Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (326)

Search Parameters:
Keywords = site-specific crop management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6625 KiB  
Article
Management Zones for Irrigated and Rainfed Grain Crops Based on Data Layer Integration
by Luiz Gustavo de Góes Sterle and José Paulo Molin
Agronomy 2025, 15(8), 1864; https://doi.org/10.3390/agronomy15081864 - 31 Jul 2025
Viewed by 189
Abstract
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and [...] Read more.
This study investigates the delineation of management zones (MZs) to support site-specific crop management by simplifying within-field variability in irrigated (54.6 ha) and rainfed (7.9 ha) sorghum and soybean fields in Brazil. Historical yield, apparent soil electrical conductivity (ECa) at 0.75 m and 1.50 m, and terrain data were analyzed using multivariate statistics to define MZs. Two clustering methods—fuzzy c-means (FCM) and hierarchical clustering—were compared for variance reduction effectiveness. Rainfed areas showed greater spatial variability (yield CV 9–12%; ECa CV 20–27%) than irrigated fields (yield CV < 7%; ECa CV ~5%). Principal component analysis (PCA) identified subsoil ECa and elevation as key variables in irrigated fields, while surface ECa and topography influenced rainfed variability. FCM produced more homogeneous zones with fewer classes, especially in irrigated fields, whereas hierarchical clustering better detected outliers but required more zones for similar variance reduction. Yield correlated strongly with slope and moisture in rainfed systems. These results emphasize aligning MZ delineation with production system characteristics—enabling variable rate irrigation in irrigated fields and promoting moisture conservation in rainfed systems. FCM is recommended for operational efficiency, while hierarchical clustering offers higher precision in complex contexts. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

16 pages, 950 KiB  
Article
Survey of Weed Flora Diversity as a Starting Point for the Development of a Weed Management Strategy for Medicinal Crops in Pančevo, Serbia
by Dragana Božić, Ana Dragumilo, Tatjana Marković, Urban Šilc, Svetlana Aćić, Teodora Tojić, Miloš Rajković and Sava Vrbničanin
Horticulturae 2025, 11(8), 882; https://doi.org/10.3390/horticulturae11080882 (registering DOI) - 31 Jul 2025
Viewed by 148
Abstract
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for [...] Read more.
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for developing effective, site-specific weed management strategies in medicinal crop production. Weeds in five medicinal crops (lemon balm, fennel, peppermint, ribwort plantain, German chamomile), were surveyed based on the agro-phytosociological method between 2019 and 2024, and across 59 plots. A total of 109 weed species were recorded, belonging to 29 families and 88 genera. Among them, 75 were annuals and 34 perennials, including 93 broadleaved species, 10 grasses, and one parasitic species. All surveyed plots were heavily infested with perennial weeds such as Elymus repens, Cirsium arvense, Convolvulus arvensis, Lepidium draba, Rumex crispus, Sorghum halepense, Taraxacum officinale, etc. Also, several annual species were found in high abundance and frequency, including Amaranthus retroflexus, Chenopodium album, Galium aparine, Lactuca serriola, Lamium amplexicaule, L. purpureum, Papaver rhoeas, Stellaria media, Veronica hederifolia, V. persica, etc. The most important ecological factors influencing the composition of weed vegetation in investigated medicinal crops were temperature and light for fennel and peppermint plots, soil reaction for lemon balm and ribwort plantain plots, and nutrient content for German chamomile plots. A perspective for exploitation of these results is the development of effective weed control programs tailored to this specific cropping system. Weed control strategies should consider such information, targeting the control of the most frequent, abundant, and dominant species existing in a crops or locality. Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
Show Figures

