Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (928)

Search Parameters:
Keywords = skin repair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8838 KiB  
Article
Study of the Effectiveness of Skin Restoration Using a Biopolymer Hydrogel Scaffold with Encapsulated Mesenchymal Stem Cells
by Marfa N. Egorikhina, Lidia B. Timofeeva, Yulia P. Rubtsova, Ekaterina A. Farafontova, Dariya D. Linkova, Irina N. Charykova, Maksim G. Ryabkov, Anna A. Ezhevskaya, Ekaterina A. Levicheva and Diana Ya. Aleynik
Int. J. Mol. Sci. 2025, 26(16), 7840; https://doi.org/10.3390/ijms26167840 - 14 Aug 2025
Viewed by 116
Abstract
Improving the restoration of skin defects of various etiologies continues to be an important medical challenge globally. This primarily applies to the treatment of chronic wounds and major burns, which create particularly complex and socially significant problems for surgery. In recent decades the [...] Read more.
Improving the restoration of skin defects of various etiologies continues to be an important medical challenge globally. This primarily applies to the treatment of chronic wounds and major burns, which create particularly complex and socially significant problems for surgery. In recent decades the progress in these fields has largely been associated with techniques for regenerative medicine, specifically, techniques based on the use of tissue-engineered constructs. Before their use in clinical practice, all such newly developed constructs require preclinical studies to confirm their safety and effectiveness in animal models. This paper presents the results of preclinical studies of the effectiveness of restoration of full-layer degloving wounds in pigs using grafts of either an original biopolymer hydrogel scaffold or a skin equivalent based on it, but seeded with autologous skin cells (ASCs). It is demonstrated that the scaffold itself integrates into the wound bed tissues, facilitating cell recruitment and the accumulation and early maturation of granulation tissue. Then, at later stages of regeneration, the scaffold accelerates the maturation of connective tissue and promotes the formation of tissues similar to those of healthy skin in terms of thickness and structure. Owing to the ASCs present in it, the skin equivalent demonstrates greater effectiveness than the scaffold alone, in particular, due to overall faster remodeling of the graft connective tissue. Therefore, the scaffold we have developed and the skin equivalent based on it have much potential as products for the repair of skin wounds. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

41 pages, 974 KiB  
Review
Confronting Melanoma Radioresistance: Mechanisms and Therapeutic Strategies
by Ielizaveta Gorodetska, Alexander Schulz, Gerhard Behre and Anna Dubrovska
Cancers 2025, 17(16), 2648; https://doi.org/10.3390/cancers17162648 - 14 Aug 2025
Viewed by 333
Abstract
Melanoma is a highly aggressive skin cancer with survival rates varying significantly based on stage and genomic characteristics. While localized melanoma has favorable outcomes, metastatic melanoma is associated with poor prognosis and limited treatment options. Radiotherapy (RT), one of the most commonly used [...] Read more.
Melanoma is a highly aggressive skin cancer with survival rates varying significantly based on stage and genomic characteristics. While localized melanoma has favorable outcomes, metastatic melanoma is associated with poor prognosis and limited treatment options. Radiotherapy (RT), one of the most commonly used cancer treatments, is less effective in melanoma due to its intrinsic radioresistance. This review discusses the current knowledge about the biological mechanisms contributing to melanoma radioresistance, including the role of cancer stem cells (CSCs), DNA repair mechanisms, hypoxia, altered metabolism, and melanin production. It also examines preclinical and clinical studies on novel therapeutic approaches, such as targeting CSC pathways, inhibiting DNA repair, modulating hypoxia-induced metabolic shifts, and combining RT with immunotherapies or targeted therapies. Promising strategies, such as RT-induced immune responses and advanced RT techniques, show the potential to overcome resistance. However, melanoma’s heterogeneity and the limited clinical validation of these approaches remain significant challenges. Integrated therapeutic strategies targeting the multifaceted mechanisms of melanoma radioresistance are essential to improve treatment outcomes. Further clinical validation and personalized approaches are needed to address the heterogeneity of melanoma and enhance the efficacy of novel interventions. Full article
(This article belongs to the Special Issue Emerging Paradigms for Cancer Therapy: Promises and Challenges)
Show Figures

