Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (433)

Search Parameters:
Keywords = single photo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8274 KiB  
Article
Ornamental Potential Classification and Prediction for Pepper Plants (Capsicum spp.): A Comparison Using Morphological Measurements and RGB Images as Data Source
by Antonia Maiara Marques do Nascimento, Ruben Ruiz-Gonzalez, Víctor Martínez-Martínez, Artur Mendes Medeiros, Fábio Sandro dos Santos, Elizanilda Ramalho do Rêgo, Samy Pimenta, Cláudia Pombo Sudré, Cintia dos Santos Bento, Carlos Cambra and Priscila Alves Barroso
Appl. Sci. 2025, 15(14), 7801; https://doi.org/10.3390/app15147801 - 11 Jul 2025
Viewed by 331
Abstract
Anticipating the ornamental quality of plants is of significant importance for genetic breeding programs. This study investigated the potential of predicting and classifying whether ornamental pepper plants will exhibit desirable ornamental traits based on RGB images, comparing these results with an approach relying [...] Read more.
Anticipating the ornamental quality of plants is of significant importance for genetic breeding programs. This study investigated the potential of predicting and classifying whether ornamental pepper plants will exhibit desirable ornamental traits based on RGB images, comparing these results with an approach relying on morphological measurements. To achieve this, pepper plants from fifteen accessions were cultivated, and photographs were taken weekly throughout their growth cycle until fruit maturation. A Vision Transformer (ViT)-based model was employed to predict the suitability of the plants for ornamental purposes, and its predictions were validated against assessments conducted by eight experts. An XGBoost-based classifier was employed as well for estimations based on morphological measurements with an accuracy over 92%. The results showed that the ornamental suitability of plants can be accurately estimated and predicted up to seven weeks in advance from photos, with accuracy over 80%. Interestingly, higher-resolution RGB images did not significantly improve the accuracy of the ViT model. Furthermore, the estimation of ornamental potential using morphological measurements and RGB images yielded similar accuracy, indicating that a single photograph can effectively replace costly and time-consuming morphological measurements. As far as the authors are aware, this work is the first to forecast the ornamental potential of pepper plants (Capsicum spp.) multiple weeks ahead of time using image-based deep learning models. Full article
Show Figures

Figure 1

15 pages, 3934 KiB  
Article
Methyl Viologen@β-Zeolite with Absorption/Fluorescence Dual-Mode and Photo/Chemical Synergistic Stimuli-Responsive Chromism
by Jingxuan Han, Shaoning Li, Huihui Li, Yu Li, Jiaqiao Qin, Fuxiang Wang and Qinhe Pan
Molecules 2025, 30(13), 2872; https://doi.org/10.3390/molecules30132872 - 6 Jul 2025
Viewed by 358
Abstract
In this work, methyl viologen (MV) was adsorbed into the nanopores of Si/Al H-β-zeolite via cation exchange. The resulting MV@β-zeolite possessed absorption/fluorescence dual-mode and photo/chemical synergistic stimuli-responsive chromism. Owing to the acidic surrounding provided by β-zeolite, the chromism of MV required the synergistic [...] Read more.
In this work, methyl viologen (MV) was adsorbed into the nanopores of Si/Al H-β-zeolite via cation exchange. The resulting MV@β-zeolite possessed absorption/fluorescence dual-mode and photo/chemical synergistic stimuli-responsive chromism. Owing to the acidic surrounding provided by β-zeolite, the chromism of MV required the synergistic stimuli of UV irradiation and a chemical reductant (such as Na2SO3). UV irradiation induced single electron transfer from the chemical reductant to MV@β-zeolite, leading to enhanced absorption at 610 nm together with a daylight color change from pale yellow to blue. Meanwhile, the nanopores of β-zeolite inhibited aggregation-caused quenching of MV, enabling MV to emit cyan fluorescence at 500 nm. After the single electron transfer of the chemical reductant under UV irradiation, the cyan fluorescence of MV@β-zeolite was quenched. Additionally, MV@β-zeolite exhibited a short stimulus response time (250 s) and good color change reversibility. These findings in this work provide valuable insights into the design of multi-mode and synergistic stimuli-responsive viologen-based chromic materials, particularly for applications in secure high-throughput information storage, high-level anti-counterfeiting and multi-target multi-mode sensing. Full article
(This article belongs to the Special Issue Novel Organic-Inorganic Hybrid Porous Photochromic Materials)
Show Figures

