Confronting Melanoma Radioresistance: Mechanisms and Therapeutic Strategies
Simple Summary
Abstract
1. Introduction
2. Radiotherapy
3. Cancer Stem Cells
4. DNA Damage Repair Mechanisms
5. Hypoxia and Altered Metabolism
6. Activation of Anti-Tumor Immune Responses
7. Pigmentation and Melanin Production
8. Combination of Radiotherapy with Other Anti-Cancer Treatments
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
α-TRT | Alpha-particle radionuclide therapy |
ABC | ATP-binding cassette |
ABCB5 | ATP-binding cassette sub-family B member 5 |
ALDH | Aldehyde dehydrogenase |
AM | Acral melanoma |
ART | Adjuvant radiation therapy |
ATM | Ataxia telangiectasia-mutated |
ATP | Adenosine triphosphate |
BPA | Boronophenylalanine |
BRAF | B-Raf Proto-oncogene |
BNCT | Boron neutron capture therapy |
bsAbs | Bispecific antibodies |
cAMP | Cyclic adenosine monophosphate |
CAR-T | Chimeric antigen receptor T cell |
CD3+ | Cluster of differentiation 3 positive |
CD4+ | Cluster of differentiation 4 positive |
CD8+ | Cluster of differentiation 8 positive |
CHK1 | Checkpoint kinase 1 |
CIRT | Carbon ion RT |
CM | Cutaneous melanoma |
CSCs | Cancer stem cells |
CTCs | Circulating tumor cells |
CXCL13 | C-X-C motif chemokine ligand 13 |
Dbait | DNA strand break bait |
DDRs | DNA damage responses |
DOPA | Dihydroxyphenylalanine |
DSBs | DNA double-strand breaks |
DT01 | Clinical form of Dbait |
DUSP1 | Dual specificity phosphatase 1 |
EBRT | External beam radiation therapy |
ECM | Extracellular matrix |
ERK | Extracellular signal-regulated kinase |
EVI2B | Ecotropic viral integration Site 2B |
FAP | Fibroblast activation protein |
FLASH | Ultra-high-dose rate radiation therapy |
HAP | Hypoxia-activated prodrug |
HDAC | Histone deacetylase |
HDR | High-dose-rate |
HIF-1 | Hypoxia-inducible factor 1 |
HMGB1 | High mobility group box 1 |
ICB | Immune checkpoint blockade |
ICF01012 | Arylcarboxamide derivative labeled with iodine-131 |
ICIs | Immune checkpoint inhibitors |
IFN1 | Type 1 interferon |
IFNβ | Interferon beta |
IMRT | Intensity-modulated radiotherapy |
IMQ | Imiquimod |
KIT | KIT proto-oncogene |
LINAC | Linear accelerator |
LRT | Liver-metastasis-directed radiotherapy |
LRFS | Local regional failure-free survival |
MC1R | Melanocortin 1 receptor |
MITF | Microphthalmia-associated transcription factor |
MM | Mucosal melanoma |
NF-κB | Nuclear factor kappa B |
NF1 | Neurofibromatosis type I |
NRAS | Neuroblastoma RAS viral oncogene homolog |
OER | Oxygen enhancement ratio |
OS | Overall survival |
p53 | Protein p53 |
PBT | Proton beam therapy |
PD-1 | Programmed cell death protein 1 |
PFS | Progression-free survival |
PIMO | Pimonidazole |
PO2 | Oxygen tension |
PRT | Palliative radiotherapy |
RER | Radiosensitization enhancement ratio |
RT | Radiation therapy |
SLAMF7 | SLAM family member 7 |
TAMs | Tumor-associated macrophages |
TIL | Tumor-infiltrating lymphocyte |
TLR | Toll-like receptor |
TMB | Tumor mutational burden |
TRP-2 | Tyrosinase-related protein 2 |
TRT | Targeted radionuclide therapy |
QoL | Quality of life |
References
- Heistein, J.B.; Acharya, U.; Mukkamalla, S.K.R. Malignant Melanoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Lin, W.; Wang, W.; Hodi, F.S.; Min, L. Gaps in the Management of Adrenal Insufficiency in Melanoma Survivors: A Retrospective Cohort Study. eClinicalMedicine 2025, 79, 102984. [Google Scholar] [CrossRef]
- Manikandan, S.P.; Narani, S.R.; Karthikeyan, S.; Mohankumar, N. Deep Learning for Skin Melanoma Classification Using Dermoscopic Images in Different Color Spaces. Int. J. Electr. Comput. Eng. IJECE 2025, 15, 319–327. [Google Scholar] [CrossRef]
- Zheng, S.; Yu, H.; Zheng, X.; Wu, U.T.; Ming, W.; Huang, H.; Song, J.; Zhang, X.; Lyu, J.; Deng, L. Analysis and Prediction of 5-Year Survival in Patients with Cutaneous Melanoma: A Model-Based Period Analysis. Front. Endocrinol. 2023, 14, 1238086. [Google Scholar] [CrossRef] [PubMed]
- Rashed, H.; Flatman, K.; Bamford, M.; Teo, K.W.; Saldanha, G. Breslow Density Is a Novel Prognostic Feature in Cutaneous Malignant Melanoma. Histopathology 2017, 70, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.N.; Williams, G.J.; Cust, A.E.; Varey, A.H.R.; Ch’ng, S.; Scolyer, R.A.; Thompson, J.F. Long-Term Survival across Breslow Thickness Categories: Findings from a Population-Based Study of 210042 Australian Melanoma Patients. JNCI J. Natl. Cancer Inst. 2025, 117, 152–156. [Google Scholar] [CrossRef]
- Brewer, J.D.; Christenson, L.J.; Weaver, A.L.; Dapprich, D.C.; Weenig, R.H.; Lim, K.K.; Walsh, J.S.; Otley, C.C.; Cherikh, W.; Buell, J.F.; et al. Malignant Melanoma in Solid Transplant Recipients: Collection of Database Cases and Comparison with Surveillance, Epidemiology, and End Results Data for Outcome Analysis. Arch. Dermatol. 2011, 147, 790–796. [Google Scholar] [CrossRef]
- Chang, S.T.; Desser, T.S.; Gayer, G.; Menias, C.O. Metastatic Melanoma in the Chest and Abdomen: The Great Radiologic Imitator. Semin. Ultrasound CT MRI 2014, 35, 272–289. [Google Scholar] [CrossRef]
- Gener Lahav, T.; Adler, O.; Zait, Y.; Shani, O.; Amer, M.; Doron, H.; Abramovitz, L.; Yofe, I.; Cohen, N.; Erez, N. Melanoma-Derived Extracellular Vesicles Instigate Proinflammatory Signaling in the Metastatic Microenvironment. Int. J. Cancer 2019, 145, 2521–2534. [Google Scholar] [CrossRef]
- Suman, S.; Markovic, S.N. Melanoma-Derived Mediators Can Foster the Pre-Metastatic Niche: Crossroad to Lymphatic Metastasis. Trends Immunol. 2023, 44, 724–743. [Google Scholar] [CrossRef]
- Khan, R.R.; Kahlon, S.; Maragh, J.-P.; Kimble, A.; Gupta, S.; Khan, R.R.; Kahlon, S.; Maragh, J.-P.; Kimble, A.; Gupta, S. A Rare Case of Metastatic Adrenal Melanoma. Cureus 2024, 16, e64182. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, K.E.; Fimbres, D.P.; Burner, D.N.; Hollander, S.; O’Connor, M.H.; Beasley, G.M. Melanoma Lymph Node Metastases—Moving beyond Quantity in Clinical Trial Design and Contemporary Practice. Front. Oncol. 2022, 12, 1021057. [Google Scholar] [CrossRef] [PubMed]
- Sridhara, N.G.; Sridhara, N.G.; Li, W.; Ponnatapura, J. A Rare Radiological Presentation of Pulmonary Metastases from Malignant Melanoma. Radiol. Case Rep. 2023, 18, 2653. [Google Scholar] [CrossRef]
- Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Alcácer, J.; Benlloch, M.; Pellicer, J.A.; Estrela, J.M. Melanoma in the Liver: Oxidative Stress and the Mechanisms of Metastatic Cell Survival. Semin. Cancer Biol. 2021, 71, 109–121. [Google Scholar] [CrossRef]
- Provance, O.K.; Oria, V.O.; Tran, T.T.; Caulfield, J.I.; Zito, C.R.; Aguirre-Ducler, A.; Schalper, K.A.; Kluger, H.M.; Jilaveanu, L.B. Vascular Mimicry as a Facilitator of Melanoma Brain Metastasis. Cell. Mol. Life Sci. 2024, 81, 188. [Google Scholar] [CrossRef]
- Gullapalli, K.; Agarwal, P.; Mosalem, O.; Gogineni, V.; Tikaria, R. Extra-Axial Skeletal Metastasis of Malignant Melanoma: Case Report and Literature Review. Cureus 2022, 14, e22115. [Google Scholar] [CrossRef]
- Di Raimondo, C.; Lozzi, F.; Di Domenico, P.P.; Campione, E.; Bianchi, L. The Diagnosis and Management of Cutaneous Metastases from Melanoma. Int. J. Mol. Sci. 2023, 24, 14535. [Google Scholar] [CrossRef]
- Serrao, E.M.; Costa, A.M.; Ferreira, S.; McMorran, V.; Cargill, E.; Hough, C.; Shaw, A.S.; O’Carrigan, B.; Parkinson, C.A.; Corrie, P.G.; et al. The Different Faces of Metastatic Melanoma in the Gastrointestinal Tract. Insights Imaging 2022, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Sandru, A.; Voinea, S.; Panaitescu, E.; Blidaru, A. Survival Rates of Patients with Metastatic Malignant Melanoma. J. Med. Life 2014, 7, 572–576. [Google Scholar] [PubMed]
- van Not, O.J.; van den Eertwegh, A.J.M.; Haanen, J.B.; Blank, C.U.; Aarts, M.J.B.; van Breeschoten, J.; van den Berkmortel, F.W.P.J.; de Groot, J.-W.B.; Hospers, G.A.P.; Ismail, R.K.; et al. Improving Survival in Advanced Melanoma Patients: A Trend Analysis from 2013 to 2021. eClinicalMedicine 2024, 69, 102485. [Google Scholar] [CrossRef]
- Rabbie, R.; Ferguson, P.; Molina-Aguilar, C.; Adams, D.J.; Robles-Espinoza, C.D. Melanoma Subtypes: Genomic Profiles, Prognostic Molecular Markers and Therapeutic Possibilities. J. Pathol. 2019, 247, 539–551. [Google Scholar] [CrossRef]
- Yang, T.-T.; Yu, S.; Ke, C.-L.K.; Cheng, S.-T. The Genomic Landscape of Melanoma and Its Therapeutic Implications. Genes 2023, 14, 1021. [Google Scholar] [CrossRef]
- Bai, X.; Kong, Y.; Chi, Z.; Sheng, X.; Cui, C.; Wang, X.; Mao, L.; Tang, B.; Li, S.; Lian, B.; et al. MAPK Pathway and TERT Promoter Gene Mutation Pattern and Its Prognostic Value in Melanoma Patients: A Retrospective Study of 2793 Cases. Clin. Cancer Res. 2017, 23, 6120–6127. [Google Scholar] [CrossRef]
- Kong, Y.; Si, L.; Zhu, Y.; Xu, X.; Corless, C.L.; Flaherty, K.T.; Li, L.; Li, H.; Sheng, X.; Cui, C.; et al. Large-Scale Analysis of KIT Aberrations in Chinese Patients with Melanoma. Clin. Cancer Res. 2011, 17, 1684–1691. [Google Scholar] [CrossRef]
- Carvajal, R.D.; Antonescu, C.R.; Wolchok, J.D.; Chapman, P.B.; Roman, R.-A.; Teitcher, J.; Panageas, K.S.; Busam, K.J.; Chmielowski, B.; Lutzky, J.; et al. KIT as a Therapeutic Target in Metastatic Melanoma. JAMA 2011, 305, 2327–2334. [Google Scholar] [CrossRef]
- Stoff, R.; Markovic, S.; McWilliams, R.R.; Yan, Y.; Tan, W.; Seetharam, M.; Block, M.S. Efficacy and Toxicity of KIT Targeted Therapy in Elderly Patients with Melanoma. J. Clin. Oncol. 2024, 42, e23269. [Google Scholar] [CrossRef]
- Castellani, G.; Buccarelli, M.; Arasi, M.B.; Rossi, S.; Pisanu, M.E.; Bellenghi, M.; Lintas, C.; Tabolacci, C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers 2023, 15, 4026. [Google Scholar] [CrossRef]
- Menzies, A.M.; Haydu, L.E.; Visintin, L.; Carlino, M.S.; Howle, J.R.; Thompson, J.F.; Kefford, R.F.; Scolyer, R.A.; Long, G.V. Distinguishing Clinicopathologic Features of Patients with V600E and V600K BRAF-Mutant Metastatic Melanoma. Clin. Cancer Res. 2012, 18, 3242–3249. [Google Scholar] [CrossRef] [PubMed]