Graphical abstract

32 pages, 1770 KiB  
Article
Regional Patterns in Weed Composition of Maize Fields in Eastern Hungary: The Balance of Environmental and Agricultural Factors
by Mihály Zalai, Erzsébet Tóth, János György Nagy and Zita Dorner
Agronomy 2025, 15(8), 1814; https://doi.org/10.3390/agronomy15081814 - 26 Jul 2025
Viewed by 437
Abstract
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to [...] Read more.
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to weed infestations, particularly before the application of spring herbicide treatments. Field investigations were conducted from 2018 to 2021 across selected maize-growing regions in Hungary. Over the four-year period, a total of 51 weed species were recorded, with Echinochloa crus-galli, Chenopodium album, Portulaca oleracea, and Hibiscus trionum emerging as the most prevalent taxa. Collectively, these four species accounted for more than half (52%) of the total weed cover. Altogether, the 20 most dominant species contributed 95% of the overall weed coverage. The analysis revealed that weed cover, species richness, and weed diversity were significantly affected by soil properties, nutrient levels, geographic location, and tillage systems. The results confirm that the composition of weed species was influenced by several environmental and management-related factors, including soil parameters, geographical location, annual precipitation, tillage method, and fertilizer application. Environmental factors collectively explained a slightly higher proportion of the variance (13.37%) than farming factors (12.66%) at a 90% significance level. Seasonal dynamics and crop rotation history also played a notable role in species distribution. Nutrient inputs, particularly nitrogen, phosphorus, and potassium, influenced both species diversity and floristic composition. Deep tillage practices favored the proliferation of perennial species, whereas shallow cultivation tended to promote annual weeds. Overall, the composition of weed vegetation proved to be a valuable indicator of site-specific soil conditions and agricultural practices. These findings underscore the need to tailor weed management strategies to local environmental and soil contexts for sustainable crop production. Full article
(This article belongs to the Special Issue State-of-the-Art Research on Weed Populations and Community Dynamics)
Show Figures

Figure 1

20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 244
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
18 pages, 947 KiB  
Article
Temporal Dynamics of Host Plant Use and Parasitism of Three Stink Bug Species: A Multi-Trophic Perspective
by Martina Falagiarda, Francesco Tortorici, Sara Bortolini, Martina Melchiori, Manfred Wolf and Luciana Tavella
Insects 2025, 16(7), 731; https://doi.org/10.3390/insects16070731 - 17 Jul 2025
Viewed by 495
Abstract
Stink bugs are widespread agricultural pests that damage crops and reduce yield. Their impact is influenced by host plant selection and interactions with natural enemies, particularly egg parasitoids. Understanding these relationships is crucial for improving biological control strategies. This paper investigates the seasonal [...] Read more.
Stink bugs are widespread agricultural pests that damage crops and reduce yield. Their impact is influenced by host plant selection and interactions with natural enemies, particularly egg parasitoids. Understanding these relationships is crucial for improving biological control strategies. This paper investigates the seasonal host plant use and parasitism of Halyomorpha halys, Palomena prasina, and Pentatoma rufipes in South Tyrol, Italy. Over two years, we conducted field surveys at 27 sites, recording stink bug presence across 85 plant species and analyzing egg parasitism rates. Results show that stink bugs exhibit distinct host plant preferences, with H. halys utilizing the broadest range of host plants while P. prasina and P. rufipes showed stronger affinities for specific families such as Sapindaceae and Rosaceae. Parasitism rates varied across species and plant families: Trissolcus japonicus predominantly parasitized H. halys while T. cultratus and two Telenomus species targeted P. rufipes and P. prasina, respectively. Spatial–temporal features and host plant associations significantly influenced species distributions and parasitoid occurrence. These findings emphasize the role of plant–insect interactions in shaping pest and parasitoid dynamics. Integrating plant diversity into pest management strategies could enhance parasitoid effectiveness and reduce stink bug populations, contributing to more sustainable agricultural practices. Full article
Show Figures