Figure 1

24 pages, 5782 KiB  
Article
Gamma Irradiation-Induced Synthesis of Nano Au-PNiPAAm/PVA Bi-Layered Photo-Thermo-Responsive Hydrogel Actuators with a Switchable Bending Motion
by Nikolina Radojković, Jelena Spasojević, Ivana Vukoje, Zorica Kačarević-Popović, Una Stamenović, Vesna Vodnik, Goran Roglić and Aleksandra Radosavljević
Polymers 2025, 17(13), 1774; https://doi.org/10.3390/polym17131774 - 26 Jun 2025
Viewed by 432
Abstract
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel [...] Read more.
In this study, we present bi-layered hydrogel systems that incorporate different sizes and shapes of gold nanoparticles (nanospheres and nanorods) for potential use in areas such as photoactuators, soft robotics, artificial muscles, drug delivery and tissue engineering. The synthesized nano Au-PNiPAAm/PVA bi-layered hydrogel nanocomposites provide the unique ability to exhibit controlled motion upon light exposure, indicating that the above systems possess the capability of photo–thermal energy conversion. The chosen synthesis approach is a combination of chemical production of gold nanoparticles (AuNPs) followed by gamma radiation formation of crosslinked polymer networks around them, as the final step, which also allows for sterilization in a single technological step. According to the TEM analysis, the gold nanospheres (AuNSs) with mean diameters of around 17 and 30 nm, as well as nanorods (AuNRs) with an aspect ratio of around 4.5, were synthesized and used as nanofillers in the formation of nanocomposites. Their stability within the polymer matrix was confirmed by UV–Vis spectral studies, by the presence of local surface plasmon resonance (LSPR) bands, typical for nanoparticles of various shapes and sizes. Morphological studies (FE-SEM) of hydrogels revealed the formation of a porous structure with PNiPAAm hydrogel as an active layer and PVA hydrogel as a passive layer, as well as a stable interfacial layer with a thickness of around 80 μm. The synthesized bi-layered photoactuators showed a photo–thermal response upon exposure to irradiation of green lasers and lamps that simulate sunlight, resulting in bending motion. This bending response reveals the huge potential of the obtained materials as soft actuators, which are more flexible than rigid systems, making them effective for specific applications where controlled movement and flexibility are essential. Full article
(This article belongs to the Special Issue Polymer Hydrogels: Synthesis, Properties and Applications)
Show Figures

Figure 1

21 pages, 4625 KiB  
Article
Influence of System-Scale Change on Co-Alignment Comparative Accuracy in Fixed Terrestrial Photogrammetric Monitoring Systems
by Bradford Butcher, Gabriel Walton, Ryan Kromer and Edgard Gonzales
Remote Sens. 2025, 17(13), 2200; https://doi.org/10.3390/rs17132200 - 26 Jun 2025
Viewed by 347
Abstract
Photogrammetry can be a valuable tool for understanding landscape evolution and natural hazards such as landslides. However, factors such as vegetation cover, shadows, and unstable ground can limit its effectiveness. Using photos across time to monitor an area with unstable or changing ground [...] Read more.
Photogrammetry can be a valuable tool for understanding landscape evolution and natural hazards such as landslides. However, factors such as vegetation cover, shadows, and unstable ground can limit its effectiveness. Using photos across time to monitor an area with unstable or changing ground conditions results in fewer tie points between images across time, and often leads to low comparative accuracy if single-epoch (i.e., classical) photogrammetric processing approaches are used. This paper presents a study evaluating the co-alignment approach applied to fixed terrestrial timelapse photos at an active landslide site. The study explores the comparative accuracy of reconstructed surface models and the location and behavior of tie points over time in relation to increasing levels of global change due to landslide activity and rockfall. Building upon previous work, this study demonstrates that high comparative accuracy can be achieved with a relatively low number of inter-epoch tie points, highlighting the importance of their distribution across stable ground, rather than the total quantity. High comparative accuracy was achieved with as few as 0.03 percent of the overall co-alignment tie points being inter-epoch tie points. These results show that co-alignment is an effective approach for conducting change detection, even with large degrees of global changes between surveys. This study is specific to the context of geoscience applications like landslide monitoring, but its findings should be relevant for any application where significant changes occur between surveys. Full article
(This article belongs to the Special Issue New Insight into Point Cloud Data Processing)
Show Figures

