Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,434)

Search Parameters:
Keywords = single-molecule studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5672 KiB  
Article
Multiplex Immunofluorescence Reveals Therapeutic Targets EGFR, EpCAM, Tissue Factor, and TROP2 in Triple-Negative Breast Cancer
by T. M. Mohiuddin, Wenjie Sheng, Chaoyu Zhang, Marwah Al-Rawe, Svetlana Tchaikovski, Felix Zeppernick, Ivo Meinhold-Heerlein and Ahmad Fawzi Hussain
Int. J. Mol. Sci. 2025, 26(15), 7430; https://doi.org/10.3390/ijms26157430 (registering DOI) - 1 Aug 2025
Abstract
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to [...] Read more.
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to characterize molecular and clinicopathological features and to assess the expression and therapeutic potential of four key surface markers: epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), tissue factor (TF), and trophoblast cell surface antigen (TROP2). Multiplex immunofluorescence (mIF) demonstrated elevated EGFR and TROP2 expression in the majority of samples. Significant positive correlations were observed between EGFR and TF, as well as between TROP2 and both TF and EpCAM. Expression analyses revealed increased EGFR and TF levels with advancing tumor stage, whereas EpCAM expression declined in advanced-stage tumors. TROP2 and TF expression were significantly elevated in higher-grade tumors. Additionally, EGFR and EpCAM levels were significantly higher in patients with elevated Ki-67 indices. Binding specificity assays using single-chain variable fragment (scFv-SNAP) fusion proteins confirmed robust targeting efficacy, particularly for EGFR and TROP2. These findings underscore the therapeutic relevance of EGFR and TROP2 as potential biomarkers and targets in TNBC. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 13918 KiB  
Article
Occurrence State and Controlling Factors of Methane in Deep Marine Shale: A Case Study from Silurian Longmaxi Formation in Sichuan Basin, SW China
by Junwei Pu, Tongtong Luo, Yalan Li, Hongwei Jiang and Lin Qi
Minerals 2025, 15(8), 820; https://doi.org/10.3390/min15080820 (registering DOI) - 1 Aug 2025
Abstract
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas [...] Read more.
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas exploitation. The temperature and pressure conditions in deep shale exceed the operating limits of experimental equipment; thus, few studies have discussed the microscopic occurrence mechanism of shale gas in deep marine shale. This study applies molecular simulation technology to reveal the methane’s microscopic occurrence mechanism, particularly the main controlling factor of adsorbed methane in deep marine shale. Two types of simulation models are also proposed. The Grand Canonical Monte Carlo (GCMC) method is used to simulate the adsorption behavior of methane molecules in these two models. The results indicate that the isosteric adsorption heat of methane in both models is below 42 kJ/mol, suggesting that methane adsorption in deep shale is physical adsorption. Adsorbed methane concentrates on the pore wall surface and forms a double-layer adsorption. Furthermore, adsorbed methane can transition to single-layer adsorption if the pore size is less than 1.6 nm. The total adsorption capacity increases with rising pressure, although the growth rate decreases. Excess adsorption capacity is highly sensitive to pressure and can become negative at high pressures. Methane adsorption capacity is determined by pore size and adsorption potential, while accommodation space and adsorption potential are influenced by pore size and mineral type. Under deep marine shale reservoir burial conditions, with burial depth deepening, the effect of temperature on shale gas occurrence is weaker than pressure. Higher temperatures inhibit shale gas occurrence, and high pressure enhances shale gas preservation. Smaller pores facilitate the occurrence of adsorbed methane, and larger pores have larger total methane adsorption capacity. Deep marine shale with high formation pressure and high clay mineral content is conducive to the microscopic accumulation of shale gas in deep marine shale reservoirs. This study discusses the microscopic occurrence state of deep marine shale gas and provides a reference for the exploration and development of deep shale gas. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