Figure 1

17 pages, 1534 KiB  
Review
Enzymes DNA Repair in Skin Photoprotection: Strategies Counteracting Skin Cancer Development and Photoaging Strategies
by Ewelina Musielak and Violetta Krajka-Kuźniak
Cosmetics 2025, 12(4), 172; https://doi.org/10.3390/cosmetics12040172 - 12 Aug 2025
Viewed by 401
Abstract
Ultraviolet radiation (UVR) is a major contributor to skin aging and carcinogenesis, primarily through the induction of DNA damage. While conventional sunscreens provide passive protection by blocking UVR, active photoprotection using DNA repair enzymes offers a strategy to reverse UV-induced DNA lesions at [...] Read more.
Ultraviolet radiation (UVR) is a major contributor to skin aging and carcinogenesis, primarily through the induction of DNA damage. While conventional sunscreens provide passive protection by blocking UVR, active photoprotection using DNA repair enzymes offers a strategy to reverse UV-induced DNA lesions at the molecular level. Enzymes such as photolyase, T4 endonuclease V, and 8-oxoguanine glycosylase address distinct types of DNA damage through light-dependent and -independent mechanisms, complementing the skin’s endogenous repair systems. Advances in nanocarrier technologies and encapsulation methods have improved the stability and delivery of these enzymes in topical formulations. Emerging evidence from clinical studies indicates their potential in reducing actinic keratoses, pigmentation disorders, and photoaging signs, although challenges in regulatory approval, long-term efficacy validation, and formulation optimization remain. This review provides a comprehensive synthesis of the mechanistic, clinical, and formulation aspects of enzyme-based photoprotection, outlines regulatory and ethical considerations, and highlights future directions, including CRISPR-based repair and personalized photoprotection strategies, establishing enzyme-assisted sunscreens as a next-generation approach to comprehensive skin care. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

17 pages, 14709 KiB  
Article
The hMetrnl-PLGA-PEG-PLGA Hydrogel Facilitates Skin Wound Healing Through Dual Regulation on eNOS Activity and Stability
by Huan-Yu Zhao, Jie-Bing Jiang, Yu Chen and Chao-Yu Miao
Pharmaceuticals 2025, 18(8), 1180; https://doi.org/10.3390/ph18081180 - 10 Aug 2025
Viewed by 281
Abstract
Background/Objectives: Metrnl (Meteorin-like), a secreted protein identified in our lab, has been shown to promote wound healing in mice. However, current therapeutic strategies and the underlying mechanisms remain incompletely understood. This study aimed to (1) develop a recombinant human Metrnl (hMetrnl) hydrogel formulation [...] Read more.
Background/Objectives: Metrnl (Meteorin-like), a secreted protein identified in our lab, has been shown to promote wound healing in mice. However, current therapeutic strategies and the underlying mechanisms remain incompletely understood. This study aimed to (1) develop a recombinant human Metrnl (hMetrnl) hydrogel formulation for topical delivery, and (2) elucidate its molecular mechanism in wound repair. Methods: hMetrnl was dispersed in a thermosensitive PLGA-PEG-PLGA hydrogel (hMet-PPP) and applied topically to full-thickness skin wounds in male C57BL/6 mice. A large initial dose was administered on the day of injury, followed by a lower maintenance dose regimen. Mechanistic studies were performed using molecular/cellular assays to assess the effects of hMetrnl. Results: Administration of hMet-PPP significantly accelerated wound healing, reducing the initial wound area and shortening the overall recovery time. hMetrnl transmits signals to endothelial cells via the KIT receptor tyrosine kinase (C-Kit), a membrane receptor, thereby initiating a dual regulatory mechanism involving eNOS to promote angiogenesis: (1) rapid activation of eNOS activity within 30 min through the PI3K/AKT signaling pathway; and (2) suppression of proteasomal and lysosomal eNOS degradation, resulting in enhanced eNOS expression and prolonged functional activity under sustained treatment. Conclusions: Topical hMet-PPP administration represents a promising therapeutic strategy for enhancing early-stage wound healing. hMetrnl exerts its biological effects through C-Kit, which mediates dual regulation of eNOS, both activation and stabilization, providing a mechanistic basis for its potent angiogenic properties. These findings uncover a novel Metrnl mechanism with potential implications for the development of therapies targeting vascular dysfunction and tissue repair. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