Figure 1

19 pages, 1626 KiB  
Article
Origin of the Optimization of Photocatalytic Activities for Titanium Oxide Film Modified by an Oxidized Copper Layer
by Jian-An Chen, Shu-Min Tsai, Yi-You Hong, Pin-Jyun Shih and Day-Shan Liu
Materials 2025, 18(13), 2993; https://doi.org/10.3390/ma18132993 - 24 Jun 2025
Viewed by 406
Abstract
In this study, the surface photocatalytic activity of an anatase–titanium oxide (TiOx) film was modified by a thin copper (Cu) layer with the subsequential oxidation annealing process. Through this simple annealing process, the photocatalytic activity of the TiOx/Cu structure [...] Read more.
In this study, the surface photocatalytic activity of an anatase–titanium oxide (TiOx) film was modified by a thin copper (Cu) layer with the subsequential oxidation annealing process. Through this simple annealing process, the photocatalytic activity of the TiOx/Cu structure to decompose the methylene blue solution and inhibit the growth of Escherichia coli. could be optimized. With the help of a study on the conductive type required for the oxidation of a single Cu layer, an n/p nanocomposite heterojunction was realized, as this contact system anneals at temperatures of 350 °C and 450 °C. An extra electrical field at the contact interfaces that was be beneficial for separating the photo-generated electron–hole pairs (EHPs) under UV light irradiation was built. The built-in electrical field led to an increase in the structural photocatalytic activity. Moreover, as the p-type cuprous oxide (p-Cu2O) structure oxidized by the annealed Cu layer could provide a high conduction band that is offset when in contact with the TiOx film, the photogenerated EHPs on the TiOx surface could be separated more effectively. Accordingly, the 350 °C-annealed sample, abundant in the nanocomposite TiOx/Cu2O heterojunction which could significantly retard the recombination of photo-generated carriers, corresponded to an increase of about 38% in the photocatalytic activity as compared with the single TiOx film. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

32 pages, 5534 KiB  
Review
Applications of Quantum Dots in Photo-Based Advanced Oxidation Processes for the Degradation of Contaminants of Emerging Concern—A Review
by Grzegorz Matyszczak, Albert Yedzikhanau, Christopher Jasiak, Natalia Bojko and Krzysztof Krawczyk
Catalysts 2025, 15(6), 591; https://doi.org/10.3390/catal15060591 - 14 Jun 2025
Viewed by 808
Abstract
Nanomaterials are interesting due to their unexpected and unique properties arising from phenomena occurring at the so-called mesoscale (that is, between single atoms and bulk solids). Among nanomaterials, one may distinguish quantum dots, which are highly crystalline nanocrystals with sizes up to c.a. [...] Read more.
Nanomaterials are interesting due to their unexpected and unique properties arising from phenomena occurring at the so-called mesoscale (that is, between single atoms and bulk solids). Among nanomaterials, one may distinguish quantum dots, which are highly crystalline nanocrystals with sizes up to c.a. 10 nm. Due to the quantum confinement effect, quantum dots exhibit extraordinary electronic and optical properties and may be utilized in photocatalysis. Semiconducting quantum dots may absorb photons, which results in the excitation of electrons from valence to conducting bands. Excited electrons in the conducting band and positive holes in the valence band may interact with chemical molecules (e.g., with water molecules), forming highly reactive radicals. Consequently, quantum dots may be utilized in advanced oxidation processes based on the action of light (i.e., photo-based advanced oxidation processes). Furthermore, quantum dots have advantages, such as having a tunable energy band gap and relative cost-effectiveness. Advanced oxidation processes are very important in the context of the constantly increasing pollution of the natural environment. Contaminants of emerging concern, such as pesticides, endocrine-disrupting compounds, and flame retardants, are still being detected in naturally present water. Such compounds may be degraded using advanced oxidation processes, utilizing quantum dots as photocatalysts. However, many operational parameters (such as quantum dots’ properties, including the means of their preparation) influence the efficiency of such processes; thus, detailed studies are being conducted. Full article
Show Figures