19 pages, 4231 KiB  
Article
Design and Synthesis of a New Photoluminescent 2D Coordination Polymer Employing a Ligand Derived from Quinoline and Pyridine
by Andrzej Kochel, Małgorzata Hołyńska, Aneta Jezierska and Jarosław J. Panek
Crystals 2025, 15(8), 691; https://doi.org/10.3390/cryst15080691 - 30 Jul 2025
Viewed by 205
Abstract
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied [...] Read more.
Application of organic ligand 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate with N/O donor atoms enabled solvothermal synthesis of a 2D Cu(II) coordination polymer, {Cu(L)BF4}n (L = deprotonated 2-(3-ethyl-pyrazin-2-yl)quinoline-4-carboxylate). Both the ligand and its coordination polymer have been characterized. The condensed ring system of the applied ligand promotes the formation of coordination polymers rather than mononuclear species. The obtained 2D coordination polymer is photoluminescent with bathochromic/hypsochromic shifts in ligand absorption bands leading to a single absorption band at 465 nm. Density Functional Theory was employed to provide a theoretical description of the possible conformational changes within the ligand, with emphasis on the difference between the ligand conformation in its hydrochloride salt and in the polymer. Two models of polymer fragments were constructed to describe the electronic structure and non-covalent interactions. The Quantum Theory of Atoms in Molecules (QTAIM) was applied for this purpose. Using the obtained results, we were able to develop potential energy profiles for various conformations of the ligand. For the set of the studied systems, we detected non-covalent interactions, which are responsible for the spatial conformation. Concerning the models of polymers, electron spin density distribution has been visualized and discussed. Full article
(This article belongs to the Special Issue Research Progress of Photoluminescent Materials)
Show Figures

Figure 1

17 pages, 645 KiB  
Review
Regulation of Subcellular Protein Synthesis for Restoring Neural Connectivity
by Jeffery L. Twiss and Courtney N. Buchanan
Int. J. Mol. Sci. 2025, 26(15), 7283; https://doi.org/10.3390/ijms26157283 - 28 Jul 2025
Viewed by 205
Abstract
Neuronal proteins synthesized locally in axons and dendrites contribute to growth, plasticity, survival, and retrograde signaling underlying these cellular processes. Advances in molecular tools to profile localized mRNAs, along with single-molecule detection approaches for RNAs and proteins, have significantly expanded our understanding of [...] Read more.
Neuronal proteins synthesized locally in axons and dendrites contribute to growth, plasticity, survival, and retrograde signaling underlying these cellular processes. Advances in molecular tools to profile localized mRNAs, along with single-molecule detection approaches for RNAs and proteins, have significantly expanded our understanding of the diverse proteins produced in subcellular compartments. These investigations have also uncovered key molecular mechanisms that regulate mRNA transport, storage, stability, and translation within neurons. The long distances that axons extend render their processes vulnerable, especially when injury necessitates regeneration to restore connectivity. Localized mRNA translation in axons helps initiate and sustain axon regeneration in the peripheral nervous system and promotes axon growth in the central nervous system. Recent and ongoing studies suggest that axonal RNA transport, storage, and stability mechanisms represent promising targets for enhancing regenerative capacity. Here, we summarize critical post-transcriptional regulatory mechanisms, emphasizing translation in the axonal compartment and highlighting potential strategies for the development of new regeneration-promoting therapeutics. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