13 pages, 2210 KiB  
Article
The Use of Therapeutic Peptides in Combination with Full-Thickness Skin Columns to Improve Healing of Excisional Wounds
by Anders H. Carlsson, Ira M. Herman, Sean Christy, David Larson, Rodney K. Chan, Thomas N. Darling and Kristo Nuutila
Bioengineering 2025, 12(8), 856; https://doi.org/10.3390/bioengineering12080856 - 9 Aug 2025
Viewed by 337
Abstract
Split-thickness skin grafting (STSG) is the standard of care for skin replacement therapy. While STSG is a well-established technique, it has several limitations at both the donor and recipient sites. Full-thickness skin column (FTSC) grafting is an alternative approach that involves the orthogonal [...] Read more.
Split-thickness skin grafting (STSG) is the standard of care for skin replacement therapy. While STSG is a well-established technique, it has several limitations at both the donor and recipient sites. Full-thickness skin column (FTSC) grafting is an alternative approach that involves the orthogonal harvesting of small skin columns containing the epidermis, dermis, and associated skin appendages. Peptides have been shown to promote wound repair through various reparative and regenerative mechanisms. In this study, we aimed to evaluate the extent to which FTSCs and the matrix-derived peptide TSN6, individually or in combination, influenced the rate and quality of healing, as assessed by metrics such as epithelialization, epithelial thickness, and the presence of adnexal structures. TSN6 peptide and its scrambled form was synthetized in a laboratory and mixed with a carboxymethylcellulose (CMC) hydrogel. Up to 16 standardized full-thickness excisional wounds (∅ 5 cm) were created on the dorsum of two anesthetized pigs. FTSC biopsies (∅ 1.5 mm) were harvested from donor sites located on the rump of the pig at a ratio of up to eight 1.5 mm-diameter skin columns/1 cm2. Subsequently, the wounds were randomized to receive either (1) FTSC + TSN6, (2) FTSC + scrambled peptide, (3) FTSC alone, and (4) blank CMC hydrogel. Healing was monitored for 14 or 28 days. After euthanasia, the wounds were excised and processed for histology. Additionally, non-invasive imaging systems were utilized to assess wound healing. By day 14, wounds treated with FTSC or FTSC + TSN6 were significantly more re-epithelialized compared to those treated with blank CMC hydrogel. By day 28, all FTSC-transplanted wounds were fully re-epithelialized. Notably, wounds treated with FTSC + TSN6 exhibited improved healing quality, characterized by a thicker neo-epidermis and increased rete ridges at day 28 post-transplantation. All FTSC-transplanted wounds healed better than the untransplanted controls. The TSN6 peptide further improved healing quality when applied in combination with FTSCs, particularly by enhancing epidermal maturation. Full article
Show Figures

Figure 1

41 pages, 2973 KiB  
Review
Self-Healing, Electroconductive Hydrogels for Wound Healing Applications
by Duarte Almeida, Diogo Dias, Frederico Castelo Ferreira and Teresa Esteves
Gels 2025, 11(8), 619; https://doi.org/10.3390/gels11080619 - 8 Aug 2025
Viewed by 516
Abstract
Electroconductive, self-healing hydrogels have surfaced as a versatile tool for advanced wound care applications, since they combine classic hydrogels’ moist and biomimetic environment with the dynamic electrical responsiveness that can function as an accelerator of tissue repair processes. Recent advances report the automatic [...] Read more.
Electroconductive, self-healing hydrogels have surfaced as a versatile tool for advanced wound care applications, since they combine classic hydrogels’ moist and biomimetic environment with the dynamic electrical responsiveness that can function as an accelerator of tissue repair processes. Recent advances report the automatic restoration of materials after mechanical disruption through various mechanisms, such as ionic or covalent bonds and supramolecular interactions. This property is crucial for biomaterials, as they are often applied in skin regions with high motility and, therefore, a high risk of breakage. By integrating within these networks compounds that are electrically active—polymers such as PEDOT:PSS or polypyrrole, or 2D nanomaterials such as graphene—it is possible to confer responsiveness to these hydrogels, which can lead to increases in fibroblast proliferation, antimicrobial properties, and angiogenesis. Furthermore, these biomaterials must have skin-mimicking mechanical properties and can also be loaded with drugs to improve their healing properties even further. This review synthesizes the chemistry behind the self-healing and electroconductive properties of these materials and expands on the available literature on this field and their biological outcomes, while also providing a look into the future of these promising materials, aiming at their integration in standard wound care strategies. Full article
(This article belongs to the Special Issue Application of Hydrogels in Medicine)
Show Figures