Figure 1

28 pages, 5779 KiB  
Article
Theoretical Insight into Antioxidant Mechanisms of Trans-Isoferulic Acid in Aqueous Medium at Different pH
by Agnieszka Kowalska-Baron
Int. J. Mol. Sci. 2025, 26(12), 5615; https://doi.org/10.3390/ijms26125615 - 11 Jun 2025
Viewed by 414
Abstract
This study presents the first comprehensive theoretical investigation of the antioxidant mechanisms of trans-isoferulic acid against hydroperoxyl (HOO) radicals in aqueous solution, using the DFT/M062X/6-311+G(d,p)/PCM method. Thermodynamic and kinetic parameters, including reaction energy barriers and bimolecular rate constants, were determined for [...] Read more.
This study presents the first comprehensive theoretical investigation of the antioxidant mechanisms of trans-isoferulic acid against hydroperoxyl (HOO) radicals in aqueous solution, using the DFT/M062X/6-311+G(d,p)/PCM method. Thermodynamic and kinetic parameters, including reaction energy barriers and bimolecular rate constants, were determined for the three major pathways: hydrogen transfer (HT), radical adduct formation (RAF), and single electron transfer (SET). The results indicate that, at physiological pH, the RAF mechanism is both more exergonic and approximately eight-times faster than HT. At a higher pH, where the phenolate anion dominates, antioxidant activity is enhanced by an additional fast, diffusion-limited SET pathway. Isoferulic acid was also found to effectively chelate Fe2+ ions at pH 7.4 and above, forming stable complexes that could inhibit Fenton-type hydroxyl radical generation. Moreover, its strong UV absorption suggests a role in limiting photo-induced free radical formation. These findings not only clarify the antioxidant behavior of isoferulic acid but also provide novel theoretical insights applicable to related phenolic compounds. The compound’s multi-target antioxidant profile highlights its potential as a photoprotective agent in sunscreen formulations. Full article
(This article belongs to the Special Issue New Advances of Free-Radical Reactions in Organic Chemistry)
Show Figures

Graphical abstract

22 pages, 3592 KiB  
Article
Crushed Stone Grain Shapes Classification Using Convolutional Neural Networks
by Alexey N. Beskopylny, Evgenii M. Shcherban’, Sergey A. Stel’makh, Irina Razveeva, Alexander L. Mailyan, Diana Elshaeva, Andrei Chernil’nik, Nadezhda I. Nikora and Gleb Onore
Buildings 2025, 15(12), 1982; https://doi.org/10.3390/buildings15121982 - 8 Jun 2025
Viewed by 467
Abstract
Currently, intelligent technologies are becoming both a topical subject for theoretical discussions and a proper tool for transforming traditional industries, including the construction industry. The construction industry intensively uses innovative methods based on intelligent algorithms of various natures. As practice shows, modern intelligent [...] Read more.
Currently, intelligent technologies are becoming both a topical subject for theoretical discussions and a proper tool for transforming traditional industries, including the construction industry. The construction industry intensively uses innovative methods based on intelligent algorithms of various natures. As practice shows, modern intelligent technologies based on AI surpass traditional ones in accuracy and speed of information processing. This study implements methods using convolutional neural networks, which solve an important problem in the construction industry—to classify crushed stone grains by their shape. Rapid determination of the crushed stone grain class will allow determining the content of lamellar and acicular grains, which in turn is a characteristic that affects the strength, adhesion, and filler placement. The classification algorithms were based on the ResNet50, MobileNetV3 Small, and DenseNet121 architectures. Three-dimensional images of acicular, lamellar, and cuboid grains were converted into single-channel digital tensor format. During the laboratory experiment, the proposed intelligent algorithms demonstrated high stability and efficiency. The total processing time for 200 grains, including the photo recording stage, averaged 16 min 41 s, with the accuracy reaching 92%, which is comparable to the results of manual classification by specialists. These models provide for the complete automation of crushed stone grain typing, leading to reduced labor costs and a decreased likelihood of human error. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