Figure 1

25 pages, 1275 KiB  
Review
Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts
by Yanga Mgxaji, Charles S. Mutengwa, Patrick Mukumba and Admire R. Dzvene
Agronomy 2025, 15(7), 1683; https://doi.org/10.3390/agronomy15071683 - 11 Jul 2025
Viewed by 345
Abstract
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient [...] Read more.
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient availability. It focuses on the sources and properties of BGS, its application methods, and their effects on the soil nutrient dynamics and crop productivity. The findings indicate that BGS improves the soil health and crop yields, offering an eco-friendly alternative to synthetic fertilizers, especially in resource-limited settings. Despite these benefits, research gaps persist, including the need for long-term field trials, the optimization of application strategies for sandy soils, and comprehensive economic evaluations. Additionally, concerns such as nutrient imbalances, phosphorus accumulation, and slurry composition variability must be addressed. This review recommends standardizing BGS nutrient profiling and adopting site-specific management practices to maximize its agronomic benefits and environmental safety. Integrating BGS into sustainable soil fertility programs could contribute significantly to achieving agricultural resilience and circular economy goals. Full article
Show Figures

Figure 1

15 pages, 10576 KiB  
Article
Mapping the Distribution of Viruses in Wild Apple Populations in the Southeast Region of Kazakhstan
by Nazym Kerimbek, Marina Khusnitdinova, Aisha Taskuzhina, Anastasiya Kapytina, Alexandr Pozharskiy, Abay Sagitov and Dilyara Gritsenko
Forests 2025, 16(7), 1119; https://doi.org/10.3390/f16071119 - 6 Jul 2025
Viewed by 358
Abstract
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild [...] Read more.
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild progenitor of Malus domestica, M. sieversii harbors a critical genetic diversity essential for apple breeding and conservation efforts. However, its natural populations are increasingly threatened by latent viral infection, which weakens trees, reduces reproduction, and hinders regeneration. In this study, the spread of apple chlorotic leaf spot virus (ACLSV) and apple stem pitting virus (ASPV) was documented in four wild apple populations, with detection rates of 50.2% and 42.2%, respectively. Mixed infections were observed in 28.8% of sampled trees. Apple stem grooving virus (ASGV) was detected exclusively in cultivated orchards, whereas apple mosaic virus (ApMV) and apple necrotic mosaic virus (ApNMV) were not found in either wild forests or cultivated orchards. Using Geographic Information System (GIS) technology, we developed the first spatial distribution maps of these viruses in wild apple forests in the Tian Shan region, revealing site-specific variation and infection rates. These results underscore the importance of monitoring viral infections in wild M. sieversii populations to preserve genetically valuable, virus-free germplasm critical for apple breeding, crop improvement, and sustainable orchard management. Full article
(This article belongs to the Special Issue Forest Pathogens: Detection, Diagnosis, and Control)
Show Figures

Figure 1

23 pages, 1900 KiB  
Article
Application of a Dynamic Exposure Population Toxicokinetic Model for Perfluorooctane Sulfonic Acid (PFOS) and Extension to Perfluorodecanoic Acid (PFDA) at a North American Beef Cattle Farm with a History of Biosolids Land Application
by Barbara A. Astmann, Antti T. Mikkonen, Thomas L. Simones, Meghan Flanagan, Duncan Pfaehler, Ivan Lenov and Andrew E. Smith
Toxics 2025, 13(7), 541; https://doi.org/10.3390/toxics13070541 - 27 Jun 2025
Viewed by 737
Abstract
Historical application of wastewater treatment sludge (biosolids) has introduced per- and polyfluoroalkyl substances (PFAS) into agricultural systems and led to contamination of crops and livestock. Previous work validated a dynamic exposure and population toxicokinetic (DE_PopTK) modeling approach for estimating perfluorooctane sulfonic acid (PFOS) [...] Read more.
Historical application of wastewater treatment sludge (biosolids) has introduced per- and polyfluoroalkyl substances (PFAS) into agricultural systems and led to contamination of crops and livestock. Previous work validated a dynamic exposure and population toxicokinetic (DE_PopTK) modeling approach for estimating perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) concentrations in cattle tissues at sites primarily dominated by water contamination. This work expands the efforts to validate the DE_PopTK model at a self-contained beef farm in Maine with PFAS exposures from feed grown on site where soil is contaminated from historical biosolids applications. The model is also extended to estimate perfluorodecanoic acid (PFDA) exposure and tissue levels. Farm-specific data were obtained to consider farm management practices, spatial variation of PFAS in soil, animal growth, and seasonal and annual variability in estimating daily exposures based on water, feed, and soil intake. A dynamic exposure pattern was observed as cattle accumulated PFAS while consuming feed grown on contaminated land and eliminated it while grazing on non-contaminated pastures. Model-estimated PFOS and PFDA levels in serum and muscle were in good agreement with biomonitoring data collected at the farm over a four-year period to reflect periods of accumulation and depuration, with the percentage error ranging from 16% to 73% when comparing modeled and measured data. Our findings demonstrated that understanding farm exposures and collecting site-specific data were integral to model performance. The model was applied to simulate management strategies and complement economic analyses to demonstrate that, with modifications to management practices, it is feasible for the farm to achieve lower PFOS and PFDA levels in beef and maintain economic viability despite elevated PFAS soil levels. Full article
Show Figures