Graphical abstract

24 pages, 1306 KiB  
Review
Targeting Dermal Fibroblast Senescence: From Cellular Plasticity to Anti-Aging Therapies
by Raluca Jipu, Ionela Lacramioara Serban, Ancuta Goriuc, Alexandru Gabriel Jipu, Ionut Luchian, Carmen Amititeloaie, Claudia Cristina Tarniceriu, Ion Hurjui, Oana Maria Butnaru and Loredana Liliana Hurjui
Biomedicines 2025, 13(8), 1927; https://doi.org/10.3390/biomedicines13081927 - 7 Aug 2025
Viewed by 454
Abstract
Dermal fibroblasts, the primary stromal cells of the dermis, exhibit remarkable plasticity in response to various stimuli, playing crucial roles in tissue homeostasis, wound healing, and ECM production. This study examines the molecular mechanisms underlying fibroblast plasticity, including key signaling pathways, epigenetic regulation, [...] Read more.
Dermal fibroblasts, the primary stromal cells of the dermis, exhibit remarkable plasticity in response to various stimuli, playing crucial roles in tissue homeostasis, wound healing, and ECM production. This study examines the molecular mechanisms underlying fibroblast plasticity, including key signaling pathways, epigenetic regulation, and microRNA-mediated control. The impact of aging on ECM synthesis and remodeling is discussed, and the diminished production of vital components such as collagen, elastin, and glycosaminoglycans are highlighted, alongside enhanced ECM degradation through upregulated matrix metalloproteinase activity and accumulation of advanced glycation end products. The process of cellular senescence in dermal fibroblasts is explored, with its role in skin aging and its effects on tissue homeostasis and repair capacity being highlighted. The senescence-associated secretory phenotype (SASP) is examined for its contribution to chronic inflammation and ECM disruption. This review also presents therapeutic perspectives, focusing on senolytics and geroprotectors as promising strategies to combat the negative effects of fibroblast senescence. Current challenges in translating preclinical findings to human therapies are addressed, along with future directions for research in this field. This comprehensive review explores the complex interplay between dermal fibroblast plasticity, cellular senescence, and extracellular matrix (ECM) remodeling in the context of skin aging. In conclusion, understanding the complex interplay between dermal fibroblast plasticity, cellular senescence, and extracellular matrix (ECM) remodeling is essential for developing effective anti-aging interventions, which highlights the need for further research into senolytic and geroprotective therapies to enhance skin health and longevity. This approach has shown promising results in preclinical studies, demonstrating improved skin elasticity and reduced signs of aging. Full article
Show Figures

Figure 1

23 pages, 30723 KiB  
Article
Camellia japonica Flower Extract and the Active Constituent Hyperoside Repair DNA Damage Through FUNDC1-Mediated Mitophagy Pathway for Skin Anti-Aging
by Hongqi Gao, Jiahui Shi, Guangtao Li, Zhifang Lai, Yan Liu, Chanling Yuan and Wenjie Mei
Antioxidants 2025, 14(8), 968; https://doi.org/10.3390/antiox14080968 - 6 Aug 2025
Viewed by 386
Abstract
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its [...] Read more.
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its active ingredient hyperoside based on a doxorubicin (DOX)-induced endogenous senescence model in human skin fibroblasts (HSFs). LC-MS proteomics analysis revealed that CJF extract and hyperoside specifically activated the FUNDC1-mediated mitochondrial autophagy pathway, significantly ameliorated the DOX-induced decrease in mitochondrial membrane potential and the accumulation of reactive oxygen species (ROS), and alleviated the cellular S-phase blockade and reversed the high expression of senescence-associated β-galactosidase (SA-β-gal). Further studies showed that the two cleared damaged mitochondria by enhancing mitochondrial autophagy and restoring cellular energy metabolism homeostasis while promoting type III collagen and elastin synthesis and repairing the expression of Claudin 1 related to skin barrier function. For the first time, the present study reveals the molecular mechanism of CJF extract in delaying skin aging by regulating the FUNDC1-dependent mitochondrial autophagy pathway, which provides a theoretical basis and a candidate strategy for developing novel anti-aging agents targeting mitochondrial quality control. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