21 pages, 529 KiB  
Review
Is Transmural Healing an Achievable Goal in Inflammatory Bowel Disease?
by Ilaria Faggiani, Virginia Solitano, Ferdinando D’Amico, Tommaso Lorenzo Parigi, Alessandra Zilli, Federica Furfaro, Laurent Peyrin-Biroulet, Silvio Danese and Mariangela Allocca
Pharmaceuticals 2025, 18(8), 1126; https://doi.org/10.3390/ph18081126 - 27 Jul 2025
Viewed by 437
Abstract
Background/Objectives: In the era of treat-to-target strategies in inflammatory bowel disease (IBD), transmural healing (TH) is gaining recognition as a promising therapeutic goal. TH has been associated with significantly better long-term outcomes, including reduced rates of hospitalization, surgery, and the need for [...] Read more.
Background/Objectives: In the era of treat-to-target strategies in inflammatory bowel disease (IBD), transmural healing (TH) is gaining recognition as a promising therapeutic goal. TH has been associated with significantly better long-term outcomes, including reduced rates of hospitalization, surgery, and the need for therapy escalation. Cross-sectional imaging techniques, such as intestinal ultrasound (IUS), magnetic resonance imaging (MRI), and computed tomography enterography (CTE), offer a comprehensive, non-invasive means to assess this deeper level of healing. This review explores how TH is currently defined across various imaging modalities and evaluates the feasibility and cost-effectiveness of achieving TH with available therapies. Methods: A literature search was conducted across PubMed, Scopus, and Embase using keywords, including “transmural healing”, “intestinal ultrasonography”, “magnetic resonance imaging”, “computed tomography enterography”, “Crohn’s disease”, “ulcerative colitis”, and “inflammatory bowel disease”. Only English-language studies were considered. Results: Despite growing interest, there is no standardized definition of TH across imaging platforms. Among the modalities, IUS emerges as the most feasible and cost-effective tool, owing to its accessibility, accuracy (sensitivity 62–95.2%, specificity 61.5–100%), and real-time capabilities, though it does have limitations. Current advanced therapies induce TH in roughly 20–40% of patients, with no consistent differences observed between biologics and small molecules. However, TH has only been evaluated as a formal endpoint in a single randomized controlled trial to date. Conclusions: A unified and validated definition of transmural healing is critically needed to harmonize research and guide clinical decision-making. While TH holds promise as a meaningful treatment target linked to improved outcomes, existing therapies often fall short of achieving complete transmural resolution. Further studies are essential to clarify its role and optimize strategies for deep healing in IBD. Full article
(This article belongs to the Special Issue Pharmacotherapy of Inflammatory Bowel Disease)
Show Figures

Figure 1

18 pages, 2051 KiB  
Article
Chemotherapy (Etoposide)-Induced Intermingling of Heterochromatin and Euchromatin Compartments in Senescent PA-1 Embryonal Carcinoma Cells
by Marc Bayer, Jaroslava Zajakina, Myriam Schäfer, Kristine Salmina, Felikss Rumnieks, Juris Jansons, Felix Bestvater, Reet Kurg, Jekaterina Erenpreisa and Michael Hausmann
Cancers 2025, 17(15), 2480; https://doi.org/10.3390/cancers17152480 - 26 Jul 2025
Viewed by 328
Abstract
Background: Often, neoadjuvant therapy, which relies on the induction of double-strand breaks (DSBs), is used prior to surgery to shrink tumors by inducing cancer cell apoptosis. However, recent studies have suggested that this treatment may also induce a fluctuating state between senescence [...] Read more.
Background: Often, neoadjuvant therapy, which relies on the induction of double-strand breaks (DSBs), is used prior to surgery to shrink tumors by inducing cancer cell apoptosis. However, recent studies have suggested that this treatment may also induce a fluctuating state between senescence and stemness in PA-1 embryonal carcinoma cells, potentially affecting therapeutic outcomes. Thus, the respective epigenetic pathways are up or downregulated over a time period of days. These fluctuations go hand in hand with changes in spatial DNA organization. Methods: By means of Single-Molecule Localization Microscopy in combination with mathematical evaluation tools for pointillist data sets, we investigated the organization of euchromatin and heterochromatin at the nanoscale on the third and fifth day after etoposide treatment. Results: Using fluorescently labeled antibodies against H3K9me3 (heterochromatin tri-methylation sites) and H3K4me3 (euchromatin tri-methylation sites), we found that the induction of DSBs led to the de-condensation of heterochromatin and compaction of euchromatin, with a peak effect on day 3 after the treatment. On day 3, we also observed the co-localization of euchromatin and heterochromatin, which have marks that usually occur in exclusive low-overlapping network-like compartments. The evaluation of the SMLM data using topological tools (persistent homology and persistent imaging) and principal component analysis, as well as the confocal microscopy analysis of H3K9me3- and H3K4me3-stained PA-1 cells, supported the findings that distinct shifts in euchromatin and heterochromatin organization took place in a subpopulation of these cells during the days after the treatment. Furthermore, by means of flow cytometry, it was shown that the rearrangements in chromatin organization coincided with the simultaneous upregulation of the stemness promotors OCT4A and SOX2 and senescence promotors p21Cip1 and p27. Conclusions: Our findings suggest potential applications to improve cancer therapy by inhibiting chromatin remodeling and preventing therapy-induced senescence. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