Graphical abstract

22 pages, 4380 KiB  
Article
Utilization of Multisensor Satellite Data for Developing Spatial Distribution of Methane Emission on Rice Paddy Field in Subang, West Java
by Khalifah Insan Nur Rahmi, Parwati Sofan, Hilda Ayu Pratikasiwi, Terry Ayu Adriany, Dandy Aditya Novresiandi, Rendi Handika, Rahmat Arief, Helena Lina Susilawati, Wage Ratna Rohaeni, Destika Cahyana, Vidya Nahdhiyatul Fikriyah, Iman Muhardiono, Asmarhansyah, Shinichi Sobue, Kei Oyoshi, Goh Segami and Pegah Hashemvand Khiabani
Remote Sens. 2025, 17(13), 2154; https://doi.org/10.3390/rs17132154 - 23 Jun 2025
Viewed by 589
Abstract
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and [...] Read more.
Intergovernmental Panel on Climate Change (IPCC) guidelines have been standardized and widely used to calculate methane (CH4) emissions from paddy fields. The emission factor (EF) is a key parameter in these guidelines, and it is different for each location globally and regionally. However, limited studies have been conducted to measure locally specific EFs (EFlocal) through on-site assessments and modeling their spatial distribution effectively. This study aims to investigate the potential of multisensor satellite data to develop a spatial model of CH4 emission estimation on rice paddy fields under different water management practices, i.e., continuous flooding (CF) and alternate wetting and drying (AWD) in Subang, West Java, Indonesia. The model employed the national EF (EFnational) and EFlocal using the IPCC guidelines. In this study, we employed the multisensor satellite data to derive the key parameters for estimating CH4 emission, i.e., rice cultivation area, rice age, and EF. Optical high-resolution images were used to delineate the rice cultivation area, Sentinel-1 SAR imagery was used for identifying transplanting and harvesting dates for rice age estimation, and ALOS-2/PALSAR-2 was used to map the water regime for determining the scaling factor of the EF. The closed-chamber method has been used to measure the daily CH4 flux rate on the local sites. The results revealed spatial variability in CH4 emissions, ranging from 1–5 kg/crop/season to 20–30 kg/crop/season, depending on the water regime. Fields under CF exhibited higher CH4 emissions than those under AWD, underscoring the critical role of water management in mitigating CH4 emissions. This study demonstrates the feasibility of combining remote sensing data with the IPCC model to spatially estimate CH4 emissions, providing a robust framework for sustainable rice cultivation and greenhouse gas (GHG) mitigation strategies. Full article
Show Figures