32 pages, 1239 KiB  
Review
Adsorption and Photo(electro)catalysis for Micropollutant Degradation at the Outlet of Wastewater Treatment Plants: Bibliometric Analysis and Challenges to Implementation
by Yunzhi Li, Julien G. Mahy and Stéphanie D. Lambert
Processes 2025, 13(6), 1759; https://doi.org/10.3390/pr13061759 - 3 Jun 2025
Viewed by 1417
Abstract
Micropollutants (MPs), which include both natural and manmade substances, are becoming more prevalent in aquatic habitats as a result of the insufficient removal of these compounds in wastewater treatment plants (WWTPs). Advanced remediation techniques are required due to their persistence and potential ecotoxicological [...] Read more.
Micropollutants (MPs), which include both natural and manmade substances, are becoming more prevalent in aquatic habitats as a result of the insufficient removal of these compounds in wastewater treatment plants (WWTPs). Advanced remediation techniques are required due to their persistence and potential ecotoxicological hazards. Although adsorption and photo(electro)catalysis exhibit potential in laboratory-scale investigations, the effects of their use in actual WWTP systems are still poorly understood. However, before large-scale application can be implemented, a number of issues need to be resolved, including material limitations, reactor design and optimization, and actual wastewater complexities. This study critically evaluates the application of adsorption and photo(electro)catalysis to actual wastewater, as well as recent advancements in adsorption and photo(electro)catalytic systems for the removal of micropollutants. We also explore the particular difficulties and strategies involved in the large-scale use of adsorption and photo(electro)catalysis in the treatment of wastewater. Emerging trends such as nanocomposites, metal–organic frameworks (MOFs), heterojunctions, and single-atom catalysts (SACs) are highlighted by the bibliometric analysis. We also evaluate MPs’ ecological effects in aquatic environments and the incorporation of artificial intelligence (AI) for process optimization. A strategy for transferring nanotechnologies from laboratory-scale research to wastewater treatment implementation is presented in this paper. In this strategy, implementation is proposed based on actual wastewater conditions, focusing on the development of adsorbents and catalysts, reactor design and optimization, synergy between adsorption and catalysis, life cycle analysis, and cost–benefit studies. Full article
(This article belongs to the Special Issue Latest Research on Wastewater Treatment and Recycling)
Show Figures

Figure 1

23 pages, 1158 KiB  
Article
Iron(III) Complexes with Substituted Salicylaldehydes: Synthesis, Interaction with DNA and Serum Albumins, and Antioxidant Activity
by Zisis Papadopoulos, Antonios G. Hatzidimitriou and George Psomas
Molecules 2025, 30(11), 2383; https://doi.org/10.3390/molecules30112383 - 29 May 2025
Viewed by 741
Abstract
Metal complexes of endogenous metals, such as iron, copper, and zinc, offer a biocompatible, cost-effective, and eco-friendly alternative to heavy metals for drug design. This study presents the synthesis, structural characterization, and evaluation of the biological activity of eight novel iron(III) complexes with [...] Read more.
Metal complexes of endogenous metals, such as iron, copper, and zinc, offer a biocompatible, cost-effective, and eco-friendly alternative to heavy metals for drug design. This study presents the synthesis, structural characterization, and evaluation of the biological activity of eight novel iron(III) complexes with substituted salicylaldehydes as ligands. The characterization of the complexes involved spectroscopic and physicochemical methods. The structures of two complexes were determined using single-crystal X-ray crystallography. The biological studies of the complexes focused on the interaction of calf-thymus DNA, the (photo)cleavage of pBR322 plasmid DNA (pDNA), the affinity for bovine and human serum albumins, and the antioxidant activity. The complexes interacted with calf-thymus DNA via intercalation with high DNA-binding constants. The complexes exhibited high pDNA-cleavage ability, which is significantly enhanced upon exposure to UVA or UVB irradiation. The complexes can bind tightly and reversibly to both serum albumins, and their binding locations were identified. Finally, the complexes showed moderate ability to scavenge 1,1-diphenyl-picrylhydrazyl and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals with a high ability to reduce hydrogen peroxide. Full article
(This article belongs to the Special Issue Synthesis and Biological Evaluation of Coordination Compounds)
Show Figures