- Heppt, M.V.; Siepmann, T.; Engel, J.; Schubert-Fritschle, G.; Eckel, R.; Mirlach, L.; Kirchner, T.; Jung, A.; Gesierich, A.; Ruzicka, T.; et al. Prognostic Significance of BRAF and NRAS Mutations in Melanoma: A German Study from Routine Care. BMC Cancer 2017, 17, 536. [Google Scholar] [CrossRef]
- Vasudevan, H.; Delley, C.; Aabedi, A.; Shukla, P.; Nguyen, M.; Morshed, R.A.; Young, J.S.; Demaree, B.; Diwanji, D.; Hervey-Jumper, S.L.; et al. BIOM-02. Mutational analysis and single cell sequencing of melanoma brain metastases reveals braf status correlates with clinical outcome and differential immune populations. Neuro-Oncology 2022, 24, vii3–vii4. [Google Scholar] [CrossRef]
- Zablocka, T.; Kreismane, M.; Pjanova, D.; Isajevs, S. Effects of BRAF V600E and NRAS Mutational Status on the Progression-free Survival and Clinicopathological Characteristics of Patients with Melanoma. Oncol. Lett. 2022, 25, 27. [Google Scholar] [CrossRef] [PubMed]
- Si, L.; Zou, Z.; Zhang, W.; Fang, M.; Zhang, X.; Luo, Z.; Chen, J.; Huang, G.; Zhang, P.; Cheng, Y.; et al. Efficacy and Safety of Tunlametinib in Patients with Advanced NRAS-Mutant Melanoma: A Multicenter, Open-Label, Single-Arm, Phase 2 Study. J. Clin. Oncol. 2023, 41, 9510. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; Chi, Z.; Sheng, X.; Kong, Y.; Mao, L.; Lian, B.; Tang, B.; Yan, X.; Bai, X.; et al. Association of NRAS Mutation With Clinical Outcomes of Anti-PD-1 Monotherapy in Advanced Melanoma: A Pooled Analysis of Four Asian Clinical Trials. Front. Immunol. 2021, 12, 691032. [Google Scholar] [CrossRef]
- Guida, M.; Bartolomeo, N.; Quaglino, P.; Madonna, G.; Pigozzo, J.; Di Giacomo, A.M.; Minisini, A.M.; Tucci, M.; Spagnolo, F.; Occelli, M.; et al. No Impact of NRAS Mutation on Features of Primary and Metastatic Melanoma or on Outcomes of Checkpoint Inhibitor Immunotherapy: An Italian Melanoma Intergroup (IMI) Study. Cancers 2021, 13, 475. [Google Scholar] [CrossRef]
- Cirenajwis, H.; Lauss, M.; Ekedahl, H.; Törngren, T.; Kvist, A.; Saal, L.H.; Olsson, H.; Staaf, J.; Carneiro, A.; Ingvar, C.; et al. 1-Mutated Melanoma Tumors Harbor Distinct Clinical and Biological Characteristics. Mol. Oncol. 2017, 11, 438–451. [Google Scholar] [CrossRef]
- Nissan, M.H.; Pratilas, C.A.; Jones, A.M.; Ramirez, R.; Won, H.; Liu, C.; Tiwari, S.; Kong, L.; Hanrahan, A.J.; Yao, Z.; et al. Loss of NF1 in Cutaneous Melanoma Is Associated with RAS Activation and MEK Dependence. Cancer Res. 2014, 74, 2340–2350. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.N.; Simmons, E.; Studer, A.C.; Rauen, K.A.; Kiuru, M. Melanocytic Neoplasms in Neurofibromatosis Type 1: A Systematic Review. Melanoma Res. 2023, 33, 437. [Google Scholar] [CrossRef]
- Kodali, N.; Bhattaru, A.; Blanchard, I.; Sharma, Y.; Lipner, S.R. Assessing Melanoma Prognosis: The Interplay between Patient Profiles, Survival, and BRAF, NRAS, KIT, and TWT Mutations in a Retrospective Multi-Study Analysis. Melanoma Res. 2024, 34, 419. [Google Scholar] [CrossRef]
- Carrera, C.; Gual, A.; Díaz, A.; Puig-Butillé, J.A.; Noguès, S.; Vilalta, A.; Conill, C.; Rull, R.; Vilana, R.; Arguis, P.; et al. Prognostic Role of the Histological Subtype of Melanoma on the Hands and Feet in Caucasians. Melanoma Res. 2017, 27, 315. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current State of Melanoma Diagnosis and Treatment. Cancer Biol. Ther. 2019, 20, 1366–1379. [Google Scholar] [CrossRef] [PubMed]
- Santamaria-Barria, J.A.; Mammen, J.M.V. Surgical Management of Melanoma: Advances and Updates. Curr. Oncol. Rep. 2022, 24, 1425–1432. [Google Scholar] [CrossRef] [PubMed]
- Pham, J.P.; Joshua, A.M.; da Silva, I.P.; Dummer, R.; Goldinger, S.M. Chemotherapy in Cutaneous Melanoma: Is There Still a Role? Curr. Oncol. Rep. 2023, 25, 609–621. [Google Scholar] [CrossRef]
- Knight, A.; Karapetyan, L.; Kirkwood, J.M. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers 2023, 15, 1106. [Google Scholar] [CrossRef]
- Ribas, A.; Flaherty, K.T. BRAF Targeted Therapy Changes the Treatment Paradigm in Melanoma. Nat. Rev. Clin. Oncol. 2011, 8, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.K.; Suijkerbuijk, K.P.M.; de Boer, A.; van Dartel, M.; Hilarius, D.L.; Pasmooij, A.M.G.; van Zeijl, M.C.T.; Aarts, M.J.B.; van den Berkmortel, F.W.P.J.; Blank, C.U.; et al. Long-Term Survival of Patients with Advanced Melanoma Treated with BRAF-MEK Inhibitors. Melanoma Res. 2022, 32, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Delyon, J.; Lebbe, C.; Dumaz, N. Targeted Therapies in Melanoma beyond BRAF: Targeting NRAS-Mutated and KIT-Mutated Melanoma. Curr. Opin. Oncol. 2020, 32, 79. [Google Scholar] [CrossRef]
- Patel, M.; Eckburg, A.; Gantiwala, S.; Hart, Z.; Dein, J.; Lam, K.; Puri, N. Resistance to Molecularly Targeted Therapies in Melanoma. Cancers 2021, 13, 1115. [Google Scholar] [CrossRef]
- Krayem, M.; Ghanem, G.E.; Van Gestel, D. Recent Advances in Radiosensitivity Determinants in Melanoma. Curr. Opin. Oncol. 2022, 34, 131–138. [Google Scholar] [CrossRef]
- Shi, W. Radiation Therapy for Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017; ISBN 978-0-9944381-4-0. [Google Scholar]
- Spatola, C.; Liardo, R.L.E.; Milazzotto, R.; Raffaele, L.; Salamone, V.; Basile, A.; Foti, P.V.; Palmucci, S.; Cirrone, G.A.P.; Cuttone, G.; et al. Radiotherapy of Conjunctival Melanoma: Role and Challenges of Brachytherapy, Photon-Beam and Protontherapy. Appl. Sci. 2020, 10, 9071. [Google Scholar] [CrossRef]
- Umebayashi, Y.; Uyeno, K.; Tsujii, H.; Otsuka, F. Proton Radiotherapy for Malignant Melanoma of the Skin. Dermatology 1995, 190, 210–213. [Google Scholar] [CrossRef]
- Dong, Y.C.; Nieves, L.M.; Hsu, J.C.; Kumar, A.; Bouché, M.; Krishnan, U.; Mossburg, K.J.; Saxena, D.; Uman, S.; Kambayashi, T.; et al. Novel Combination Treatment for Melanoma: FLASH Radiotherapy and Immunotherapy Delivered by a Radiopaque and Radiation Responsive Hydrogel. Chem. Mater. 2023, 35, 9542–9551. [Google Scholar] [CrossRef] [PubMed]
- Trappetti, V.; Fazzari, J.M.; Fernandez-Palomo, C.; Scheidegger, M.; Volarevic, V.; Martin, O.A.; Djonov, V.G. Microbeam Radiotherapy—A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. Int. J. Mol. Sci. 2021, 22, 7755. [Google Scholar] [CrossRef]
- Ishiguro, A.; Ogata, D.; Okuma, K.; Kashihara, T.; Murakami, N.; Hiki, K.; Yamakawa, K.; Jinnai, S.; Takahashi, A.; Namikawa, K.; et al. Malignant Melanoma Treatment Using Brachytherapy: Two Case Reports and 15 Case Series. J. Dermatol. 2023, 50, 94–97. [Google Scholar] [CrossRef]
- Takahashi, J.; Nagasawa, S. Immunostimulatory Effects of Radiotherapy for Local and Systemic Control of Melanoma: A Review. Int. J. Mol. Sci. 2020, 21, 9324. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhao, W.; Ding, Y.; Ge, X.; Ju, M. Research on the Influence of Radiotherapy-Related Genes on Immune Infiltration, Immunotherapy Response and Prognosis in Melanoma Based on Multi-Omics. Front. Immunol. 2024, 15, 1467098. [Google Scholar] [CrossRef] [PubMed]
- Hendrickx, A.; Cozzio, A.; Plasswilm, L.; Panje, C.M. Radiotherapy for Lentigo Maligna and Lentigo Maligna Melanoma—A Systematic Review. Radiat. Oncol. 2020, 15, 174. [Google Scholar] [CrossRef]
- Wallington, D.G.; Rashid, A.S.; Buchwald, Z.S.; Sudmeier, L.J.; Khan, M.K. Complete and Durable Response After Radiation Therapy to Primary Tumor Site of a Patient with Metastatic Anorectal Mucosal Melanoma with Oligoprogression on Nivolumab. Adv. Radiat. Oncol. 2020, 5, 503. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.W.; Lin, H.; Yacoub, I.; Chhabra, A.M.; Choi, J.I.; Simone, C.B. Proton Therapy in Uveal Melanoma. Cancers 2024, 16, 3497. [Google Scholar] [CrossRef]
- Stålhammar, G. Forty-Year Prognosis after Plaque Brachytherapy of Uveal Melanoma. Sci. Rep. 2020, 10, 11297. [Google Scholar] [CrossRef] [PubMed]
- Stålhammar, G.; Seregard, S.; Damato, B.E. Uveal Melanoma: Brachytherapy. In Clinical Ophthalmic Oncology: Uveal Tumors; Damato, B.E., Singh, A.D., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 201–217. ISBN 978-3-030-17879-6. [Google Scholar]
- Semeniuk, O.; Yu, E.; Rivard, M.J. Current and Emerging Radiotherapy Options for Uveal Melanoma. Cancers 2024, 16, 1074. [Google Scholar] [CrossRef]
- Henderson, M.A.; Burmeister, B.H.; Ainslie, J.; Fisher, R.; Di Iulio, J.; Smithers, B.M.; Hong, A.; Shannon, K.; Scolyer, R.A.; Carruthers, S.; et al. Adjuvant Lymph-Node Field Radiotherapy versus Observation Only in Patients with Melanoma at High Risk of Further Lymph-Node Field Relapse after Lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-Year Follow-up of a Phase 3, Randomised Controlled Trial. Lancet Oncol. 2015, 16, 1049–1060. [Google Scholar] [CrossRef]
- King, A.L.O.; Lee, V.; Yu, B.; Mirza, F.N.; Zogg, C.K.; Yang, D.X.; Tran, T.; Leventhal, J.; An, Y. Factors Associated with the Use of Adjuvant Radiation Therapy in Stage III Melanoma. Front. Oncol. 2023, 13, 1005930. [Google Scholar] [CrossRef]
- Vuong, W.; Lin, J.; Wei, R.L. Palliative Radiotherapy for Skin Malignancies. Ann. Palliat. Med. 2017, 6, 165–172. [Google Scholar] [CrossRef]
- Rogers, S.J.; Puric, E.; Eberle, B.; Datta, N.R.; Bodis, S.B. Radiotherapy for Melanoma: More than DNA Damage. Dermatol. Res. Pract. 2019, 2019, 9435389. [Google Scholar] [CrossRef] [PubMed]
- Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front. Cell Dev. Biol. 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, A.; Patel, V.L.; Dagoglu, N. Radiation Therapy in the Management of Malignant Melanoma. Oncology 2015, 29, 743–751. [Google Scholar]
- Barranco, S.C.; Romsdahl, M.M.; Humphrey, R.M. The Radiation Response of Human Malignant Melanoma Cells Grown in Vitro. Cancer Res. 1971, 31, 830–833. [Google Scholar] [PubMed]