Figure 1

13 pages, 1707 KiB  
Article
The Impact of Different Almond Orchard Management Practices in Hyper-Arid Ecosystems on Soil Microbial Communities
by Itaii Applebaum, Gil Eshel, Tirza Doniger and Yosef Steinberger
Land 2025, 14(6), 1281; https://doi.org/10.3390/land14061281 - 15 Jun 2025
Viewed by 395
Abstract
The use of service (cover) crops is widely practiced in soil agriculture due to their many benefits, including enhanced nutrient supply and improved soil health. Bacteria, as major decomposers of plant residues in the soil, play essential roles in nutrient cycling. This study [...] Read more.
The use of service (cover) crops is widely practiced in soil agriculture due to their many benefits, including enhanced nutrient supply and improved soil health. Bacteria, as major decomposers of plant residues in the soil, play essential roles in nutrient cycling. This study examined the impact of various almond orchard management practices on the soil microbial community composition in a hyper-arid ecosystem. High-throughput sequencing was used to compare the microbial communities in two adjacent almond orchards managed with either organic (ORG) or regenerative agriculture (RA) practices, alongside an uncultivated (UC) site. Notably, little is known about the responses of soil bacterial communities in hyper-arid regions to intercrop mulch from service crops. This study may offer insights into the ecological limits of the benefits of service crops in promoting soil health under extreme conditions. Our findings demonstrate that RA management can alter soil organic carbon levels and reshape microbial communities by increasing overall bacterial abundance and enriching specific keystone taxa. These changes may have significant implications for nutrient cycling processes in hyper-arid agroecosystems. Full article
Show Figures

Figure 1

20 pages, 6795 KiB  
Article
Spatial and Temporal Aspects of Fungicide Resistance in Venturia inaequalis (Apple Scab) Populations in Northern Germany
by Roland W. S. Weber, Rebekka Busch and Johanna Wesche
BioTech 2025, 14(2), 44; https://doi.org/10.3390/biotech14020044 - 5 Jun 2025
Viewed by 1084
Abstract
Venturia inaequalis, the cause of apple scab, readily develops resistance to fungicides with specific modes of action. Knowledge of the spatial and temporal pattern of resistance development is therefore relevant to fruit producers and their consultants. In the Lower Elbe region of [...] Read more.
Venturia inaequalis, the cause of apple scab, readily develops resistance to fungicides with specific modes of action. Knowledge of the spatial and temporal pattern of resistance development is therefore relevant to fruit producers and their consultants. In the Lower Elbe region of Northern Germany, a two-year survey based on a conidial germination test was conducted, examining fungicide resistance in 35 orchards under Integrated Pest Management (IPM), 16 orchards of susceptible cultivars as well as a further 12 orchards of scab-resistant (Vf) cultivars under organic management, and 34 abandoned or unmanaged sites. No evidence of resistance to SDHI compounds (fluopyram, fluxapyroxad) was found after >5 yr of their regular use. Resistance to anilinopyrimidines (cyprodinil, pyrimethanil) had disappeared 15 yr after its widespread occurrence. Isolates from a few IPM orchards showed a reduced sensitivity to dodine. Double resistance to the MBC compound thiophanate-methyl and the QoI trifloxystrobin was rare in V. inaequalis strains that had achieved breakage of Vf-resistance, but very common (>50%) on scab-susceptible cultivars in IPM, organic and abandoned orchards in the ‘Altes Land’ core area of the Lower Elbe region, and in IPM orchards in the periphery. We conclude that resistance to QoI and MBC fungicides is persistent even decades after their last use, and that the core area harbours a uniform population adapted to intensive crop protection, whereas isolated orchards in the periphery are colonised by discrete populations of V. inaequalis. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Graphical abstract