17 pages, 2085 KiB  
Article
Multifunctional Dermatological Effects of Whole-Plant Bassia scoparia Extract: Skin Repair and Protection
by Seogyun Jeong, Hye-Been Kim, Dong-Geol Lee, Eunjin Park, Seoyeon Kyung, Seunghyun Kang, Dayeon Roo, Sang Hyun Moh, Sung Joo Jang, Jihyeon Jang, HyungWoo Jo and Sanghun Lee
Curr. Issues Mol. Biol. 2025, 47(8), 617; https://doi.org/10.3390/cimb47080617 - 4 Aug 2025
Viewed by 300
Abstract
Bassia scoparia (Syn. Kochia scoparia (L.) Schrad.) is a medicinal plant whose fruit, Kochiae Fructus, has been extensively studied for its dermatological applications. This study focused on extracts from the whole plant B. scoparia (WPBS), excluding fruits, to address the research gap [...] Read more.
Bassia scoparia (Syn. Kochia scoparia (L.) Schrad.) is a medicinal plant whose fruit, Kochiae Fructus, has been extensively studied for its dermatological applications. This study focused on extracts from the whole plant B. scoparia (WPBS), excluding fruits, to address the research gap regarding the medicinal properties of non-fruit parts. The diverse skin benefits of WPBS, including its anti-photoaging, moisturizing, wound healing, anti-inflammatory, and anti-angiogenic effects, were investigated. The WPBS extract enhanced the viability of keratinocytes (HaCaT) without inducing cytotoxic effects. WPBS significantly reduced matrix metalloproteinase-1 (MMP-1) levels and increased collagen type I alpha 1 (COL1A1) levels (p < 0.01) in fibroblasts exposed to ultraviolet B (UVB) radiation, indicating strong anti-photoaging effects. WPBS upregulated skin hydration markers such as aquaporin-3 (AQP3) and hyaluronan synthase-3 (HAS3) and effectively accelerated fibroblast wound closure compared to the positive control. Furthermore, WPBS substantially downregulated the expression of inflammatory (COX-2 and IL-1β) and angiogenic markers (VEGF). Transcriptome analysis (RNA-seq) confirmed that WPBS suppressed inflammation-related and UV-induced gene expression pathways. Overall, these findings expand the therapeutic scope of B. scoparia beyond its traditional fruit use and suggest that WPBS is a promising botanical ingredient for various skin applications. Full article
Show Figures

Figure 1

16 pages, 1212 KiB  
Review
The Sleep–Skin Axis: Clinical Insights and Therapeutic Approaches for Inflammatory Dermatologic Conditions
by Alana Sadur, Lucie Joerg, Amelia Stapleton Van Doren, Ellen T. Lee, Dia Shah, Aniket K. Asees and Sonal Choudhary
Dermato 2025, 5(3), 13; https://doi.org/10.3390/dermato5030013 - 31 Jul 2025
Viewed by 510
Abstract
Sleep is crucial to overall health and plays a significant role in skin function. While the circadian rhythm has been extensively researched for its impact on the body’s optimal functioning, the skin also possesses an independent circadian system that serves many important functions. [...] Read more.
Sleep is crucial to overall health and plays a significant role in skin function. While the circadian rhythm has been extensively researched for its impact on the body’s optimal functioning, the skin also possesses an independent circadian system that serves many important functions. Sleep disruptions or deprivation can significantly affect skin conditions, by compromising the skin barrier and impairing processes such as collagen production, cellular repair, and wound healing. Given the commonality of sleep disturbances, it is crucial to understand the connection between sleep, circadian regulation, and skin health. This is particularly important in understudied populations, such as those with occupational sleep disruption and individuals with hormone-related conditions like PCOS and menopause. Bidirectional relationships have been established between sleep and several inflammatory skin conditions, including atopic dermatitis, psoriasis, rosacea, and hidradenitis suppurativa. While acne is influenced by sleep, the reverse relationship, how acne affects sleep quality, has not been well established. Chronic sleep disruption can increase cortisol levels and oxidative stress, both of which contribute to skin aging and the progression of autoimmune skin conditions, including systemic lupus erythematosus. As sleep is a modifiable risk factor, it is crucial to consider therapeutic options and interventions to prevent or alleviate skin conditions. This review discusses various therapeutic approaches, including melatonin, L-Theanine, Magnesium-L-threonate, Inositol, Cinnamomi cortex, nervous system regulation, and proper sleep hygiene. These therapeutic options have been studied for their impact on sleep, and importantly, several have been evaluated for their utility as adjuncts for treating skin conditions. Overall, the relationship between sleep and skin health is clear, and incorporating sleep-focused therapeutic interventions offers potential to improve both sleep quality and skin health in individuals with a variety of skin conditions. Full article
(This article belongs to the Special Issue Reviews in Dermatology: Current Advances and Future Directions)
Show Figures