- Dewey, D.L. The Radiosensitivity of Melanoma Cells in Culture. Br. J. Radiol. 1971, 44, 816–817. [Google Scholar] [CrossRef] [PubMed]
- Fertil, B.; Malaise, E.P. Intrinsic Radiosensitivity of Human Cell Lines Is Correlated with Radioresponsiveness of Human Tumors: Analysis of 101 Published Survival Curves. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11, 1699–1707. [Google Scholar] [CrossRef]
- Doss, L.L.; Memula, N. The Radioresponsiveness of Melanoma. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Overgaard, J.; Thames, H.D.; Overgaard, M.; Vejby Hansen, P.; von der Maase, H.; Meder, J. Clinical Radiobiology of Malignant Melanoma. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 1989, 16, 169–182. [Google Scholar] [CrossRef]
- Overgaard, J. The Role of Radiotherapy in Recurrent and Metastatic Malignant Melanoma: A Clinical Radiobiological Study. Int. J. Radiat. Oncol. Biol. Phys. 1986, 12, 867–872. [Google Scholar] [CrossRef]
- Keatts, S.A.; Salem, A.F.; Swanson, D.M.; Farooqi, A.S.; Bishop, A.J.; Amaria, R.N.; McQuade, J.L.; Glitza Oliva, I.C.; Diab, A.; Weiser, R.; et al. Durable Local Control with Hypofractionated Radiation Therapy for Unresectable or Metastatic Melanoma. Clin. Transl. Radiat. Oncol. 2024, 49, 100856. [Google Scholar] [CrossRef]
- Fang, D.; Nguyen, T.K.; Leishear, K.; Finko, R.; Kulp, A.N.; Hotz, S.; Van Belle, P.A.; Xu, X.; Elder, D.E.; Herlyn, M. A Tumorigenic Subpopulation with Stem Cell Properties in Melanomas. Cancer Res. 2005, 65, 9328–9337. [Google Scholar] [CrossRef]
- Zabierowski, S.E.; Herlyn, M. Melanoma Stem Cells: The Dark Seed of Melanoma. J. Clin. Oncol. 2008, 26, 2890–2894. [Google Scholar] [CrossRef]
- Girouard, S.D.; Murphy, G.F. Melanoma Stem Cells: Not Rare, but Well Done. Lab. Investig. 2011, 91, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Roesch, A.; Fukunaga-Kalabis, M.; Schmidt, E.C.; Zabierowski, S.E.; Brafford, P.A.; Vultur, A.; Basu, D.; Gimotty, P.; Vogt, T.; Herlyn, M. A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth. Cell 2010, 141, 583–594. [Google Scholar] [CrossRef]
- Quintana, E.; Shackleton, M.; Sabel, M.S.; Fullen, D.R.; Johnson, T.M.; Morrison, S.J. Efficient Tumour Formation by Single Human Melanoma Cells. Nature 2008, 456, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Civenni, G.; Walter, A.; Kobert, N.; Mihic-Probst, D.; Zipser, M.; Belloni, B.; Seifert, B.; Moch, H.; Dummer, R.; van den Broek, M.; et al. Human CD271-Positive Melanoma Stem Cells Associated with Metastasis Establish Tumor Heterogeneity and Long-Term Growth. Cancer Res. 2011, 71, 3098–3109. [Google Scholar] [CrossRef] [PubMed]
- Boyle, S.E.; Fedele, C.G.; Corbin, V.; Wybacz, E.; Szeto, P.; Lewin, J.; Young, R.J.; Wong, A.; Fuller, R.; Spillane, J.; et al. CD271 Expression on Patient Melanoma Cells Is Unstable and Unlinked to Tumorigenicity. Cancer Res. 2016, 76, 3965–3977. [Google Scholar] [CrossRef]
- Parmiani, G. Melanoma Cancer Stem Cells: Markers and Functions. Cancers 2016, 8, 34. [Google Scholar] [CrossRef]
- Quintana, E.; Shackleton, M.; Foster, H.R.; Fullen, D.R.; Sabel, M.S.; Johnson, T.M.; Morrison, S.J. Phenotypic Heterogeneity among Tumorigenic Melanoma Cells from Patients That Is Reversible and Not Hierarchically Organized. Cancer Cell 2010, 18, 510–523. [Google Scholar] [CrossRef]
- van Niekerk, G.; Davids, L.M.; Hattingh, S.M.; Engelbrecht, A.-M. Cancer Stem Cells: A Product of Clonal Evolution? Int. J. Cancer 2017, 140, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Peitzsch, C.; Tyutyunnykova, A.; Pantel, K.; Dubrovska, A. Cancer Stem Cells: The Root of Tumor Recurrence and Metastases. Semin. Cancer Biol. 2017, 44, 10–24. [Google Scholar] [CrossRef]
- Brinckerhoff, C.E. Cancer Stem Cells (CSCs) in Melanoma: There’s Smoke, but Is There Fire? J. Cell. Physiol. 2017, 232, 2674–2678. [Google Scholar] [CrossRef]
- Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The Role of Hypoxia in Cancer Progression, Angiogenesis, Metastasis, and Resistance to Therapy. Hypoxia 2015, 3, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-Intrinsic β-Catenin Signalling Prevents Anti-Tumour Immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef]
- Kreso, A.; Dick, J.E. Evolution of the Cancer Stem Cell Model. Cell Stem Cell 2014, 14, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Meacham, C.E.; Morrison, S.J. Tumour Heterogeneity and Cancer Cell Plasticity. Nature 2013, 501, 328–337. [Google Scholar] [CrossRef]
- Yin, Q.; Shi, X.; Lan, S.; Jin, H.; Wu, D. Effect of Melanoma Stem Cells on Melanoma Metastasis (Review). Oncol. Lett. 2021, 22, 566. [Google Scholar] [CrossRef]
- Schatton, T.; Frank, M.H. Antitumor Immunity and Cancer Stem Cells. Ann. N. Y. Acad. Sci. 2009, 1176, 154–169. [Google Scholar] [CrossRef]
- Speigl, L.; Janssen, N.; Weide, B.; Sinnberg, T.; Pawelec, G.; Shipp, C. Putative Cancer Stem Cell Markers Are Frequently Expressed by Melanoma Cells in Vitro and in Situ but Are Also Present in Benign Differentiated Cells. Front. Biosci. Landmark 2023, 28, 193. [Google Scholar] [CrossRef]
- Marzagalli, M.; Moretti, R.M.; Messi, E.; Marelli, M.M.; Fontana, F.; Anastasia, A.; Bani, M.R.; Beretta, G.; Limonta, P. Targeting Melanoma Stem Cells with the Vitamin E Derivative δ-Tocotrienol. Sci. Rep. 2018, 8, 587. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Lorenzo, I.; Dorado, J.; Lonardo, E.; Alcala, S.; Serrano, A.G.; Clausell-Tormos, J.; Cioffi, M.; Megias, D.; Zagorac, S.; Balic, A.; et al. Intracellular Autofluorescence: A Biomarker for Epithelial Cancer Stem Cells. Nat. Methods 2014, 11, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Castro-Pérez, E.; Singh, M.; Sadangi, S.; Mela-Sánchez, C.; Setaluri, V. Connecting the Dots: Melanoma Cell of Origin, Tumor Cell Plasticity, Trans-Differentiation, and Drug Resistance. Pigment. Cell Melanoma Res. 2023, 36, 330–347. [Google Scholar] [CrossRef]
- Ahmed, F.; Haass, N.K. Microenvironment-Driven Dynamic Heterogeneity and Phenotypic Plasticity as a Mechanism of Melanoma Therapy Resistance. Front. Oncol. 2018, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Wessely, A.; Steeb, T.; Berking, C.; Heppt, M.V. How Neural Crest Transcription Factors Contribute to Melanoma Heterogeneity, Cellular Plasticity, and Treatment Resistance. Int. J. Mol. Sci. 2021, 22, 5761. [Google Scholar] [CrossRef]
- Redmer, T.; Welte, Y.; Behrens, D.; Fichtner, I.; Przybilla, D.; Wruck, W.; Yaspo, M.-L.; Lehrach, H.; Schäfer, R.; Regenbrecht, C.R.A. The Nerve Growth Factor Receptor CD271 Is Crucial to Maintain Tumorigenicity and Stem-Like Properties of Melanoma Cells. PLoS ONE 2014, 9, e92596. [Google Scholar] [CrossRef]
- Huang, F.; Santinon, F.; Flores González, R.E.; del Rincón, S.V. Melanoma Plasticity: Promoter of Metastasis and Resistance to Therapy. Front. Oncol. 2021, 11, 756001. [Google Scholar] [CrossRef]
- Du, Y.; Shao, H.; Moller, M.; Prokupets, R.; Tse, Y.T.; Liu, Z.-J. Intracellular Notch1 Signaling in Cancer-Associated Fibroblasts Dictates the Plasticity and Stemness of Melanoma Stem/Initiating Cells. Stem Cells 2019, 37, 865–875. [Google Scholar] [CrossRef]
- Lee, L.M.J.; Seftor, E.A.; Bonde, G.; Cornell, R.A.; Hendrix, M.J.C. The Fate of Human Malignant Melanoma Cells Transplanted into Zebrafish Embryos: Assessment of Migration and Cell Division in the Absence of Tumor Formation. Dev. Dyn. 2005, 233, 1560–1570. [Google Scholar] [CrossRef]
- Seftor, E.A.; Brown, K.M.; Chin, L.; Kirschmann, D.A.; Wheaton, W.W.; Protopopov, A.; Feng, B.; Balagurunathan, Y.; Trent, J.M.; Nickoloff, B.J.; et al. Epigenetic Transdifferentiation of Normal Melanocytes by a Metastatic Melanoma Microenvironment. Cancer Res. 2005, 65, 10164–10169. [Google Scholar] [CrossRef]
- Hendrix, M.J.C.; Seftor, E.A.; Hess, A.R.; Seftor, R.E.B. Vasculogenic Mimicry and Tumour-Cell Plasticity: Lessons from Melanoma. Nat. Rev. Cancer 2003, 3, 411–421. [Google Scholar] [CrossRef]
- Maniotis, A.J.; Chen, X.; Garcia, C.; DeChristopher, P.J.; Wu, D.; Pe’er, J.; Folberg, R. Control of Melanoma Morphogenesis, Endothelial Survival, and Perfusion by Extracellular Matrix. Lab. Investig. 2002, 82, 1031–1043. [Google Scholar] [CrossRef]
- Folberg, R.; Hendrix, M.J.C.; Maniotis, A.J. Vasculogenic Mimicry and Tumor Angiogenesis. Am. J. Pathol. 2000, 156, 361–381. [Google Scholar] [CrossRef] [PubMed]
- Al Hmada, Y.; Brodell, R.T.; Kharouf, N.; Flanagan, T.W.; Alamodi, A.A.; Hassan, S.-Y.; Shalaby, H.; Hassan, S.-L.; Haikel, Y.; Megahed, M.; et al. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers 2024, 16, 470. [Google Scholar] [CrossRef] [PubMed]
- Wouters, J.; Vankelecom, H.; van den Oord, J. Cancer Stem Cells in Cutaneous Melanoma. Expert Rev. Dermatol. 2009, 4, 225–235. [Google Scholar] [CrossRef]
- Fattore, L.; Mancini, R.; Ciliberto, G. Cancer Stem Cells and the Slow Cycling Phenotype: How to Cut the Gordian Knot Driving Resistance to Therapy in Melanoma. Cancers 2020, 12, 3368. [Google Scholar] [CrossRef]
- Fisher, M.L.; Grun, D.; Adhikary, G.; Xu, W.; Eckert, R.L. Inhibition of YAP Function Overcomes BRAF Inhibitor Resistance in Melanoma Cancer Stem Cells. Oncotarget 2017, 8, 110257–110272. [Google Scholar] [CrossRef] [PubMed]
- Knowles, O.; Doldan, P.; Hillier-Richardson, I.; Lunt, S.; Youssef, G.; Gammon, L.; Mackenzie, I.C.; Philpott, M.P.; Rizvi, H.; Bergamaschi, D.; et al. A CD24+CD271+ Melanoma Cancer Stem Cell Possesses Hybrid Characteristics of Its Single Marker Counterparts and Promotes Invasion and Therapeutic Resistance. BMC Biol. 2025, 23, 235. [Google Scholar] [CrossRef]
- Erfani, E.; Roudi, R.; Rakhshan, A.; Sabet, M.N.; Shariftabrizi, A.; Madjd, Z. Comparative Expression Analysis of Putative Cancer Stem Cell Markers CD44 and ALDH1A1 in Various Skin Cancer Subtypes. Int. J. Biol. Markers 2016, 31, 53–61. [Google Scholar] [CrossRef]