24 pages, 5633 KiB  
Article
Architectural Analysis for Novel Olive Crop Management
by Khouloud Annabi, Faouzi Haouala, AbdelKarim Hamrita, Rania Kouki, Foued Laabidi, Mokhtar Rejili, Samra Akef Bziouech and Mouna Mezghani Aïachi
Plants 2025, 14(11), 1707; https://doi.org/10.3390/plants14111707 - 3 Jun 2025
Viewed by 508
Abstract
Efficient fruit production, quality improvement, and timely harvesting are essential in olive cultivation, which requires optimised distribution and management of fruiting sites. This study aimed to support sustainable olive crop management by analysing the morphological characteristics of five cultivars (Chemlali, Chetoui [...] Read more.
Efficient fruit production, quality improvement, and timely harvesting are essential in olive cultivation, which requires optimised distribution and management of fruiting sites. This study aimed to support sustainable olive crop management by analysing the morphological characteristics of five cultivars (Chemlali, Chetoui, Koroneiki, Meski, and Picholine) under semi-arid Tunisian conditions. Through a detailed architectural analysis, we investigated the relationships between branching patterns, density, distribution of inflorescence and fruit sites, biometric traits (shoot length, internode number, and shoot dimensions), and geometric variability within each cultivar. Three trees per cultivar were analysed across three architectural units. The results showed marked architectural differences, highlighting the need for cultivar-specific strategies in planting, pruning, and orchard management. The distribution of shoots across botanical orders revealed unique branching patterns: Chemlali and Koroneiki showed thinner shoots and higher shoot density, reflecting strong apical dominance and their suitability for hyper-intensive systems. In addition, nonsignificant differences in long shoots’ insertion angles between Meski, Chetoui, and Koroneiki suggest compatibility for co-cultivation, facilitating mechanised maintenance and harvesting. Emphasis on inter-cultivar compatibility and architectural coherence is crucial for orchard design. These findings provide important insights for optimising orchard management practices to improve productivity, fruit quality, and operational efficiency. Full article
(This article belongs to the Special Issue Development of Woody Plants)
Show Figures

Graphical abstract

14 pages, 1284 KiB  
Article
Relationships Between Midday Stem Water Potential and Soil Water Content in Grapevines and Peach and Pear Trees
by José Manuel Mirás-Avalos and Emily Silva Araujo
Agronomy 2025, 15(5), 1257; https://doi.org/10.3390/agronomy15051257 - 21 May 2025
Viewed by 504
Abstract
Monitoring the water status of fruit orchards is required to optimize crop water management and determine irrigation scheduling. For this purpose, capacitance probes are commonly used to measure soil water content (θs). However, when these probes are not calibrated, the estimates [...] Read more.
Monitoring the water status of fruit orchards is required to optimize crop water management and determine irrigation scheduling. For this purpose, capacitance probes are commonly used to measure soil water content (θs). However, when these probes are not calibrated, the estimates of θs are, therefore, unreliable. Our objective was to relate the measurements of capacitance probes, without a site-specific calibration, with a reliable indicator of the water status (stem water potential at solar noon (Ψstem)) of rain-fed grapevines grown under contrasting soil management strategies (tillage and spontaneous vegetation) and of irrigated peach and pear trees. During the 2023 growing season, θs was monitored in a peach and a pear orchard and in a vineyard in northeast Spain using capacitance sensors at three depths: 0.15, 0.30, and 0.45 m. Correlation coefficients ranged from 0.75 to 0.87 in peach trees, from 0.53 to 0.56 in pear trees, and from 0.56 to 0.90 in grapevines, depending on soil depth. These relationships were significant for both peach trees and grapevines but not for pear trees. Under the conditions of this study, uncalibrated capacitance measurements of θs could be useful to assess grapevine and peach tree water status in real time but were limited for pear trees. Full article
Show Figures