Figure 1

18 pages, 4624 KiB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 775
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

33 pages, 4819 KiB  
Review
Hydrogels Modulating the Microbiome: Therapies for Tissue Regeneration with Infection Control
by Germán Reynaldo Jiménez-Gastelum, Carlos Esteban Villegas-Mercado, Juan Luis Cota-Quintero, Silvia Ivonne Arzola-Rodríguez, Rosalío Ramos-Payán and Mercedes Bermúdez
Gels 2025, 11(8), 584; https://doi.org/10.3390/gels11080584 - 29 Jul 2025
Viewed by 554
Abstract
This review explores the emerging role of functionalized hydrogels in modulating the microbiome for therapeutic applications in tissue regeneration and infection control. The skin and gut microbiomes play crucial roles in maintaining tissue homeostasis, regulating immune responses, and influencing the healing process. Disruptions [...] Read more.
This review explores the emerging role of functionalized hydrogels in modulating the microbiome for therapeutic applications in tissue regeneration and infection control. The skin and gut microbiomes play crucial roles in maintaining tissue homeostasis, regulating immune responses, and influencing the healing process. Disruptions in microbial balance—such as those observed in chronic wounds, autoimmune conditions, or post-surgical environments—can impair regeneration and increase susceptibility to infection. Hydrogels, due to their tunable physical and chemical properties, serve as versatile platforms for delivering probiotics, prebiotics, antimicrobials, and immune-modulatory agents. The encapsulation of beneficial bacteria, such as Lactobacillus plantarum or Prevotella histicola, within hydrogels could enhance bacterial viability, targeted delivery, and immune tolerance. Additionally, hydrogels functionalized with silver nanoparticles, nitric oxide donors, and bacteriocins have demonstrated effective biofilm disruption and pathogen clearance. These systems also promote favorable immune responses, such as M2 macrophage polarization and the induction of regulatory T cells, which are essential for tissue repair. Innovative approaches, including 3D bioprinting, self-healing materials, and photothermal-responsive hydrogels, expand the clinical versatility of these systems. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Figure 1

19 pages, 1159 KiB  
Article
Multifactorial Refractory Acne in Women: Insights from a Case Series Involving Hormonal-, Metabolic-, and Corticosteroid-Related Triggers
by Alexa Florina Bungau, Ruxandra Cristina Marin, Delia Mirela Tit, Gabriela Bungau, Ada Radu, Daciana Elena Branisteanu and Laura Maria Endres
Life 2025, 15(8), 1196; https://doi.org/10.3390/life15081196 - 28 Jul 2025
Viewed by 581
Abstract
Acne vulgaris is a multifactorial inflammatory skin disorder that significantly impairs quality of life and may signal underlying systemic dysfunction, particularly in adult women with treatment-resistant or atypical presentations. This case series presents three clinically and etiologically distinct examples of persistent acne in [...] Read more.
Acne vulgaris is a multifactorial inflammatory skin disorder that significantly impairs quality of life and may signal underlying systemic dysfunction, particularly in adult women with treatment-resistant or atypical presentations. This case series presents three clinically and etiologically distinct examples of persistent acne in female patients, each associated with different contributing factors: long-term topical corticosteroid misuse, polycystic ovary syndrome (PCOS), and metabolic syndrome with autoimmune thyroiditis. All cases underwent comprehensive dermatologic evaluation, endocrine/metabolic assessments, and personalized therapeutic interventions, ranging from corticosteroid withdrawal and barrier repair to hormonal modulation and insulin-sensitizing therapy. Clinical progression was monitored for up to six months, revealing favorable responses in all cases, with substantial lesion clearance and improved skin quality. These real-world cases highlight the importance of an integrative, interdisciplinary diagnostic approach in refractory acne and support the need for individualized, long-term management strategies tailored to underlying systemic contributors. Full article
Show Figures