- Madjd, Z.; Erfani, E.; Gheytanchi, E.; Moradi-Lakeh, M.; Shariftabrizi, A.; Asadi-Lari, M. Expression of CD133 Cancer Stem Cell Marker in Melanoma: A Systematic Review and Meta-Analysis. Int. J. Biol. Markers 2016, 31, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.-L.; Sedlmeier, G.; Kyjacova, L.; Schmaus, A.; Philipp, J.; Thiele, W.; Garvalov, B.K.; Sleeman, J.P. Hyaluronic Acid-CD44 Interactions Promote BMP4/7-Dependent Id1/3 Expression in Melanoma Cells. Sci. Rep. 2018, 8, 14913. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, T.; Sleeman, J.P.; Schempp, C.M.; Howells, N.; Hofmann, M.; Ponta, H.; Herrlich, P.; Simon, J.C. Soluble CD44 Inhibits Melanoma Tumor Growth by Blocking Cell Surface CD44 Binding to Hyaluronic Acid. Oncogene 2001, 20, 3399–3408. [Google Scholar] [CrossRef]
- Schatton, T.; Frank, M.H. Cancer Stem Cells and Human Malignant Melanoma. Pigment. Cell Melanoma Res. 2008, 21, 39–55. [Google Scholar] [CrossRef]
- Simbulan-Rosenthal, C.M.; Haribabu, Y.; Vakili, S.; Kuo, L.-W.; Clark, H.; Dougherty, R.; Alobaidi, R.; Carney, B.; Sykora, P.; Rosenthal, D.S. Employing CRISPR-Cas9 to Generate CD133 Synthetic Lethal Melanoma Stem Cells. Int. J. Mol. Sci. 2022, 23, 2333. [Google Scholar] [CrossRef]
- Jamal, S.M.E.; Alamodi, A.; Wahl, R.U.; Grada, Z.; Shareef, M.A.; Hassan, S.-Y.; Murad, F.; Hassan, S.-L.; Santourlidis, S.; Gomez, C.R.; et al. Melanoma Stem Cell Maintenance and Chemo-Resistance Are Mediated by CD133 Signal to PI3K-Dependent Pathways. Oncogene 2020, 39, 5468–5478. [Google Scholar] [CrossRef]
- Luo, Y.; Dallaglio, K.; Chen, Y.; Robinson, W.A.; Robinson, S.E.; McCarter, M.D.; Wang, J.; Gonzalez, R.; Thompson, D.C.; Norris, D.A.; et al. ALDH1A Isozymes Are Markers of Human Melanoma Stem Cells and Potential Therapeutic Targets. Stem Cells 2012, 30, 2100–2113. [Google Scholar] [CrossRef]
- Dinavahi, S.S.; Gowda, R.; Gowda, K.; Bazewicz, C.G.; Chirasani, V.R.; Battu, M.B.; Berg, A.; Dokholyan, N.V.; Amin, S.; Robertson, G.P. Development of a Novel Multi-Isoform ALDH Inhibitor Effective as an Antimelanoma Agent. Mol. Cancer Ther. 2020, 19, 447–459. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, L.; Xia, Y.; Chen, X.; Chang, A.E.; Hollingsworth, R.E.; Hurt, E.; Owen, J.; Moyer, J.S.; Prince, M.E.P.; et al. Therapeutic Efficacy of Cancer Stem Cell Vaccines in the Adjuvant Setting. Cancer Res. 2016, 76, 4661–4672. [Google Scholar] [CrossRef] [PubMed]
- Frank, N.Y.; Margaryan, A.; Huang, Y.; Schatton, T.; Waaga-Gasser, A.M.; Gasser, M.; Sayegh, M.H.; Sadee, W.; Frank, M.H. ABCB5-Mediated Doxorubicin Transport and Chemoresistance in Human Malignant Melanoma. Cancer Res. 2005, 65, 4320–4333. [Google Scholar] [CrossRef]
- Tangella, L.P.; Arooj, M.; Deplazes, E.; Gray, E.S.; Mancera, R.L. Identification and Characterisation of Putative Drug Binding Sites in Human ATP-Binding Cassette B5 (ABCB5) Transporter. Comput. Struct. Biotechnol. J. 2021, 19, 691–704. [Google Scholar] [CrossRef]
- Schatton, T.; Murphy, G.F.; Frank, N.Y.; Yamaura, K.; Waaga-Gasser, A.M.; Gasser, M.; Zhan, Q.; Jordan, S.; Duncan, L.M.; Weishaupt, C.; et al. Identification of Cells Initiating Human Melanomas. Nature 2008, 451, 345–349. [Google Scholar] [CrossRef]
- Wilson, B.J.; Saab, K.R.; Ma, J.; Schatton, T.; Pütz, P.; Zhan, Q.; Murphy, G.F.; Gasser, M.; Waaga-Gasser, A.M.; Frank, N.Y.; et al. ABCB5 Maintains Melanoma-Initiating Cells through a Proinflammatory Cytokine Signaling Circuit. Cancer Res. 2014, 74, 4196–4207. [Google Scholar] [CrossRef]
- Wang, S.; Tang, L.; Lin, J.; Shen, Z.; Yao, Y.; Wang, W.; Tao, S.; Gu, C.; Ma, J.; Xie, Y.; et al. ABCB5 Promotes Melanoma Metastasis through Enhancing NF-κB P65 Protein Stability. Biochem. Biophys. Res. Commun. 2017, 492, 18–26. [Google Scholar] [CrossRef]
- Chartrain, M.; Riond, J.; Stennevin, A.; Vandenberghe, I.; Gomes, B.; Lamant, L.; Meyer, N.; Gairin, J.E.; Guilbaud, N.; Annereau, J.P. Melanoma Chemotherapy Leads to the Selection of ABCB5-Expressing Cells. PLoS ONE 2012, 7, e36762. [Google Scholar] [CrossRef]
- Tu, J.; Wang, J.; Tang, B.; Zhang, Z.; Han, M.; Li, M.; Yu, J.; Shen, L.; Zhang, M.; Ye, J. Expression and Clinical Significance of TYRP1, ABCB5, and MMP17 in Sinonasal Mucosal Melanoma. Cancer Biomark. 2022, 35, 331–342. [Google Scholar] [CrossRef]
- Xiao, J.; Egger, M.E.; McMasters, K.M.; Hao, H. Differential Expression of ABCB5 in BRAF Inhibitor-Resistant Melanoma Cell Lines. BMC Cancer 2018, 18, 675. [Google Scholar] [CrossRef] [PubMed]
- Aya-Bonilla, C.; Gray, E.S.; Manikandan, J.; Freeman, J.B.; Zaenker, P.; Reid, A.L.; Khattak, M.A.; Frank, M.H.; Millward, M.; Ziman, M. Immunomagnetic-Enriched Subpopulations of Melanoma Circulating Tumour Cells (CTCs) Exhibit Distinct Transcriptome Profiles. Cancers 2019, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Zhou, Y.; Yu, Y.; Zhang, M. The Roles of Cancer Stem Cells and Therapeutic Implications in Melanoma. Front. Immunol. 2024, 15, 1486680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Richmond, A.; Yan, C. Immunomodulatory Properties of PI3K/AKT/mTOR and MAPK/MEK/ERK Inhibition Augment Response to Immune Checkpoint Blockade in Melanoma and Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2022, 23, 7353. [Google Scholar] [CrossRef]
- Yue, L.; Huang, Z.-M.; Fong, S.; Leong, S.; Jakowatz, J.G.; Charruyer-Reinwald, A.; Wei, M.; Ghadially, R. Targeting ALDH1 to Decrease Tumorigenicity, Growth and Metastasis of Human Melanoma. Melanoma Res. 2015, 25, 138–148. [Google Scholar] [CrossRef]
- Schlaak, M.; Schmidt, P.; Bangard, C.; Kurschat, P.; Mauch, C.; Abken, H. Regression of Metastatic Melanoma in a Patient by Antibody Targeting of Cancer Stem Cells. Oncotarget 2012, 3, 22–30. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Giraudo, L.; Leuci, V.; Todorovic, M.; Mesiano, G.; Picciotto, F.; Pisacane, A.; Zaccagna, A.; Volpe, M.G.; Gallo, S.; et al. Effective Activity of Cytokine-Induced Killer Cells against Autologous Metastatic Melanoma Including Cells with Stemness Features. Clin. Cancer Res. 2013, 19, 4347–4358. [Google Scholar] [CrossRef] [PubMed]
- Yesmin, F.; Bhuiyan, R.H.; Ohmi, Y.; Yamamoto, S.; Kaneko, K.; Ohkawa, Y.; Zhang, P.; Hamamura, K.; Cheung, N.-K.V.; Kotani, N.; et al. Ganglioside GD2 Enhances the Malignant Phenotypes of Melanoma Cells by Cooperating with Integrins. Int. J. Mol. Sci. 2021, 23, 423. [Google Scholar] [CrossRef]
- Eissler, N.; Ruf, P.; Mysliwietz, J.; Lindhofer, H.; Mocikat, R. Trifunctional Bispecific Antibodies Induce Tumor-Specific T Cells and Elicit a Vaccination Effect. Cancer Res. 2012, 72, 3958–3966. [Google Scholar] [CrossRef] [PubMed]
- Yvon, E.; Vecchio, M.D.; Savoldo, B.; Hoyos, V.; Dutour, A.; Anichini, A.; Dotti, G.; Brenner, M.K. Immunotherapy of Metastatic Melanoma Using Genetically Engineered GD2-Specific T Cells. Clin. Cancer Res. 2009, 15, 5852–5860. [Google Scholar] [CrossRef]
- Shidal, C.; Al-Rayyan, N.; Yaddanapudi, K.; Davis, K.R. Lunasin Is a Novel Therapeutic Agent for Targeting Melanoma Cancer Stem Cells. Oncotarget 2016, 7, 84128–84141. [Google Scholar] [CrossRef]
- Petrachi, T.; Romagnani, A.; Albini, A.; Longo, C.; Argenziano, G.; Grisendi, G.; Dominici, M.; Ciarrocchi, A.; Dallaglio, K. Therapeutic Potential of the Metabolic Modulator Phenformin in Targeting the Stem Cell Compartment in Melanoma. Oncotarget 2016, 8, 6914–6928. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Wei, J.; Zhang, S.; Zhang, X. Shrimp miR-S8 Suppresses the Stemness of Human Melanoma Stem-like Cells by Targeting the Transcription Factor YB-1. Cancer Res. 2017, 77, 5543–5553. [Google Scholar] [CrossRef] [PubMed]
- Köseer, A.S.; Di Gaetano, S.; Arndt, C.; Bachmann, M.; Dubrovska, A. Immunotargeting of Cancer Stem Cells. Cancers 2023, 15, 1608. [Google Scholar] [CrossRef]
- Dratkiewicz, E.; Simiczyjew, A.; Mazurkiewicz, J.; Ziętek, M.; Matkowski, R.; Nowak, D. Hypoxia and Extracellular Acidification as Drivers of Melanoma Progression and Drug Resistance. Cells 2021, 10, 862. [Google Scholar] [CrossRef]
- Soltantoyeh, T.; Akbari, B.; Karimi, A.; Mahmoodi Chalbatani, G.; Ghahri-Saremi, N.; Hadjati, J.; Hamblin, M.R.; Mirzaei, H.R. Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Melanoma: Challenges and Road Ahead. Cells 2021, 10, 1450. [Google Scholar] [CrossRef]
- Huang, R.-X.; Zhou, P.-K. DNA Damage Response Signaling Pathways and Targets for Radiotherapy Sensitization in Cancer. Signal Transduct. Target. Ther. 2020, 5, 60. [Google Scholar] [CrossRef]
- Penninckx, S.; Pariset, E.; Cekanaviciute, E.; Costes, S.V. Quantification of Radiation-Induced DNA Double Strand Break Repair Foci to Evaluate and Predict Biological Responses to Ionizing Radiation. NAR Cancer 2021, 3, zcab046. [Google Scholar] [CrossRef]
- Ji, J.; Dragojevic, S.; Callaghan, C.M.; Smith, E.J.; Talele, S.; Zhang, W.; Connors, M.A.; Mladek, A.C.; Hu, Z.; Bakken, K.K.; et al. Differential Distribution of the DNA-PKcs Inhibitor Peposertib Selectively Radiosensitizes Patient-Derived Melanoma Brain Metastasis Xenografts. Mol. Cancer Ther. 2024, 23, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Bürkel, F.; Jost, T.; Hecht, M.; Heinzerling, L.; Fietkau, R.; Distel, L. Dual mTOR/DNA-PK Inhibitor CC-115 Induces Cell Death in Melanoma Cells and Has Radiosensitizing Potential. Int. J. Mol. Sci. 2020, 21, 9321. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, M.; Najem, A.; Vanderkerkhove, C.; Kert, F.; Jourani, Y.; Journe, F.; Awada, A.; Van Gestel, D.; Ghanem, G.E.; Krayem, M. The Benefit of Co-Targeting PARP-1 and c-Met on the Efficacy of Radiotherapy in Wild Type BRAF Melanoma. Front. Med. 2023, 10, 1149918. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, L.M.; Niessner, H.; Sauer, B.; Kämereit, S.; Chatziioannou, E.; Riel, S.; Sinnberg, T.; Schittek, B. PARP Inhibitors Effectively Reduce MAPK Inhibitor Resistant Melanoma Cell Growth and Synergize with MAPK Inhibitors through a Synthetic Lethal Interaction In Vitro and In Vivo. Cancer Res. Commun. 2023, 3, 1743–1755. [Google Scholar] [CrossRef]