Figure 1

21 pages, 6578 KiB  
Article
Canopy Transpiration Mapping in an Apple Orchard Using High-Resolution Airborne Spectral and Thermal Imagery with Weather Data
by Abhilash K. Chandel, Lav R. Khot, Claudio O. Stöckle, Lee Kalcsits, Steve Mantle, Anura P. Rathnayake and Troy R. Peters
AgriEngineering 2025, 7(5), 154; https://doi.org/10.3390/agriengineering7050154 - 14 May 2025
Viewed by 705
Abstract
Precision irrigation requires reliable estimates of crop evapotranspiration (ET) using site-specific crop and weather data inputs. Such estimates are needed at high resolutions which have been minimally explored for heterogeneous crops such as orchards. In addition, weather information for estimating ET is very [...] Read more.
Precision irrigation requires reliable estimates of crop evapotranspiration (ET) using site-specific crop and weather data inputs. Such estimates are needed at high resolutions which have been minimally explored for heterogeneous crops such as orchards. In addition, weather information for estimating ET is very often selected from sources that do not represent conditions like heterogeneous site-specific conditions. Therefore, a study was conducted to map geospatial ET and transpiration (T) of a high-density modern apple orchard using high-resolution aerial imagery, as well as to quantify the impact of site-specific weather conditions on the estimates. Five campaigns were conducted in the 2020 growing season to acquire small unmanned aerial system (UAS)-based thermal and multispectral imagery data. The imagery and open-field weather data (solar radiation, air temperature, wind speed, relative humidity, and precipitation) inputs were used in a modified energy balance (UASM-1 approach) extracted from the Mapping ET at High Resolution with Internalized Calibration (METRIC) model. Tree trunk water potential measurements were used as reference to evaluate T estimates mapped using the UASM-1 approach. UASM-1-derived T estimates had very strong correlations (Pearson correlation [r]: 0.85) with the ground-reference measurements. Ground reference measurements also had strong agreement with the reference ET calculated using the Penman–Monteith method and in situ weather data (r: 0.89). UASM-1-based ET and T estimates were also similar to conventional Landsat-METRIC (LM) and the standard crop coefficient approaches, respectively, showing correlation in the range of 0.82–0.95 and normalized root mean square differences [RMSD] of 13–16%. UASM-1 was then modified (termed as UASM-2) to ingest a locally calibrated leaf area index function. This modification deviated the components of the energy balance by ~13.5% but not the final T estimates (r: 1, RMSD: 5%). Next, impacts of representative and non-representative weather information were also evaluated on crop water uses estimates. For this, UASM-2 was used to evaluate the effects of weather data inputs acquired from sources near and within the orchard block on T estimates. Minimal variations in T estimates were observed for weather data inputs from open-field stations at 1 and 3 km where correlation coefficients (r) ranged within 0.85–0.97 and RMSD within 3–13% relative to the station at the orchard-center (5 m above ground level). Overall, the results suggest that weather data from within 5 km radius of orchard site, with similar topography and microclimate attributes, when used in conjunction with high-resolution aerial imagery could be useful for reliable apple canopy transpiration estimation for pertinent site-specific irrigation management. Full article
Show Figures

Graphical abstract

24 pages, 2819 KiB  
Article
Challenges in Precision Sunflower Cultivation: The Impact of the Agronomic Environment on the Quality of Precision Sowing Techniques and Yield Parameters
by Mihály Zalai, Csaba Bojtor, János Nagy, Adrienn Széles, Szabolcs Monoki and Árpád Illés
AgriEngineering 2025, 7(5), 145; https://doi.org/10.3390/agriengineering7050145 - 6 May 2025
Viewed by 812
Abstract
Precision agriculture and advanced sowing technologies, including variable sowing rates, can be used to optimise sunflower yields by ensuring a uniform plant distribution, efficient resource utilisation, and adaptation to soil variability. These agronomic and technological innovations help mitigate field heterogeneity effects, enhancing sunflower [...] Read more.
Precision agriculture and advanced sowing technologies, including variable sowing rates, can be used to optimise sunflower yields by ensuring a uniform plant distribution, efficient resource utilisation, and adaptation to soil variability. These agronomic and technological innovations help mitigate field heterogeneity effects, enhancing sunflower establishment, growth, and overall yield stability. The main goal of this research was to analyse the interactions among management, soil, and environmental variables and their effects on the sowing quality and yield in the case of precision sunflower production. A sowing field experiment was set up in the period between 2021 and 2023 to identify these effects and their complex interactions, which were evaluated with the aim of improving the sowing and yield parameters, while also understanding the importance of each different parameter. As a key outcome for precision sowing, this research demonstrates that the variability in sowing parameters—such as double and missing sowing rates, as well as sowing uniformity—was significantly influenced by the field conditions, productivity zones, and nominal crop density. These findings underscore the importance of implementing site-specific management strategies to optimise sunflower production and maximise yields. Overall, of the various factors influencing sunflower production, the crop year proved to be more significant than the soil parameters due to the strong influence of annual climatic variability. The field zone was also identified as a more critical determinant of sowing and yield variability than crop density, highlighting the importance of spatial management within fields, and also marking possible directions for future research. Full article
Show Figures

Figure 1

Back to TopTop