Figure 1

18 pages, 2876 KiB  
Article
The Secretome of Human Deciduous Tooth-Derived Mesenchymal Stem Cells Enhances In Vitro Wound Healing and Modulates Inflammation
by Thais Simião Payão, Vanessa Pellegrini, Joseane Morari, Gisele Mara Silva Gonçalves, Maria Carolina Ximenes de Godoy, Alessandra Gambero, Leonardo O. Reis, Lício Augusto Velloso, Eliana Pereira Araújo and Lívia Bitencourt Pascoal
Pharmaceutics 2025, 17(8), 961; https://doi.org/10.3390/pharmaceutics17080961 - 25 Jul 2025
Viewed by 408
Abstract
Background/Objectives: Chronic wounds represent a significant clinical and public health challenge due to impaired tissue repair and high associated morbidity. This study investigates the therapeutic potential of the secretome derived from human mesenchymal stem cells obtained from the pulp of deciduous teeth (hDP-MSCs) [...] Read more.
Background/Objectives: Chronic wounds represent a significant clinical and public health challenge due to impaired tissue repair and high associated morbidity. This study investigates the therapeutic potential of the secretome derived from human mesenchymal stem cells obtained from the pulp of deciduous teeth (hDP-MSCs) in promoting skin wound healing. Methods: After confirming the mesenchymal identity and multipotent differentiation potential of hDP-MSCs by using flow cytometry and histological staining, the effects of the secretome on human keratinocyte (HaCaT) cultures were evaluated. Results: Scratch assays, performed under high- and low-glucose conditions, demonstrated that the secretome significantly promoted keratinocyte migration and wound closure without compromising cell viability. Additionally, the secretome modulated the expression of key genes involved in inflammation and tissue regeneration, including IL-1β, TNF-α, TGF-β1, and VEGF-α, in a time-dependent manner. Under inflammatory conditions induced by lipopolysaccharide, co-treatment with the secretome significantly reduced TNF-α expression and increased TGF-β1 expression, suggesting an anti-inflammatory effect. Conclusions: These findings indicate the potential of the hDP-MSC-derived secretome as a promising cell-free therapeutic strategy capable of accelerating skin regeneration and modulating the inflammatory response during the wound healing process. Full article
Show Figures

Graphical abstract

14 pages, 16834 KiB  
Article
Topical MTH1 Inhibition Suppresses SKP2-WNT5a-Driven Psoriatic Hyperproliferation
by Cecilia Bivik Eding, Ines Köhler, Lavanya Moparthi, Florence Sjögren, Blanka Andersson, Debojyoti Das, Deepti Verma, Martin Scobie, Ulrika Warpman Berglund and Charlotta Enerbäck
Int. J. Mol. Sci. 2025, 26(15), 7174; https://doi.org/10.3390/ijms26157174 - 25 Jul 2025
Viewed by 235
Abstract
Topically applied TH1579 alleviated the psoriatic phenotype in the imiquimod-induced psoriasis mouse model by decreasing CD45+, Ly6b+, and CD3+ cell infiltration and downregulating the expression of the proliferation marker PCNA. Moreover, TH1579 strongly suppressed IL-17 expression in mouse [...] Read more.
Topically applied TH1579 alleviated the psoriatic phenotype in the imiquimod-induced psoriasis mouse model by decreasing CD45+, Ly6b+, and CD3+ cell infiltration and downregulating the expression of the proliferation marker PCNA. Moreover, TH1579 strongly suppressed IL-17 expression in mouse skin, accompanied by reduced infiltration of IL-17-producing γδ-T cells. Furthermore, TH1579 decreased keratinocyte viability and proliferation. Mass spectrometry data analysis revealed the enrichment of proteins associated with nucleotide excision repair and cell cycle regulation. The key cell cycle regulatory protein F-box protein S-phase kinase-associated protein 2 (SKP2) was significantly downregulated, along with the psoriasis-associated proliferation marker WNT5a, identified as a SKP2 downstream target. The downregulation of SKP2 and WNT5a was confirmed in MTH1i-treated mouse skin. Our findings support the topical administration of MTH1i TH1579 as a psoriasis treatment. The therapeutic effects depended on the SKP2/WNT5a pathway, which mediates psoriatic hyperproliferation. This study introduces a conceptually innovative topical treatment for psoriasis patients with mild-to-moderate disease who have limited therapeutic options. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

Back to TopTop