- Giunta, E.F.; Belli, V.; Napolitano, S.; De Falco, V.; Vitiello, P.P.; Terminiello, M.; Caputo, V.; Vitale, P.; Zanaletti, N.; Ciardiello, D.; et al. 13P Synergistic Activity of PARP Inhibitor and ATR Inhibitor in Melanoma Cell Lines May Depend on BRAF-V600 Mutation Status. Ann. Oncol. 2020, 31, S248–S249. [Google Scholar] [CrossRef]
- Maresca, L.; Stecca, B.; Carrassa, L. Novel Therapeutic Approaches with DNA Damage Response Inhibitors for Melanoma Treatment. Cells 2022, 11, 1466. [Google Scholar] [CrossRef]
- Munshi, A.; Kurland, J.F.; Nishikawa, T.; Tanaka, T.; Hobbs, M.L.; Tucker, S.L.; Ismail, S.; Stevens, C.; Meyn, R.E. Histone Deacetylase Inhibitors Radiosensitize Human Melanoma Cells by Suppressing DNA Repair Activity. Clin. Cancer Res. 2005, 11, 4912–4922. [Google Scholar] [CrossRef]
- Kim, R.; Kwon, M.; An, M.; Kim, S.T.; Smith, S.A.; Loembé, A.B.; Mortimer, P.G.S.; Armenia, J.; Lukashchuk, N.; Shah, N.; et al. Phase II Study of Ceralasertib (AZD6738) in Combination with Durvalumab in Patients with Advanced/Metastatic Melanoma Who Have Failed Prior Anti-PD-1 Therapy. Ann. Oncol. 2022, 33, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Kauffmann, A.; Rosselli, F.; Lazar, V.; Winnepenninckx, V.; Mansuet-Lupo, A.; Dessen, P.; van den Oord, J.J.; Spatz, A.; Sarasin, A. High Expression of DNA Repair Pathways Is Associated with Metastasis in Melanoma Patients. Oncogene 2008, 27, 565–573. [Google Scholar] [CrossRef]
- Loureiro, J.B.; Raimundo, L.; Calheiros, J.; Carvalho, C.; Barcherini, V.; Lima, N.R.; Gomes, C.; Almeida, M.I.; Alves, M.G.; Costa, J.L.; et al. Targeting P53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers 2021, 13, 1648. [Google Scholar] [CrossRef]
- Chin, L.; Garraway, L.A.; Fisher, D.E. Malignant Melanoma: Genetics and Therapeutics in the Genomic Era. Genes Dev. 2006, 20, 2149–2182. [Google Scholar] [CrossRef]
- Hocker, T.; Tsao, H. Ultraviolet Radiation and Melanoma: A Systematic Review and Analysis of Reported Sequence Variants. Hum. Mutat. 2007, 28, 578–588. [Google Scholar] [CrossRef]
- Hodis, E.; Watson, I.R.; Kryukov, G.V.; Arold, S.T.; Imielinski, M.; Theurillat, J.-P.; Nickerson, E.; Auclair, D.; Li, L.; Place, C.; et al. A Landscape of Driver Mutations in Melanoma. Cell 2012, 150, 251–263. [Google Scholar] [CrossRef]
- Avery-Kiejda, K.A.; Zhang, X.D.; Adams, L.J.; Scott, R.J.; Vojtesek, B.; Lane, D.P.; Hersey, P. Small Molecular Weight Variants of P53 Are Expressed in Human Melanoma Cells and Are Induced by the DNA-Damaging Agent Cisplatin. Clin. Cancer Res. 2008, 14, 1659–1668. [Google Scholar] [CrossRef]
- Satyamoorthy, K.; Chehab, N.H.; Waterman, M.J.; Lien, M.C.; El-Deiry, W.S.; Herlyn, M.; Halazonetis, T.D. Aberrant Regulation and Function of Wild-Type P53 in Radioresistant Melanoma Cells. Cell Growth Differ. 2000, 11, 467–474. [Google Scholar] [PubMed]
- Strasberg Rieber, M.; Zangemeister-Wittke, U.; Rieber, M. P53-Independent Induction of Apoptosis in Human Melanoma Cells by a Bcl-2/Bcl-xL Bispecific Antisense Oligonucleotide. Clin. Cancer Res. 2001, 7, 1446–1451. [Google Scholar] [PubMed]
- Kao, W.H.; Riker, A.I.; Kushwaha, D.S.; Ng, K.; Enkemann, S.A.; Jove, R.; Buettner, R.; Zinn, P.O.; Sánchez, N.P.; Villa, J.L.; et al. Upregulation of Fanconi Anemia DNA Repair Genes in Melanoma Compared to Non-Melanoma Skin Cancer. J. Investig. Dermatol. 2011, 131, 2139–2142. [Google Scholar] [CrossRef]
- Longerich, S.; Li, J.; Xiong, Y.; Sung, P.; Kupfer, G.M. Stress and DNA Repair Biology of the Fanconi Anemia Pathway. Blood 2014, 124, 2812–2819. [Google Scholar] [CrossRef]
- Krumm, A.; Barckhausen, C.; Kücük, P.; Tomaszowski, K.-H.; Loquai, C.; Fahrer, J.; Krämer, O.H.; Kaina, B.; Roos, W.P. Enhanced Histone Deacetylase Activity in Malignant Melanoma Provokes RAD51 and FANCD2-Triggered Drug Resistance. Cancer Res. 2016, 76, 3067–3077. [Google Scholar] [CrossRef] [PubMed]
- Hatton, D.H.; Mitchell, D.L.; Strickland, P.T.; Johnson, R.T. Enhanced Photoproduct Repair: Its Role in the DNA Damage-Resistance Phenotype of Human Malignant Melanoma Cells. Cancer Res. 1995, 55, 181–189. [Google Scholar] [PubMed]
- Jochemsen, A.G. Reactivation of P53 as Therapeutic Intervention for Malignant Melanoma. Curr. Opin. Oncol. 2014, 26, 114. [Google Scholar] [CrossRef]
- Arnoff, T.E.; El-Deiry, W.S. MDM2/MDM4 Amplification and CDKN2A Deletion in Metastatic Melanoma and Glioblastoma Multiforme May Have Implications for Targeted Therapeutics and Immunotherapy. Am. J. Cancer Res. 2022, 12, 2102–2117. [Google Scholar]
- Sachweh, M.C.C.; Stafford, W.C.; Drummond, C.J.; McCarthy, A.R.; Higgins, M.; Campbell, J.; Brodin, B.; Arnér, E.S.J.; Laín, S. Redox Effects and Cytotoxic Profiles of MJ25 and Auranofin towards Malignant Melanoma Cells. Oncotarget 2015, 6, 16488–16506. [Google Scholar] [CrossRef]
- Fröhlich, L.M.; Makino, E.; Sinnberg, T.; Schittek, B. Enhanced Expression of P21 Promotes Sensitivity of Melanoma Cells towards Targeted Therapies. Exp. Dermatol. 2022, 31, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Ingelshed, K.; Spiegelberg, D.; Kannan, P.; Påvénius, L.; Hacheney, J.; Jiang, L.; Eisinger, S.; Lianoudaki, D.; Lama, D.; Castillo, F.; et al. The MDM2 Inhibitor Navtemadlin Arrests Mouse Melanoma Growth In Vivo and Potentiates Radiotherapy. Cancer Res. Commun. 2022, 2, 1075–1088. [Google Scholar] [CrossRef]
- Budden, T.; Davey, R.J.; Vilain, R.E.; Ashton, K.A.; Braye, S.G.; Beveridge, N.J.; Bowden, N.A. Repair of UVB-Induced DNA Damage Is Reduced in Melanoma Due to Low XPC and Global Genome Repair. Oncotarget 2016, 7, 60940–60953. [Google Scholar] [CrossRef]
- Biau, J.; Devun, F.; Jdey, W.; Kotula, E.; Quanz, M.; Chautard, E.; Sayarath, M.; Sun, J.-S.; Verrelle, P.; Dutreix, M. A Preclinical Study Combining the DNA Repair Inhibitor Dbait with Radiotherapy for the Treatment of Melanoma. Neoplasia 2014, 16, 835–844. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Dreno, B.; Kirova, Y.; Grob, J.J.; Jouary, T.; Dutriaux, C.; Thomas, L.; Lebbé, C.; Mortier, L.; Saiag, P.; et al. First-in-Human Phase I Study of the DNA-Repair Inhibitor DT01 in Combination with Radiotherapy in Patients with Skin Metastases from Melanoma. Br. J. Cancer 2016, 114, 1199–1205. [Google Scholar] [CrossRef]
- Viallard, C.; Chezal, J.-M.; Mishellany, F.; Ranchon-Cole, I.; Pereira, B.; Herbette, A.; Besse, S.; Boudhraa, Z.; Jacquemot, N.; Cayre, A.; et al. Targeting DNA Repair by coDbait Enhances Melanoma Targeted Radionuclide Therapy. Oncotarget 2016, 7, 12927–12936. [Google Scholar] [CrossRef]
- Thivat, E.; Rouanet, J.; Auzeloux, P.; Sas, N.; Jouberton, E.; Levesque, S.; Billoux, T.; Mansard, S.; Molnar, I.; Chanchou, M.; et al. Phase I Study of [131I] ICF01012, a Targeted Radionuclide Therapy, in Metastatic Melanoma: MELRIV-1 Protocol. BMC Cancer 2022, 22, 417. [Google Scholar] [CrossRef]
- Crabtree, H.G.; Cramer, W.; Murray, J.A. The Action of Radium on Cancer Cells. II.—Some Factors Determining the Susceptibility of Cancer Cells to Radium. Proc. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character 1997, 113, 238–250. [Google Scholar] [CrossRef]
- Gray, L.H.; Conger, A.D.; Ebert, M.; Hornsey, S.; Scott, O.C. The Concentration of Oxygen Dissolved in Tissues at the Time of Irradiation as a Factor in Radiotherapy. Br. J. Radiol. 1953, 26, 638–648. [Google Scholar] [CrossRef] [PubMed]
- D’Aguanno, S.; Mallone, F.; Marenco, M.; Del Bufalo, D.; Moramarco, A. Hypoxia-Dependent Drivers of Melanoma Progression. J. Exp. Clin. Cancer Res. 2021, 40, 159. [Google Scholar] [CrossRef]
- Hammond, E.M.; Asselin, M.-C.; Forster, D.; O’Connor, J.P.B.; Senra, J.M.; Williams, K.J. The Meaning, Measurement and Modification of Hypoxia in the Laboratory and the Clinic. Clin. Oncol. 2014, 26, 277–288. [Google Scholar] [CrossRef]
- Höckel, M.; Vaupel, P. Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. J. Natl. Cancer Inst. 2001, 93, 266–276. [Google Scholar] [CrossRef]
- Jeon, S.; Jeon, M.; Choi, S.; Yoo, S.; Park, S.; Lee, M.; Kim, I. Hypoxia in Skin Cancer: Molecular Basis and Clinical Implications. Int. J. Mol. Sci. 2023, 24, 4430. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, B.; Powell, M.B. Unique Transforming Properties of Notch1 in Human Melanocytes. Pigment. Cell Melanoma Res. 2009, 22, 702–703. [Google Scholar] [CrossRef]
- Lartigau, E.; Randrianarivelo, H.; Avril, M.F.; Margulis, A.; Spatz, A.; Eschwège, F.; Guichard, M. Intratumoral Oxygen Tension in Metastatic Melanoma. Melanoma Res. 1997, 7, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Kaanders, J.H.A.M.; Bussink, J.; van der Kogel, A.J. Clinical Studies of Hypoxia Modification in Radiotherapy. Semin. Radiat. Oncol. 2004, 14, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2021, 16, 1083–1102. [Google Scholar] [CrossRef] [PubMed]
- Tharmalingham, H.; Hoskin, P. Clinical Trials Targeting Hypoxia. Br. J. Radiol. 2019, 92, 20170966. [Google Scholar] [CrossRef]
- Rofstad, E.K.; Brustad, T. The Radiosensitizing Effect of Metronidazole and Misonidazole (Ro-07-0582) on a Human Malignant Melanoma Grown in the Athymic Mutant Nude Mouse. Br. J. Radiol. 1978, 51, 381–386. [Google Scholar] [CrossRef]
- Guichard, M.; Malaise, E.P. Radiosensitizing Effects of Misonidazole and SR 2508 on a Human Melanoma Transplanted in Nude Mice: Influence on Repair of Potentially Lethal Damage. Int. J. Radiat. Oncol. Biol. Phys. 1982, 8, 465–468. [Google Scholar] [CrossRef]
- el Gamoussi, R.; Stratford, I.J.; Guichard, M. Relationship between Intracellular Concentration and Radiosensitizing Effect of Pimonidazole and Etanidazole on Two Human Melanoma Cell Lines. Int. J. Radiat. Biol. 1993, 63, 27–36. [Google Scholar] [CrossRef]