16 pages, 654 KiB  
Article
Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin
by Neven Sarhan, Mona F. Schaalan, Azza A. K. El-Sheikh and Bassem Zarif
Pharmaceutics 2025, 17(8), 959; https://doi.org/10.3390/pharmaceutics17080959 - 24 Jul 2025
Viewed by 313
Abstract
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability [...] Read more.
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability in response to dapagliflozin underscores the role of pharmacogenetics in optimizing treatment efficacy. This study investigates the influence of genetic polymorphisms on renal outcomes in HFrEF patients treated with dapagliflozin, focusing on variations in genes such as SLC5A2, UMOD, KCNJ11, and ACE. Methods: This prospective, observational cohort study was conducted at the National Heart Institute, Cairo, Egypt, enrolling 200 patients with HFrEF. Genotyping of selected single nucleotide polymorphisms (SNPs) was performed using TaqMan™ assays. Renal function, including estimated glomerular filtration rate (eGFR), Kidney Injury Molecule-1 (KIM-1), and Neutrophil Gelatinase-Associated Lipocalin (NGAL) levels, was assessed at baseline and after six months of dapagliflozin therapy. Results: Significant associations were found between genetic variants and renal outcomes. Patients with AA genotype of rs3813008 (SLC5A2) exhibited the greatest improvement in eGFR (+7.2 mL ± 6.5, p = 0.004) and reductions in KIM-1 (−0.13 pg/mL ± 0.49, p < 0.0001) and NGAL (−6.1 pg/mL ± 15.4, p < 0.0001). Similarly, rs12917707 (UMOD) TT genotypes showed improved renal function. However, rs5219 (KCNJ11) showed no significant impact on renal outcomes. Conclusions: Pharmacogenetic variations influenced renal response to dapagliflozin in HFrEF patients, particularly in SLC5A2 and UMOD genes. These findings highlighted the potential of personalized medicine in optimizing therapy for HFrEF patients with renal complications. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

15 pages, 1585 KiB  
Article
Expression Analysis, Diagnostic Significance and Biological Functions of BAG4 in Acute Myeloid Leukemia
by Osman Akidan, Selçuk Yaman, Serap Ozer Yaman and Sema Misir
Medicina 2025, 61(8), 1333; https://doi.org/10.3390/medicina61081333 - 24 Jul 2025
Viewed by 259
Abstract
Background and Objectives: A thorough comprehension of the essential molecules and related processes underlying the carcinogenesis, proliferation, and recurrence of acute myeloid leukemia (AML) is crucial. This study aimed to investigate the expression levels, diagnostic and prognostic significance and biological roles of [...] Read more.
Background and Objectives: A thorough comprehension of the essential molecules and related processes underlying the carcinogenesis, proliferation, and recurrence of acute myeloid leukemia (AML) is crucial. This study aimed to investigate the expression levels, diagnostic and prognostic significance and biological roles of Bcl-2-associated athanogene 4 (BAG4) in AML carcinogenesis. Materials and Methods: Gene expression profiles were analyzed using publicly available datasets, particularly GSE9476 and TCGA, using tools such as GEO2R, GEPIA2, UALCAN and TIMER2.0. The immune infiltration correlation was examined using the GSCA platform, while the function of BAG4 at the single-cell level was analyzed via CancerSEA. Protein–protein and gene–gene interaction networks were constructed using STRING and GeneMANIA, and enrichment analyses were performed using GO, KEGG and DAVID. Expression validation was performed using RT-qPCR in HL-60 (AML) and HaCaT (normal) cells, and ROC curve analysis evaluated the diagnostic accuracy. Results: BAG4 was significantly overexpressed in AML tissues and cell lines compared with healthy controls. High BAG4 expression was associated with poor overall survival and strong diagnostic power (AUC = 0.944). BAG4 was positively associated with immune cell infiltration and negatively associated with CD4+/CD8+ T and NK cells. At the single-cell level, BAG4 was associated with proliferation, invasion, and DNA repair functions. Functional network analysis showed that BAG4 interacted with apoptosis and necroptosis-related genes such as BCL2, BAG3 and TNFRSF1A and was enriched in pathways such as NF-κB, TNF signaling and apoptosis. Conclusions: BAG4 is overexpressed in AML and is associated with adverse clinical outcomes and immune modulation. It may play an important role in leukemogenesis by affecting apoptotic resistance and immune evasion. BAG4 has potential as a diagnostic biomarker and treatment target in AML, but further in vivo and clinical validation is needed. Full article
(This article belongs to the Section Genetics and Molecular Medicine)
Show Figures

