality of an FOV intuitively. The steps in this process are described as follows: First, equivalent amounts of noncoastal FOVs under
Hh were selected from January, April, July and October, and their RMSEs were predicted. Subsequently, the FOVs were ranked according to their
values. In practice,
was discretized by a 0.05 K interval, and the cumulative numbers of FOVs were counted. The results of channel 9 and channel 10 are shown in
Figure 6a. For both channels, the
values were no less than 0.55 K. The cumulative numbers grew rapidly between 0.6 K and 1.5 K, meaning that the
values of most FOVs were in this range. Next, the cumulative numbers were normalized by the total number of FOVs and are denoted by
R ranging from 0 to 1. Then,
R values were converted to centesimal scores using (8):
and the results are LUT scores for
(dots in
Figure 6b). To score the FOVs with continuous
values, we exploited an exponential decay model to fit the relationship between
and score in a least squares manner (solid lines in
Figure 6b) and derive parameter ‘
k’ in (6).
To validate the correctness of the
, we examined the consistency between the observed and predicted RMSEs in different score ranges for both channels. The results of January 2019 are shown in
Figure 7, and the same principle could be applied to other months. In this figure, FOVs were partitioned into ten groups according to their score, with ten-point intervals in a left open and right closed manner. The RMSEs of
BTclr and the background fields for each group were calculated, namely, the observed RMSEs, which were taken as independent variables. On the other hand, the
s of all FOVs were taken as dependent variables. The red tabs were the average
s, and the upper and lower blue whiskers indicated the maximum and minimum
s in each group. The average
values coincided with the observations of both channels for all score groups. However, the
s exhibited a large distribution for low-score FOVs, as the minimum
for the channel 9 (channel 10)
BTclr under 10 points was 1.41 K (1.26 K), and the maximum reached 2.95 K (3.19 K). As score increased, the dispersion of
values decreased. For FOVs with scores higher than 90, the difference between the maximum and minimum
s was approximately 0.02 K (0.03 K) for channel 9 (channel 10). In summary, the method in this paper could consistently predict the RMSE of
BTclr, and the score was coherent with the
, especially for FOVs with high scores.
4. Application of CSR Score
As a demonstration, the
BTclr scores over land and sea with altitudes below
Hh are shown in
Figure 8 for both channels at 12 UTC on January 15, 2019. The overcast regions derived from cloud fraction product were denoted as black shading. Large areas of clear sky could be found in the Western Pacific and the Southern Indian Ocean. The scores of most FOVs in these areas were higher than 70 points for both channels and decreased to 20–50 points at the edge of the cloud. The impacts of surface type on score were manifested over the clear-sky regions of northern India and the Arabian Sea, where the score changed dramatically across the coast. For channel 9, the scores of the majority of FOVs over northern India were 50–70 points and those over the Arabian Sea were higher than 70 points. By comparison, the score of channel-10
BTclr was lower over land but higher over sea. When terrestrial FOVs were influenced by cloud, the score would be less than 20 points, such as on the East-Southeast Asian continent and Australia. Moreover, the influence of altitude could be seen by the FOVs around the Tibetan Plateau, especially for channel 9, which was lower than 20 points in a clear situation.
The CSR score ranks the FOVs well according to their quality. However, a threshold is needed to determine whether we should reject an FOV in the QC process. Since CSR was produced to replace L1 data in the data assimilation, the clear-sky L1 data provided a natural reference for setting the threshold. The observed RMSE of
BTclr (
RMSE_BTclr) in each score range spaced by 10 points for channels 9 and 10 are shown in
Figure 9, and the lines with various colors represent the observed RMSE to radiance of AGRI pixel (
RMSE_L1) under clear skies in January, April, July, and October. For channel 9, the
RMSE_L1 was largest in April (1.08 K) and smallest in January (0.76 K), and the averaged value of the four months was 0.90 K. In comparison, the
RMSE_BTclr values under 20 points were larger than the
RMSE_L1 in April, the
RMSE_BTclr values above 60 points were smaller than the
RMSE_L1 in January, and the
RMSE_BTclr values above 40 points were smaller than the averaged
RMSE_L1. Therefore, the quality of CSR above 60 points can be assured, as they were better than the best performance of the L1 data. However, the number of FOVs above 60 points was less than 40% of the total number, and too many FOVs would be discarded if we selected 60 points as the threshold. Therefore, we propose to set the threshold as 40 points, at which the
RMSE_BTclr would be better than the average
RMSE_L1 to obtain the balance between amount and quality. For channel 10, the seasonal variation in
RMSE_L1 was smaller, with a maximum in April (1.00 K) and a minimum in October (0.75 K), and the average value of the four months was approximately equal to that of channel 9 (0.88 K). The
RMSE_BTclr of channel 10 was similar to channel 9, and above 40 points the
RMSE_BTclr would be significantly less than the average
RMSE_L1. Thus, 40 points are proposed as the QC threshold for both channels, which means about 40% data would be discarded in the QC process.
Notably, the score only indicated the quality of
BTclr in a statistical sense. The consistency between observed and background
BTclr in January was examined by their joint probability distributions for both channels, and each is shown in 10 figures with 10-point intervals for the score (
Figure 10). The results of other months were similar and not be shown. Low BT (approximately 220 K for channel 9 and 235 K for channel 10) was detected in a score range between 0 and 10, and the lowest BT increased according to the increase in score (approximately 230 K for channel 9 and 240 K for channel 10 in the 90–100 score range). Moreover, the variance in O-B monotonically decreased with increasing score, which was 2.66 K (3.02 K) at a score of 0–10 and 0.33 K (0.26 K) at a score of 90–100 for channel 9 (10). In another way, the probability of small O-B (absolute value < 0.5 K) was calculated to represent the probability of a good
BTclr. The value monotonically increased from 28.7% (27.6%) to 66.2% (64.7%) for channel 9 (10) as the score changed from 10 to 100. When the 40 points that were identified in
Figure 9 were used as the QC threshold, the variance of O-B would be less than 0.72 K (0.58 K), and the probability of small O-B would be more than 51.4% (52.5%) for channel 9 (10). It is noted there were some significant outliers in the high-score range (
Figure 10i,s). These outliers were over the desert in western and central Australia. In consideration of it is in summer season (January), and the observational
BTclr values are higher than that of background, we believe these outliers were caused by the strong emission of hyperthermal desert surface. These FOVs contaminated by surface emission were scored high because they were all-clear and very homogenous. We could set many criteria to filter out those FOVs and mark them as low score, whereas these outliers were quite easy to remove by setting a threshold on O-B. Our score system was designed to replace the QC of cloud cover and STD of CSR, rather than replace all the QC procedures. Thus, we did not make any corrections for those outliers and suggest using the score and setting a threshold for O-B simultaneously in the QC scheme before assimilation.