- Buscà, R.; Berra, E.; Gaggioli, C.; Khaled, M.; Bille, K.; Marchetti, B.; Thyss, R.; Fitsialos, G.; Larribère, L.; Bertolotto, C.; et al. Hypoxia-Inducible Factor 1α Is a New Target of Microphthalmia-Associated Transcription Factor (MITF) in Melanoma Cells. J. Cell Biol. 2005, 170, 49–59. [Google Scholar] [CrossRef]
- Cairns, R.A.; Papandreou, I.; Sutphin, P.D.; Denko, N.C. Metabolic Targeting of Hypoxia and HIF1 in Solid Tumors Can Enhance Cytotoxic Chemotherapy. Proc. Natl. Acad. Sci. USA 2007, 104, 9445–9450. [Google Scholar] [CrossRef]
- Martí-Díaz, R.; Montenegro, M.F.; Cabezas-Herrera, J.; Goding, C.R.; Rodríguez-López, J.N.; Sánchez-del-Campo, L. Acriflavine, a Potent Inhibitor of HIF-1α, Disturbs Glucose Metabolism and Suppresses ATF4-Protective Pathways in Melanoma under Non-Hypoxic Conditions. Cancers 2021, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, M.P.; Marchbank, K.; Webster, M.R.; Valiga, A.A.; Kaur, A.; Vultur, A.; Li, L.; Herlyn, M.; Villanueva, J.; Liu, Q.; et al. Hypoxia Induces Phenotypic Plasticity and Therapy Resistance in Melanoma via the Tyrosine Kinase Receptors ROR1 and ROR2. Cancer Discov. 2013, 3, 1378–1393. [Google Scholar] [CrossRef] [PubMed]
- Giuntini, G.; Monaci, S.; Cau, Y.; Mori, M.; Naldini, A.; Carraro, F. Inhibition of Melanoma Cell Migration and Invasion Targeting the Hypoxic Tumor Associated CAXII. Cancers 2020, 12, 3018. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Li, X.-F. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front. Oncol. 2021, 11, 700407. [Google Scholar] [CrossRef]
- Zhang, M.; Stevens, G. Effect of Radiation and Tirapazamine (SR-4233) on Three Melanoma Cell Lines. Melanoma Res. 1998, 8, 510–515. [Google Scholar] [CrossRef]
- Liu, S.; Tetzlaff, M.T.; Wang, T.; Chen, X.; Yang, R.; Kumar, S.M.; Vultur, A.; Li, P.; Martin, J.S.; Herlyn, M.; et al. Hypoxia-Activated Prodrug Enhances Therapeutic Effect of Sunitinib in Melanoma. Oncotarget 2017, 8, 115140–115152. [Google Scholar] [CrossRef] [PubMed]
- Hegde, A.; Jayaprakash, P.; Couillault, C.A.; Piha-Paul, S.; Karp, D.; Rodon, J.; Pant, S.; Fu, S.; Dumbrava, E.E.; Yap, T.A.; et al. A Phase I Dose-Escalation Study to Evaluate the Safety and Tolerability of Evofosfamide in Combination with Ipilimumab in Advanced Solid Malignancies. Clin. Cancer Res. 2021, 27, 3050–3060. [Google Scholar] [CrossRef]
- Kumar, P.R.; Moore, J.A.; Bowles, K.M.; Rushworth, S.A.; Moncrieff, M.D. Mitochondrial Oxidative Phosphorylation in Cutaneous Melanoma. Br. J. Cancer 2021, 124, 115–123. [Google Scholar] [CrossRef]
- Huang, C.; Radi, R.H.; Arbiser, J.L. Mitochondrial Metabolism in Melanoma. Cells 2021, 10, 3197. [Google Scholar] [CrossRef]
- Neagu, M. Metabolic Traits in Cutaneous Melanoma. Front. Oncol. 2020, 10, 851. [Google Scholar] [CrossRef]
- Wu, L.; Hu, Z.; Huang, Y.; Yu, Y.; Liang, W.; Zheng, Q.; Huang, X.; Huang, Y.; Lu, X.; Zhao, Y. Radiation Changes the Metabolic Profiling of Melanoma Cell Line B16. PLoS ONE 2016, 11, e0162917. [Google Scholar] [CrossRef] [PubMed]
- Schiliro, C.; Firestein, B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef]
- Narayanankutty, A.; Job, J.T.; Narayanankutty, V. Glutathione, an Antioxidant Tripeptide: Dual Roles in Carcinogenesis and Chemoprevention. Curr. Protein Pept. Sci. 2019, 20, 907–917. [Google Scholar] [CrossRef]
- Lin, X.; Zheng, W.; Liu, J.; Zhang, Y.; Qin, H.; Wu, H.; Xue, B.; Lu, Y.; Shen, P. Oxidative Stress in Malignant Melanoma Enhances Tumor Necrosis Factor-α Secretion of Tumor-Associated Macrophages That Promote Cancer Cell Invasion. Antioxid. Redox Signal. 2013, 19, 1337–1355. [Google Scholar] [CrossRef]
- Cen, D.; Gonzalez, R.I.; Buckmeier, J.A.; Kahlon, R.S.; Tohidian, N.B.; Meyskens, F.L. Disulfiram Induces Apoptosis in Human Melanoma Cells: A Redox-Related Process. Mol. Cancer Ther. 2002, 1, 197–204. [Google Scholar]
- Gellert, J.; Agardy, D.A.; Kumar, S.; Kourtesakis, A.; Boschert, T.; Jähne, K.; Breckwoldt, M.O.; Bunse, L.; Wick, W.; Davies, M.A.; et al. Tumoral Interferon Beta Induces an Immune-Stimulatory Phenotype in Tumor-Associated Macrophages in Melanoma Brain Metastases. Cancer Res. Commun. 2024, 4, 2189–2202. [Google Scholar] [CrossRef]
- Li, M.; Liu, D.; Lee, D.; Cheng, Y.; Baumhover, N.J.; Marks, B.M.; Sagastume, E.A.; Ballas, Z.K.; Johnson, F.L.; Morris, Z.S.; et al. Targeted Alpha-Particle Radiotherapy and Immune Checkpoint Inhibitors Induces Cooperative Inhibition on Tumor Growth of Malignant Melanoma. Cancers 2021, 13, 3676. [Google Scholar] [CrossRef]
- Spiotto, M.; Fu, Y.-X.; Weichselbaum, R.R. The Intersection of Radiotherapy and Immunotherapy: Mechanisms and Clinical Implications. Sci. Immunol. 2016, 1, eaag1266. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, B.; Li, B.; Wu, H.; Jiang, M. Cold and Hot Tumors: From Molecular Mechanisms to Targeted Therapy. Signal Transduct. Target. Ther. 2024, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Maleki Vareki, S. High and Low Mutational Burden Tumors versus Immunologically Hot and Cold Tumors and Response to Immune Checkpoint Inhibitors. J. Immunother. Cancer 2018, 6, 157. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 2016, 165, 35–44. [Google Scholar] [CrossRef]
- Hossain, S.M.; Gimenez, G.; Stockwell, P.A.; Tsai, P.; Print, C.G.; Rys, J.; Cybulska-Stopa, B.; Ratajska, M.; Harazin-Lechowska, A.; Almomani, S.; et al. Innate Immune Checkpoint Inhibitor Resistance Is Associated with Melanoma Sub-Types Exhibiting Invasive and de-Differentiated Gene Expression Signatures. Front. Immunol. 2022, 13, 955063. [Google Scholar] [CrossRef]
- Indini, A.; Massi, D.; Pirro, M.; Roila, F.; Grossi, F.; Sahebkar, A.; Glodde, N.; Bald, T.; Mandalà, M. Targeting Inflamed and Non-Inflamed Melanomas: Biological Background and Clinical Challenges. Semin. Cancer Biol. 2022, 86, 477–490. [Google Scholar] [CrossRef]
- Zaretsky, J.M.; Garcia-Diaz, A.; Shin, D.S.; Escuin-Ordinas, H.; Hugo, W.; Hu-Lieskovan, S.; Torrejon, D.Y.; Abril-Rodriguez, G.; Sandoval, S.; Barthly, L.; et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N. Engl. J. Med. 2016, 375, 819–829. [Google Scholar] [CrossRef]
- Tian, Y.; Kong, L.; Li, Y.; Liao, Z.; Cai, X.; Deng, S.; Yang, X.; Zhang, B.; Wang, Y.; Zhang, Z.; et al. Dipeptidyl Peptidase 4 Inhibition Sensitizes Radiotherapy by Promoting T Cell Infiltration. OncoImmunology 2023, 12, 2268257. [Google Scholar] [CrossRef]
- Yin, G.; Guo, W.; Huang, Z.; Chen, X. Efficacy of Radiotherapy Combined with Immune Checkpoint Inhibitors in Patients with Melanoma: A Systemic Review and Meta-Analysis. Melanoma Res. 2022, 32, 71–78. [Google Scholar] [CrossRef]
- Knispel, S.; Stang, A.; Zimmer, L.; Lax, H.; Gutzmer, R.; Heinzerling, L.; Weishaupt, C.; Pföhler, C.; Gesierich, A.; Herbst, R.; et al. Impact of a Preceding Radiotherapy on the Outcome of Immune Checkpoint Inhibition in Metastatic Melanoma: A Multicenter Retrospective Cohort Study of the DeCOG. J. Immunother. Cancer 2020, 8, e000395. [Google Scholar] [CrossRef] [PubMed]
- Spaas, M.; Sundahl, N.; Kruse, V.; Rottey, S.; De Maeseneer, D.; Duprez, F.; Lievens, Y.; Surmont, V.; Brochez, L.; Reynders, D.; et al. Checkpoint Inhibitors in Combination with Stereotactic Body Radiotherapy in Patients with Advanced Solid Tumors: The CHEERS Phase 2 Randomized Clinical Trial. JAMA Oncol. 2023, 9, 1205–1213. [Google Scholar] [CrossRef]
- Zhou, H.; Tu, C.; Yang, P.; Li, J.; Kepp, O.; Li, H.; Zhang, L.; Zhang, L.; Zhao, Y.; Zhang, T.; et al. Carbon Ion Radiotherapy Triggers Immunogenic Cell Death and Sensitizes Melanoma to Anti-PD-1 Therapy in Mice. Oncoimmunology 2022, 11, 2057892. [Google Scholar] [CrossRef] [PubMed]
- Marks, B.M.; Block, M.; Johnson, G.B.; Hruska, C.B.; Pandey, M.K.; Paulsen, A.; Schultz, M.K.; McDonald, M.A.; Sagastume, E.A.; Johnson, F.L. Abstract CT104: MC1R Imaging and Histology in the Targeted Imaging of Melanoma for Alpha-Particle Radiotherapy (TIMAR1) Trial. Cancer Res. 2023, 83, CT104. [Google Scholar] [CrossRef]
- Yu, J.; Green, M.D.; Li, S.; Sun, Y.; Journey, S.N.; Choi, J.E.; Rizvi, S.M.; Qin, A.; Waninger, J.J.; Lang, X.; et al. Liver Metastasis Restrains Immunotherapy Efficacy via Macrophage-Mediated T Cell Elimination. Nat. Med. 2021, 27, 152–164. [Google Scholar] [CrossRef]
- Yu, Y.; Shaverdian, N.; Barker, C.A.; Romesser, P.B.; Khan, A.J.; Bakhoum, S.F.; Riaz, N.; Powell, S.N.; Gomez, D.R.; Lee, N.Y. Effects of Liver Metastases and Liver-Metastasis-Directed Radiotherapy on Response to Immunotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, e472–e473. [Google Scholar] [CrossRef]
- Jagodinsky, J.C.; Jin, W.J.; Bates, A.M.; Hernandez, R.; Grudzinski, J.J.; Marsh, I.R.; Chakravarty, I.; Arthur, I.S.; Zangl, L.M.; Brown, R.J.; et al. Temporal Analysis of Type 1 Interferon Activation in Tumor Cells Following External Beam Radiotherapy or Targeted Radionuclide Therapy. Theranostics 2021, 11, 6120–6137. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Callahan, M.K.; Barker, C.A.; Yamada, Y.; Yuan, J.; Kitano, S.; Mu, Z.; Rasalan, T.; Adamow, M.; Ritter, E.; et al. Immunologic Correlates of the Abscopal Effect in a Patient with Melanoma. N. Engl. J. Med. 2012, 366, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Trommer, M.; Adams, A.; Celik, E.; Fan, J.; Funken, D.; Herter, J.M.; Linde, P.; Morgenthaler, J.; Wegen, S.; Mauch, C.; et al. Oncologic Outcome and Immune Responses of Radiotherapy with Anti-PD-1 Treatment for Brain Metastases Regarding Timing and Benefiting Subgroups. Cancers 2022, 14, 1240. [Google Scholar] [CrossRef] [PubMed]
- Meredith, P.; Sarna, T. The Physical and Chemical Properties of Eumelanin. Pigment. Cell Res. 2006, 19, 572–594. [Google Scholar] [CrossRef]
- Slominski, R.M.; Sarna, T.; Płonka, P.M.; Raman, C.; Brożyna, A.A.; Slominski, A.T. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496. [Google Scholar] [CrossRef]