Graphical abstract

32 pages, 1691 KiB  
Review
Aptamers Targeting Immune Checkpoints for Tumor Immunotherapy
by Amir Mohammed Abker Abdu, Yanfei Liu, Rami Abduljabbar, Yunqi Man, Qiwen Chen and Zhenbao Liu
Pharmaceutics 2025, 17(8), 948; https://doi.org/10.3390/pharmaceutics17080948 - 22 Jul 2025
Viewed by 400
Abstract
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such [...] Read more.
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such as treatment resistance, immune-related adverse effects, and high costs highlight the need for novel therapeutic approaches. Aptamers, short, single-stranded oligonucleotides with high specificity and affinity for target molecules, have emerged as promising alternatives to conventional antibody-based therapies. This review provides a comprehensive analysis of aptamer-based strategies targeting immune checkpoints, with a particular focus on PD-1/PD-L1 and CTLA-4. We summarize recent advances in aptamer design, including bispecific and multifunctional aptamers, and explore their potential in overcoming immune resistance and improving therapeutic efficacy. Additionally, we discuss strategies to enhance aptamer stability, bioavailability, and tumor penetration through chemical modifications and nanoparticle conjugation. Preclinical and early clinical studies have demonstrated that aptamers can effectively block immune checkpoint pathways, restore T-cell activity, and synergize with other immunotherapeutic agents to achieve superior anti-tumor responses. By systematically reviewing the current research landscape and identifying key challenges, this review aims to provide valuable insights into the future directions of aptamer-based cancer immunotherapy, paving the way for more effective and personalized treatment strategies. Full article
(This article belongs to the Special Issue Nanomedicines for Overcoming Tumor Immunotherapy Tolerance)
Show Figures

Graphical abstract

18 pages, 5007 KiB  
Article
Integrated Multi-Omics Profiling Reveals That Highly Pyroptotic MDMs Contribute to Psoriasis Progression Through CXCL16
by Liping Jin, Xiaowen Xie, Mi Zhang, Wu Zhu, Guanxiong Zhang and Wangqing Chen
Biomedicines 2025, 13(7), 1763; https://doi.org/10.3390/biomedicines13071763 - 18 Jul 2025
Viewed by 303
Abstract
Background: Psoriasis, an inflammatory skin disorder, involves pyroptosis—a pro-inflammatory cell death process. However, cell-specific pyroptosis dynamics and immune microenvironment interactions remain unclear. Objective: To investigate cell-type-specific pyroptosis patterns in psoriasis and their immunoregulatory mechanisms. Methods: We integrated 21 transcriptomic datasets (from 2007 to [...] Read more.
Background: Psoriasis, an inflammatory skin disorder, involves pyroptosis—a pro-inflammatory cell death process. However, cell-specific pyroptosis dynamics and immune microenvironment interactions remain unclear. Objective: To investigate cell-type-specific pyroptosis patterns in psoriasis and their immunoregulatory mechanisms. Methods: We integrated 21 transcriptomic datasets (from 2007 to 2020) obtained from the GEO database and two single-cell RNA sequencing datasets to quantify pyroptotic activity using Gene Set Variation Analysis and AUCell algorithms. Immune cell infiltration profiles were evaluated via CIBERSORT, while cell-cell communication networks were analyzed by CellChat. In vitro and in vivo experiments were performed to validate key findings. Results: Our analysis revealed that psoriasis patients exhibited significantly elevated levels of pyroptosis compared to healthy controls, with pyroptotic activity reflecting treatment responses. Notably, monocyte-derived macrophages (MDMs) in psoriatic lesions displayed markedly heightened pyroptotic activity. In vitro experiments confirmed that MDMs derived from psoriasis patients overexpressed pyroptosis-related molecules (Caspase 1 and Caspase 4) as well as pro-inflammatory cytokines (TNFα, IL6, IL1β) when compared to healthy controls. Furthermore, these cells showed increased expression of CXCL16, which might potentially activate Th17 cells through CXCR6 signaling, thereby driving skin inflammation. Inhibition of monocyte migration in an imiquimod-induced psoriasiform dermatitis model significantly alleviated skin inflammation and reduced the proportion of M1 macrophages and Th17 cells in lesional skin. Conclusions: This study revealed that MDMs in psoriatic lesions exhibited a hyperactive pyroptotic state, which contributed to disease progression through CXCL16-mediated remodeling of the immune microenvironment. These findings highlight pyroptosis as a potential therapeutic target for psoriasis. Full article
Show Figures