- Chu, C.-N.; Hu, K.-C.; Wu, R.S.-C.; Bau, D.-T. Radiation-Irritated Skin and Hyperpigmentation May Impact the Quality of Life of Breast Cancer Patients after Whole Breast Radiotherapy. BMC Cancer 2021, 21, 330. [Google Scholar] [CrossRef]
- Herraiz, C.; Martínez-Vicente, I.; Maresca, V. The α-Melanocyte-Stimulating Hormone/Melanocortin-1 Receptor Interaction: A Driver of Pleiotropic Effects beyond Pigmentation. Pigment. Cell Melanoma Res. 2021, 34, 748–761. [Google Scholar] [CrossRef]
- Kadekaro, A.L.; Leachman, S.; Kavanagh, R.J.; Swope, V.; Cassidy, P.; Supp, D.; Sartor, M.; Schwemberger, S.; Babcock, G.; Wakamatsu, K.; et al. Melanocortin 1 Receptor Genotype: An Important Determinant of the Damage Response of Melanocytes to Ultraviolet Radiation. FASEB J. 2010, 24, 3850–3860. [Google Scholar] [CrossRef]
- Kinnaert, E.; Morandini, R.; Simon, S.; Hill, H.Z.; Ghanem, G.; Houtte, P.V. The Degree of Pigmentation Modulates the Radiosensitivity of Human Melanoma Cells. Radiat. Res. 2000, 154, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Pak, B.J.; Lee, J.; Thai, B.L.; Fuchs, S.Y.; Shaked, Y.; Ronai, Z.; Kerbel, R.S.; Ben-David, Y. Radiation Resistance of Human Melanoma Analysed by Retroviral Insertional Mutagenesis Reveals a Possible Role for Dopachrome Tautomerase. Oncogene 2004, 23, 30–38. [Google Scholar] [CrossRef]
- Kinnaert, E.; Duez, P.; Morandini, R.; Dubois, J.; Van Houtte, P.; Ghanem, G. Cysteine but Not Glutathione Modulates the Radiosensitivity of Human Melanoma Cells by Affecting Both Survival and DNA Damage. Pigment. Cell Res. 2004, 17, 275–280. [Google Scholar] [CrossRef]
- Lee, E.-A.; Park, B.Y.; Kang, N.; Park, C.H.; Lee, W.S. Abstract 5970: Tumor Vessel Normalization by a Novel Anti-TIE2 Antibody PMC-403 Enhances the Effectiveness of Radiation Therapy on Cancer Therapy. Cancer Res. 2022, 82, 5970. [Google Scholar] [CrossRef]
- Barker, C.A.; Postow, M.A.; Khan, S.A.; Beal, K.; Parhar, P.K.; Yamada, Y.; Lee, N.Y.; Wolchok, J.D. Concurrent Radiotherapy and Ipilimumab Immunotherapy for Patients with Melanoma. Cancer Immunol. Res. 2013, 1, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Mireștean, C.C.; Iancu, R.I.; Iancu, D.T. Radiotherapy and Immunotherapy—A Future Partnership towards a New Standard. Appl. Sci. 2023, 13, 5643. [Google Scholar] [CrossRef]
- Capaccione, K.M.; Doubrovin, M.; Braumuller, B.; Leibowitz, D.; Bhatt, N.; Momen-Heravi, F.; Molotkov, A.; Kissner, M.; Goldner, K.; Soffing, M.; et al. Evaluating the Combined Anticancer Response of Checkpoint Inhibitor Immunotherapy and FAP-Targeted Molecular Radiotherapy in Murine Models of Melanoma and Lung Cancer. Cancers 2022, 14, 4575. [Google Scholar] [CrossRef]
- Postow, M.A.; Knox, S.J.; Goldman, D.A.; Elhanati, Y.; Mavinkurve, V.; Wong, P.; Halpenny, D.; Reddy, S.K.; Vado, K.; McCabe, D.; et al. A Prospective, Phase 1 Trial of Nivolumab, Ipilimumab, and Radiotherapy in Patients with Advanced Melanoma. Clin. Cancer Res. 2020, 26, 3193–3201. [Google Scholar] [CrossRef]
- Blank, C.U.; Lucas, M.W.; Scolyer, R.A.; van de Wiel, B.A.; Menzies, A.M.; Lopez-Yurda, M.; Hoeijmakers, L.L.; Saw, R.P.M.; Lijnsvelt, J.M.; Maher, N.G.; et al. Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma. N. Engl. J. Med. 2024, 391, 1696–1708. [Google Scholar] [CrossRef]
- Mandalà, M.; Lorigan, P.; Sergi, M.C.; Benannoune, N.; Serra, P.; Vitale, M.G.; Giannarelli, D.; Arance, A.M.; Couselo, E.M.; Neyns, B.; et al. Combined Immunotherapy in Melanoma Patients with Brain Metastases: A Multicenter International Study. Eur. J. Cancer 2024, 199, 113542. [Google Scholar] [CrossRef] [PubMed]
- Davidson, T.M.; Foster, N.; Lucien, F.; Markovic, S.; Dong, H.; Winters, J.L.; Park, S.S.; Orme, J.J. Rescuing Cancer Immunity by Plasma Exchange in Metastatic Melanoma (ReCIPE-M1): Protocol for a Single-Institution, Open-Label Safety Trial of Plasma Exchange to Clear sPD-L1 for Immunotherapy. BMJ Open 2022, 12, e050112. [Google Scholar] [CrossRef]
- Orme, J.J.; Zhang, H.; Lingamaneni, P.; Kim, Y.; Lavoie, R.; Dorr, M.; Dizona, P.; Hirdler, J.; Bering, E.A.; Gicobi, J.K.; et al. Plasma Exchange and Radiation Resensitize Immunotherapy-Refractory Melanoma: A Phase I Trial. Nat. Commun. 2025, 16, 2507. [Google Scholar] [CrossRef]
- D’Andrea, M.A.; Reddy, G.K. Systemic Antitumor Effects and Abscopal Responses in Melanoma Patients Receiving Radiation Therapy. Oncology 2020, 98, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Pangal, D.J.; Yarovinsky, B.; Cardinal, T.; Cote, D.J.; Ruzevick, J.; Attenello, F.J.; Chang, E.L.; Ye, J.; Neman, J.; Chow, F.; et al. The Abscopal Effect: Systematic Review in Patients with Brain and Spine Metastases. Neuro-Oncol. Adv. 2022, 4, vdac132. [Google Scholar] [CrossRef]
- Bonnen, M.D.; Ballo, M.T.; Myers, J.N.; Garden, A.S.; Diaz, E.M., Jr.; Gershenwald, J.E.; Morrison, W.H.; Lee, J.E.; Oswald, M.J.; Ross, M.I.; et al. Elective Radiotherapy Provides Regional Control for Patients with Cutaneous Melanoma of the Head and Neck. Cancer 2004, 100, 383–389. [Google Scholar] [CrossRef]
- Fogarty, G.B. Adjuvant Radiation Therapy in Macroscopic Regional Nodal Melanoma. Cancers 2024, 16, 3950. [Google Scholar] [CrossRef]
- Melzig, C.; Golestaneh, A.F.; Mier, W.; Schwager, C.; Das, S.; Schlegel, J.; Lasitschka, F.; Kauczor, H.-U.; Debus, J.; Haberkorn, U.; et al. Combined External Beam Radiotherapy with Carbon Ions and Tumor Targeting Endoradiotherapy. Oncotarget 2018, 9, 29985–30004. [Google Scholar] [CrossRef]
- Greene, D.P.; Shield, D.R.; Shields, C.L.; Shields, J.A.; Servat, J.J.; Lin, C.J.; Douglass, A.M.; Fulco, E.A.; Levin, F. Cutaneous Melanoma Metastatic to the Orbit: Review of 15 Cases. Ophthal. Plast. Reconstr. Surg. 2014, 30, 233. [Google Scholar] [CrossRef] [PubMed]
- Kasakovski, D.; Skrygan, M.; Gambichler, T.; Susok, L. Advances in Targeting Cutaneous Melanoma. Cancers 2021, 13, 2090. [Google Scholar] [CrossRef]
- Liew, D.N.; Kano, H.; Kondziolka, D.; Mathieu, D.; Niranjan, A.; Flickinger, J.C.; Kirkwood, J.M.; Tarhini, A.; Moschos, S.; Lunsford, L.D. Outcome Predictors of Gamma Knife Surgery for Melanoma Brain Metastases. J. Neurosurg. 2011, 114, 769–779. [Google Scholar] [CrossRef]
- Khan, M.; Lin, J.; Liao, G.; Tian, Y.; Liang, Y.; Li, R.; Liu, M.; Yuan, Y. SRS in Combination With Ipilimumab: A Promising New Dimension for Treating Melanoma Brain Metastases. Technol. Cancer Res. Treat. 2018, 17, 1533033818798792. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.L.; Selek, U.; Hassenbusch, S.J.I.; Maor, M.H.; Allen, P.K.; Mahajan, A.; Sawaya, R.; Woo, S.Y. Outcome Variation among “Radioresistant” Brain Metastases Treated with Stereotactic Radiosurgery. Neurosurgery 2005, 56, 936. [Google Scholar] [CrossRef] [PubMed]
- Coderre, J.A.; Kalef-Ezra, J.A.; Fairchild, R.G.; Micca, P.L.; Reinstein, L.E.; Glass, J.D. Boron Neutron Capture Therapy of a Murine Melanoma. Cancer Res. 1988, 48, 6313–6316. [Google Scholar]
- Yong, Z.; Song, Z.; Zhou, Y.; Liu, T.; Zhang, Z.; Zhao, Y.; Chen, Y.; Jin, C.; Chen, X.; Lu, J.; et al. Boron Neutron Capture Therapy for Malignant Melanoma: First Clinical Case Report in China. Chin. J. Cancer Res. 2016, 28, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Sauerwein, W.A.G.; Sancey, L.; Hey-Hawkins, E.; Kellert, M.; Panza, L.; Imperio, D.; Balcerzyk, M.; Rizzo, G.; Scalco, E.; Herrmann, K.; et al. Theranostics in Boron Neutron Capture Therapy. Life 2021, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.M.; Dagan, R.; Holtzman, A.L.; Fernandes, R.; Bunnell, A.; Mendenhall, W.M. Passively Scattered Proton Therapy for Nonmelanoma Skin Cancer with Clinical Perineural Invasion. Int. J. Part. Ther. 2021, 8, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Han, J.E.; Lozano, A.; Hasan, S.; Choi, J.I.; Chhabra, A.M.; Tsai, H.; Mohammed, N.; Patel, S.; Katz, S.; Chang, J.H.; et al. Proton Therapy Outcomes for Head and Neck Cutaneous Melanoma: Proton Collaborative Group Analysis. Int. J. Part. Ther. 2022, 9, 40–48. [Google Scholar] [CrossRef]
- Saiag, P.; Molinier, R.; Roger, A.; Boru, B.; Otmezguine, Y.; Otz, J.; Valery, C.-A.; Blom, A.; Longvert, C.; Beauchet, A.; et al. Efficacy of Large Use of Combined Hypofractionated Radiotherapy in a Cohort of Anti-PD-1 Monotherapy-Treated Melanoma Patients. Cancers 2022, 14, 4069. [Google Scholar] [CrossRef]
- Okuma, T.; Furudate, S.; Kambayashi, Y.; Hashimoto, A.; Aiba, S.; Fujimura, T. Successful Treatment of BRAF/MEK Inhibitor-Resistant Advanced Cutaneous Melanoma with Nivolumab plus Ipilimumab Combination Therapy Followed by Intensity-Modulated Radiotherapy. J. Dermatol. 2021, 48, 1419–1422. [Google Scholar] [CrossRef]
- Krayem, M.; Sabbah, M.; Najem, A.; Wouters, A.; Lardon, F.; Simon, S.; Sales, F.; Journe, F.; Awada, A.; Ghanem, G.E.; et al. The Benefit of Reactivating P53 under MAPK Inhibition on the Efficacy of Radiotherapy in Melanoma. Cancers 2019, 11, 1093. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Palomo, C.; Trappetti, V.; Potez, M.; Pellicioli, P.; Krisch, M.; Laissue, J.; Djonov, V. Complete Remission of Mouse Melanoma after Temporally Fractionated Microbeam Radiotherapy. Cancers 2020, 12, 2656. [Google Scholar] [CrossRef]
- Kirova, Y.M.; Chen, J.; Rabarijaona, L.I.; Piedbois, Y.; Le Bourgeois, J.-P. Radiotherapy as Palliative Treatment for Metastatic Melanoma. Melanoma Res. 1999, 9, 611. [Google Scholar] [CrossRef]
- Khan, M.K.; Khan, N.; Almasan, A.; Macklis, R. Future of Radiation Therapy for Malignant Melanoma in an Era of Newer, More Effective Biological Agents. OncoTargets Ther. 2011, 4, 137–148. [Google Scholar] [CrossRef]
- Lee, J.; Chang, J.S.; Roh, M.R.; Jung, M.; Lee, C.-K.; Oh, B.H.; Chung, K.Y.; Koom, W.S.; Shin, S.J. Clinical Outcomes of Immune Checkpoint Blocker Therapy for Malignant Melanoma in Korean Patients: Potential Clinical Implications for a Combination Strategy Involving Radiotherapy. Cancer Res. Treat. 2020, 52, 730–738. [Google Scholar] [CrossRef]
- Twyman-Saint Victor, C.; Rech, A.J.; Maity, A.; Rengan, R.; Pauken, K.E.; Stelekati, E.; Benci, J.L.; Xu, B.; Dada, H.; Odorizzi, P.M.; et al. Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature 2015, 520, 373–377. [Google Scholar] [CrossRef]
- Merlino, G.; Flaherty, K.; Acquavella, N.; Day, C.-P.; Aplin, A.; Holmen, S.; Topalian, S.; Van Dyke, T.; Herlyn, M. Meeting Report: The Future of Preclinical Mouse Models in Melanoma Treatment Is Now. Pigment. Cell Melanoma Res. 2013, 26, E8–E14. [Google Scholar] [CrossRef]
- Rebecca, V.W.; Somasundaram, R.; Herlyn, M. Pre-Clinical Modeling of Cutaneous Melanoma. Nat. Commun. 2020, 11, 2858. [Google Scholar] [CrossRef] [PubMed]
- Algazi, A.; Soon, C.; Daud, A. Cancer Management and Research Dovepress Treatment of Cutaneous Melanoma: Current Approaches and Future Prospects. Cancer Manag. Res. 2010, 2, 197–211. [Google Scholar] [PubMed]
- Fang, L. Research Progress and Future Prospects of Three Oncolytic Viruses in the Treatment of Melanoma. Trans. Mater. Biotechnol. Life Sci. 2024, 5, 20–25. [Google Scholar] [CrossRef]
- Shafren, D.R.; Au, G.G.; Nguyen, T.; Newcombe, N.G.; Haley, E.S.; Beagley, L.; Johansson, E.S.; Hersey, P.; Barry, R.D. Systemic Therapy of Malignant Human Melanoma Tumors by a Common Cold-Producing Enterovirus, Coxsackievirus A21. Clin. Cancer Res. 2004, 10, 53–60. [Google Scholar] [CrossRef]
- Schwertner, B.; Lindner, G.; Toledo Stauner, C.; Klapproth, E.; Magnus, C.; Rohrhofer, A.; Gross, S.; Schuler-Thurner, B.; Öttl, V.; Feichtgruber, N.; et al. Nectin-1 Expression Correlates with the Susceptibility of Malignant Melanoma to Oncolytic Herpes Simplex Virus In Vitro and In Vivo. Cancers 2021, 13, 3058. [Google Scholar] [CrossRef]
- Donnelly, O.; Harrington, K.; Melcher, A.; Pandha, H. Live Viruses to Treat Cancer. J. R. Soc. Med. 2013, 106, 310–314. [Google Scholar] [CrossRef]
- Jiang, Z.; He, J.; Zhang, B.; Wang, L.; Long, C.; Zhao, B.; Yang, Y.; Du, L.; Luo, W.; Hu, J.; et al. A Potential “Anti-Warburg Effect” in Circulating Tumor Cell-Mediated Metastatic Progression? Aging Dis. 2024, 16, 269–282. [Google Scholar] [CrossRef]
- Bafaloukos, D.; Gazouli, I.; Koutserimpas, C.; Samonis, G. Evolution and Progress of mRNA Vaccines in the Treatment of Melanoma: Future Prospects. Vaccines 2023, 11, 636. [Google Scholar] [CrossRef] [PubMed]
- Bidram, M.; Zhao, Y.; Shebardina, N.G.; Baldin, A.V.; Bazhin, A.V.; Ganjalikhany, M.R.; Zamyatnin, A.A.; Ganjalikhani-hakemi, M. mRNA-Based Cancer Vaccines: A Therapeutic Strategy for the Treatment of Melanoma Patients. Vaccines 2021, 9, 1060. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Brockstedt, D.G.; Lord, E.M.; Gerber, S.A. Radiation Therapy Combined with Listeria Monocytogenes-Based Cancer Vaccine Synergize to Enhance Tumor Control in the B16 Melanoma Model. Oncoimmunology 2014, 3, e29028. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Mu, S.; Wang, Y.; Yu, S.; Wang, Z. Recent Advances in Immunotherapy and Its Combination Therapies for Advanced Melanoma: A Review. Front. Oncol. 2024, 14, 1400193. [Google Scholar] [CrossRef]
- Wilgenhof, S.; Van Nuffel, A.M.T.; Corthals, J.; Heirman, C.; Tuyaerts, S.; Benteyn, D.; De Coninck, A.; Van Riet, I.; Verfaillie, G.; Vandeloo, J.; et al. Therapeutic Vaccination with an Autologous mRNA Electroporated Dendritic Cell Vaccine in Patients with Advanced Melanoma. J. Immunother. 2011, 34, 448. [Google Scholar] [CrossRef]
- Arance Fernandez, A.M.; Baurain, J.-F.; Vulsteke, C.; Rutten, A.; Soria, A.; Carrasco, J.; Neyns, B.; De Keersmaecker, B.; Van Assche, T.; Lindmark, B. A Phase I Study (E011-MEL) of a TriMix-Based mRNA Immunotherapy (ECI-006) in Resected Melanoma Patients: Analysis of Safety and Immunogenicity. J. Clin. Oncol. 2019, 37, 2641. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Xu, Z.; Miao, L.; Huang, L. mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Mol. Ther. 2018, 26, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Khattak, A.; Weber, J.S.; Meniawy, T.; Taylor, M.H.; Ansstas, G.; Kim, K.B.; McKean, M.; Long, G.V.; Sullivan, R.J.; Faries, M.B.; et al. Distant Metastasis-Free Survival Results from the Randomized, Phase 2 mRNA-4157-P201/KEYNOTE-942 Trial. J. Clin. Oncol. 2023, 41, LBA9503. [Google Scholar] [CrossRef]
- Cao, Y.; Ding, S.; Hu, Y.; Zeng, L.; Zhou, J.; Lin, L.; Zhang, X.; Ma, Q.; Cai, R.; Zhang, Y.; et al. An Immunocompetent Hafnium Oxide-Based STING Nanoagonist for Cancer Radio-Immunotherapy. ACS Nano 2024, 18, 4189–4204. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Lan, G.; Chan, C.; Quigley, B.; Lu, K.; Aung, T.; Guo, N.; La Riviere, P.; Weichselbaum, R.R.; Lin, W. Nanoscale Metal-Organic Frameworks Enhance Radiotherapy to Potentiate Checkpoint Blockade Immunotherapy. Nat. Commun. 2018, 9, 2351. [Google Scholar] [CrossRef]
Modulator/Agent | Mechanism of Action | Stage of Research | References |
---|---|---|---|
Peposertib | DNA-PKcs | Preclinical | [148] |
CC-115 | mTOR, DNA-PK | Preclinical | [149] |
Olaparib | PARP-1 | Clinical | [150,151,152] |
AZD-6738 | PARP-1 | Preclinical | [152] |
Prexasertib | CHK1 | Preclinical | [153] |
Sodium butyrate | HDAC | Preclinical | [154] |
Ceralasertib | ATR | Clinical Phase II | [155] |
Durvalumab | PD-L1 | Clinical Phase II | [155] |
Navtemadlin | MDM2/p53 | Preclinical/Clinical Phase II | [172] |
DT01 | Dbait | Preclinical/Clinical Phase I | [174,175] |
[131I]ICF01012 | coDbait | Preclinical/Clinical Phase I | [176,177] |
Misonidazole | Hypoxia | Preclinical | [189] |
Etanidazole | Hypoxia | Preclinical | [191] |
Acriflavine | HIF-1α | Preclinical | [194] |
Tirapazamine | Hypoxia | Preclinical | [198] |
TH-302 | Hypoxia | Preclinical | [199] |
Evofosfamide | Hypoxia | Preclinical/Clinical Phase I | [200] |
Buthionine sulfoximine | γGCS | Preclinical | [208] |
Type I IFN Inducers | Immune | Preclinical | [209] |
[212Pb]VMT01 | MC1R-targeted radiopeptide | Preclinical | [210] |
Name | Type of Trial | Disease | Radiotherapy Scheme | Systemic Treatment | Patients | Reference |
---|---|---|---|---|---|---|
Published Trials | ||||||
A Prospective, Phase I Trial of Nivolumab, Ipilimumab, and Radiotherapy in Patients with Advanced Melanoma | Phase I, non-randomized | Metastatic melanoma | 30 Gy, 10 fractions 27 Gy, 3 fractions | Nivolumab, ipilimumab | 20 patients | [242] |
Phase I Study of [131I] ICF01012, a Targeted Radionuclide Therapy (MELRIV-1) | An open-label, multicentric, dose-escalation phase I trial | Pigmented metastatic melanoma | Targeted radionuclide therapy, escalating doses of a radiolabeled compound [131I]ICF01012 | 36 patients | [177] | |
The CHEERS Phase II Randomized Clinical Trial | An open-label, multicenter, randomized phase II trial | Locally advanced or metastatic melanoma | SBRT, 8 Gy, 3 fractions | ICI: Nivolumab, pembrolizumab, atezolizumab | 24 patients | [222] |
Targeted Imaging of Melanoma for Alpha-Particle Radiotherapy (TIMAR1) | Phase I | Advanced melanoma | [203Pb]VMT01 [68Ga]VMT02 | 7 patients | [224] | |
Combined Immunotherapy in Melanoma Patients with Brain Metastases: A Multicenter International Study | Not specified | Melanoma brain metastases | Not specified | Ipilimumab, nivolumab | 376 patients | [244] |
Radiation Therapy, Plasma Exchange, and Immunotherapy (Pembrolizumab or Nivolumab) for the Treatment of Melanoma | Phase I | Melanoma | 40 Gy, 5 fractions | Nivolumab, pembrolizumab | 18 patients | [245,246] |
Planned Trials (with unpublished results) | ||||||
Anti-PD 1 Brain Collaboration + Radiotherapy Extension (ABC-X Study) (ABC-X) | Phase II, randomized | Melanoma brain metastases | Stereotactic radiotherapy from 16 to 22 Gy in 1 fraction or from 24 to 30 Gy, hypofractionated for larger lesions | Ipilimumab, nivolumab | 218 patients | NCT03340129 Start 08/2019 |
Precision Radiation of Immune Checkpoint Therapy Resistant Melanoma Metastases (PROMMEL) | Phase II | Immune checkpoint-resistant melanoma metastases | Not specified | PD-1 inhibitor | 27 patients | NCT04793737 Start 03/2021 |
Irradiation of Melanoma in a Pulse (IMPulse) | Phase I, non-randomized | Skin metastases of melanoma | 7 dose levels (22 Gy, 24 Gy, 26 Gy, 28 Gy, 30 Gy, 32 Gy, and 34 Gy) | None | 46 patients | NCT04986696 Start 07/2021 |
Nodal Radiation Therapy for Sentinel Lymph Node Positive Melanoma (MelPORT) | Phase II, randomized | Sentinel lymph node-positive melanoma | 30 Gy, 5 fractions | Nivolumab, pembrolizumab | 168 patients | NCT04594187 Start 08/2021 |
PD-1 Inhibitors with or without Radiation in Advanced Melanoma | Phase II, randomized | Advanced melanoma | Not specified | PD-1 inhibitor | 92 patients | NCT05498805 Start 08/2022 |
Stereotactic Ablative Radiotherapy (XRT) and Immunotherapy for Oligometastatic Extracranial Melanoma (AXIOM) | Phase II, randomized | Metastatic melanoma | 48 Gy, 10 fractions | Immunotherapy | 129 patients | NCT06767306 Start 04/2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorodetska, I.; Schulz, A.; Behre, G.; Dubrovska, A. Confronting Melanoma Radioresistance: Mechanisms and Therapeutic Strategies. Cancers 2025, 17, 2648. https://doi.org/10.3390/cancers17162648
Gorodetska I, Schulz A, Behre G, Dubrovska A. Confronting Melanoma Radioresistance: Mechanisms and Therapeutic Strategies. Cancers. 2025; 17(16):2648. https://doi.org/10.3390/cancers17162648
Chicago/Turabian StyleGorodetska, Ielizaveta, Alexander Schulz, Gerhard Behre, and Anna Dubrovska. 2025. "Confronting Melanoma Radioresistance: Mechanisms and Therapeutic Strategies" Cancers 17, no. 16: 2648. https://doi.org/10.3390/cancers17162648
APA StyleGorodetska, I., Schulz, A., Behre, G., & Dubrovska, A. (2025). Confronting Melanoma Radioresistance: Mechanisms and Therapeutic Strategies. Cancers, 17(16), 2648. https://doi.org/10.3390/cancers17162648