Figure 1

20 pages, 1676 KiB  
Article
Combining CSF and Serum Biomarkers to Differentiate Mechanisms of Disability Worsening in Multiple Sclerosis
by Enric Monreal, José Ignacio Fernández-Velasco, Susana Sainz de la Maza, Mercedes Espiño, Noelia Villarrubia, Ernesto Roldán-Santiago, Yolanda Aladro, Juan Pablo Cuello, Lucía Ayuso-Peralta, Alexander Rodero-Romero, Juan Luís Chico-García, Fernando Rodríguez-Jorge, Ana Quiroga-Varela, Eulalia Rodríguez-Martín, Belén Pilo de la Fuente, Guillermo Martín-Ávila, María Luisa Martínez-Ginés, José Manuel García-Domínguez, Lluïsa Rubio, Sara Llufriu, Manuel Comabella, Xavier Montalban, Gary Álvarez-Bravo, José Luís Veiga-González, Jaime Masjuan, Lucienne Costa-Frossard and Luisa María Villaradd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(14), 6898; https://doi.org/10.3390/ijms26146898 - 18 Jul 2025
Viewed by 476
Abstract
The combined use of serum and CSF biomarkers for prognostic stratification in multiple sclerosis (MS) remains underexplored. This multicenter observational study investigated associations between serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), and CSF lipid-specific IgM oligoclonal bands (LS-OCMB) with different [...] Read more.
The combined use of serum and CSF biomarkers for prognostic stratification in multiple sclerosis (MS) remains underexplored. This multicenter observational study investigated associations between serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), and CSF lipid-specific IgM oligoclonal bands (LS-OCMB) with different forms of disability worsening, such as relapse-associated worsening (RAW), active progression independent of relapse activity (aPIRA), and non-active PIRA (naPIRA). A total of 535 patients with MS were included, all sampled within one year of disease onset. Biomarkers were quantified using single-molecule array and immunoblotting techniques, and CSF cell subsets were analyzed by flow cytometry. High sNfL z-scores and LS-OCMB positivity were independently associated with increased risk of RAW and aPIRA, collectively termed inflammatory-associated worsening (IAW), while elevated sGFAP levels predicted naPIRA. Patients with both high sNfL and LS-OCMB positivity had the highest risk of IAW. Among LS-OCMB–positive patients, higher regulatory T cell percentages were associated with lower sNfL levels, suggesting a protective role. Conversely, in LS-OCMB–negative patients, sNfL levels correlated with CSF C3 concentrations. These findings support the complementary role of sNfL, sGFAP, and LS-OCMB in identifying distinct mechanisms of disease worsening and may inform early personalized management strategies in MS. Full article
(This article belongs to the Special Issue Insights in Multiple Sclerosis (MS) and Neuroimmunology: 2nd Edition)
Show Figures

Figure 1

45 pages, 7119 KiB  
Review
A Comprehensive Review of Radical-Mediated Intramolecular Cyano-Group Migration
by Jia-Liang Zhu and Mei-Lin Chen
Molecules 2025, 30(14), 2959; https://doi.org/10.3390/molecules30142959 - 14 Jul 2025
Viewed by 732
Abstract
The radical-mediated intramolecular translocation of cyano groups has been recognized as a useful tool for the site-selective functionalization of organic molecules. The process is believed to proceed through the addition of an in situ-generated carbon-centered radical to the nitrile triple bond, followed by [...] Read more.
The radical-mediated intramolecular translocation of cyano groups has been recognized as a useful tool for the site-selective functionalization of organic molecules. The process is believed to proceed through the addition of an in situ-generated carbon-centered radical to the nitrile triple bond, followed by the β-scission of the resulting cyclic iminyl radical intermediate to relocate the cyano group and produce a more stable carbon radical for further elaboration. Beginning in the early 1960s and continuing for the next forty years, the research in this particular area has seen a surge of growth during the past two decades with advancements in radical chemistry and photocatalysis. The present article attempts to conduct a comprehensive review of existing studies on this topic by covering the literature from 1961 to 2025. The procedures developed for the purpose are grouped and discussed in four sections according to the strategies used to generate the initial carbon radicals, which include (i) hydrogen-atom transfer (HAT), (ii) radical addition to the π system, (iii) halogen-atom transfer (XAT), and (iv) the homolytic fission of a C-C single bond. In each section, a specific emphasis will be placed on reaction conditions, substrate scopes, and mechanisms. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

18 pages, 7687 KiB  
Article
Construction of Gene Regulatory Networks Based on Spatial Multi-Omics Data and Application in Tumor-Boundary Analysis
by Yiwen Du, Kun Xu, Siwen Zhang, Lanming Chen, Zhenhao Liu and Lu Xie
Genes 2025, 16(7), 821; https://doi.org/10.3390/genes16070821 - 13 Jul 2025
Viewed by 701
Abstract
Background/Objectives: Cell–cell communication (CCC) is a critical process within the tumor microenvironment, governing regulatory interactions between cancer cells and other cellular subpopulations. Aiming to improve the accuracy and completeness of intercellular gene-regulatory network inference, we constructed a novel spatial-resolved gene-regulatory network framework (spGRN). [...] Read more.
Background/Objectives: Cell–cell communication (CCC) is a critical process within the tumor microenvironment, governing regulatory interactions between cancer cells and other cellular subpopulations. Aiming to improve the accuracy and completeness of intercellular gene-regulatory network inference, we constructed a novel spatial-resolved gene-regulatory network framework (spGRN). Methods: Firstly, the spatial multi-omics data of colorectal cancer (CRC) patients were analyzed. We precisely located the tumor boundaries and then systematically constructed the spGRN framework to study the network regulation. Subsequently, the key signaling molecules obtained by the spGRN were identified and further validated by the spatial-proteomics dataset. Results: Through the constructed spatial gene regulatory network, we found that in the communication with malignant cells, the highly expressed ligands LIF and LGALS3BP and receptors IL6ST and ITGB1 in fibroblasts can promote tumor proliferation, and the highly expressed ligands S100A8/S100A9 in plasma cells play an important role in regulating inflammatory responses. Further, validation of the key signaling molecules by the spatial-proteomics dataset highlighted the role of these genes in mediating the regulation of boundary-related cells. Furthermore, we applied the spGRN to publicly available single-cell and spatial-transcriptomics datasets from three other cancer types. The results demonstrate that ITGB1 and its target genes FOS/JUN were commonly expressed in all four cancer types, indicating their potential as pan-cancer therapeutic targets. Conclusion: the spGRN was proven to be a useful tool to select signal molecules as potential biomarkers or valuable therapeutic targets. Full article
(This article belongs to the Special Issue Single-Cell and Spatial Multi-Omics in Human Diseases)
Show Figures

Figure 1

17 pages, 3073 KiB  
Article
Synthesis, Characterization, and Anticancer Activity of 3-Chlorothiophene-2-carboxylic Acid Transition Metal Complexes
by Baiquan Hu, Qianqian Kang, Xianggao Meng, Hao Yin, Xingzhi Yang, Yanting Yang and Mei Luo
Inorganics 2025, 13(7), 238; https://doi.org/10.3390/inorganics13070238 - 11 Jul 2025
Viewed by 501
Abstract
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py [...] Read more.
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py = pyridine), [{Ni(L)2(OH2)4}2{Ni(L)(OH2)5}]L•5H2O (3), and [{Co(L)2(OH2)4}2{Co(L)(OH2)5}]L•5H2O (4). All four compounds were identified by elemental analysis and ESI mass spectrometry, and subsequently characterized by IR spectroscopy, UV-visible diffuse reflectance spectroscopy, electron paramagnetic resonance spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography, and cyclic voltammetry. X-ray analyses revealed that complexes 1 and 2 exhibit a centrosymmetric pseudo-octahedral coordination geometry; the copper (II) and cobalt (II) metal ions, respectively, are located at the crystallographic center of inversion. The coordination sphere of the copper (II) complex is axially elongated in accordance with the Jahn–Teller effect. Intriguingly, for charge neutrality, compounds 3 and 4 crystallized as three independent mononuclear octahedrally coordinated metal centers, which are two [ML2(OH2)4] complex molecules and one [ML(OH2)5]+ complex cation (M = NiII and CoII, respectively), with the ligand anion L serving as the counter ion. The anticancer activities of these complexes were systematically assessed on human leukemia K562 cells, lung cancer A549 cells, liver cancer HepG2 cells, breast cancer MDA-MB-231 cells, and colon cancer SW480 cells. Among them, complex 4 shows significant inhibitory effects on leukemia K562 cells and colon cancer SW480 cells. Full article
Show Figures

Figure 1

20 pages, 7149 KiB  
Article
On-Demand Design of Terahertz Metasurface Sensors for Detecting Plant Endogenous and Exogenous Molecules
by Hongyan Gao, Yuanye Liu, Gen Li, Haodong Liu, Yuxi Shang and Zheng Ma
Agriculture 2025, 15(14), 1481; https://doi.org/10.3390/agriculture15141481 - 10 Jul 2025
Viewed by 285
Abstract
This study presents a neural-network-based method for on-demand design of terahertz metasurface sensors, aimed at detecting plant endogenous and exogenous molecules. The approach uses target performance indicators (constructed via fingerprint peaks) as inputs and structural parameters as outputs, employing a neural network to [...] Read more.
This study presents a neural-network-based method for on-demand design of terahertz metasurface sensors, aimed at detecting plant endogenous and exogenous molecules. The approach uses target performance indicators (constructed via fingerprint peaks) as inputs and structural parameters as outputs, employing a neural network to map the complex relationship between them. Two single-resonant-peak metasurface sensors were developed to detect abscisic acid and gibberellic acid. The abscisic acid metasurface sensor achieved an average MSE of 5.66 × 10−6 and RER of 0.167%, while the gibberellic acid metasurface sensor had an average MSE of 8 × 10−7 and RER of 0.086%. Their resonant peaks highly matched the substance fingerprint peaks, enabling specific detection. Metasurface sensors’ sensitivities were effectively controlled using correlation analysis and neural networks, achieving remarkable levels of 156.7 and 150.1 GHz/RIU, allowing trace detection. Three dual-resonant-peak metasurface sensors were designed to improve the detection specificity for chlorophyll and folpet and to detect chlorophyll and folpet simultaneously. These metasurface sensors exhibited average MSEs of 1.4 × 10−5, 1.6 × 10−6, 1.35 × 10−5 and RERs of 0.27%, 0.088%, 0.20%. The model also worked for four other plant-related molecules, proving its strong generalization ability. Overall, for different application scenarios of exogenous and endogenous molecules in plants, the on-demand design methodology offers a whole new set of ideas for quickly designing and widely applying metasurface sensors with suitable performance indicators. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Graphical abstract

Back to TopTop