Figure 1

47 pages, 2529 KiB  
Review
Microfluidic Electrochemical Desalination Systems: A Review
by Waad H. Abuwatfa, Haya Taleb, Nour AlSawaftah, Khaled Chahrour, Ghaleb A. Husseini and Naif Darwish
Water 2025, 17(11), 1601; https://doi.org/10.3390/w17111601 - 25 May 2025
Viewed by 937
Abstract
Microfluidic techniques have emerged as promising, efficient, cost-effective, and environmentally friendly desalination solutions. By utilizing fluid dynamics at the microscale, these techniques offer precise control over chemical, biological, and physical processes, presenting advantages such as reduced energy consumption, miniaturization, portability, and enhanced process [...] Read more.
Microfluidic techniques have emerged as promising, efficient, cost-effective, and environmentally friendly desalination solutions. By utilizing fluid dynamics at the microscale, these techniques offer precise control over chemical, biological, and physical processes, presenting advantages such as reduced energy consumption, miniaturization, portability, and enhanced process control. A significant challenge in scaling microfluidic desalination for macro applications is the disparity in flow rates. Current devices operate at microliters per minute, while practical applications require liters daily. Solutions involve integrating multiple units on a single chip and developing stackable chip designs. Innovative designs, such as 3D microfluidic chips, have shown promise in enhancing scalability. Fouling, particularly in seawater environments, presents another major challenge. Addressing fouling through advanced materials, including graphene and nanomaterials, is critical to improving the efficiency and longevity of devices. Advances in microfluidic device fabrication, such as photo-patterned hydrogel membranes and 3D printing, have increased device complexity and affordability. Hybrid fabrication approaches could further enhance membrane quality and efficiency. Energy consumption remains a concern, necessitating research into more energy-efficient designs and integration with renewable energy sources. This paper explores various electrochemical-based microfluidic desalination methods, including dialysis/electrodialysis, capacitive deionization (CDI)/electrochemical capacitive deionization (ECDI), ion concentration polarization (ICP), and electrochemical desalination (ECD). Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

23 pages, 4782 KiB  
Article
Data-Driven Approach for Optimising Plant Species Selection and Planting Design on Outdoor Modular Green Wall with Aesthetic, Maintenance, and Water-Saving Goals
by Caroline M. Y. Law, Hoi Yi Law, Chi Ho Li, Chung Wai Leung, Min Pan, Si Chen, Kenrick C. K. Ho and Yik Tung Sham
Sustainability 2025, 17(8), 3528; https://doi.org/10.3390/su17083528 - 15 Apr 2025
Viewed by 1104
Abstract
Modular green wall, or living wall (LW) system, has evolved worldwide over the past decades as a popular green building feature and a nature-based solution. Differential climatic conditions across the globe make the standardisation of practices inapplicable to local scenarios. LW projects with [...] Read more.
Modular green wall, or living wall (LW) system, has evolved worldwide over the past decades as a popular green building feature and a nature-based solution. Differential climatic conditions across the globe make the standardisation of practices inapplicable to local scenarios. LW projects with differing goals and preferences like aesthetic (such as plant healthiness), water-saving, and minimal plant growth require optimal combinations of plant species to achieve single or multiple goals. This exploratory study aimed to deploy empirical field LW data to optimise analytical models to support plant species selection and LW design. Plant growth performance and water demand data of 29 commonly used plant species in outdoor modular LW systems without irrigation were collected in subtropical Hong Kong for 3 weeks. The 29 species tested were grouped into five plant forms: herbaceous perennials (16 spp), succulents (2 spp), ferns (2 spp), shrubs (7 spp), and trees (2 spp). Plant species-specific plant height, LAI, plant health rating, and water absorption amount were recorded every 6 days, together with photo records. Total water demand varied widely among plant species, ranging from 52.5 to 342.5 mL in 3 weeks (equivalent to 2.5 to 16.3 mL per day). The random forest algorithm proved that the water demand of the species was a dominant predictor of plant health tendency, among other parameters. Hierarchical clustering grouped plant species with similar water demand and health rating tendencies into four groups. The health rating threshold approach identified the top-performing species that displayed a healthy appearance as a basic prerequisite, coupled with one or two optional objectives: (1) water-saving and (2) slow-growing. The comparison among the plant selection scenarios based on projected LW performance (water demand, plant health, and growth) provided sound evidence for the optimisation of LW design for sustainability. LW projects with multiple objectives inherited a multitude of multi-scalar properties; thus, the simulation of LW performance in this study demonstrated a novel data-driven approach to optimise plant species selection and planting design with minimal resource input. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

11 pages, 1062 KiB  
Article
Multisonic Ultracleaning and Laser-Activated Irrigation Effect Compared to Passive Ultrasonic Activation for Debridement in Minimally Invasive Instrumentation of Necrotic Oval Root Canals: An Ex Vivo Histological Analysis
by Mustafa Gündoğar, Olcay Özdemir, Özgecan Gündoğar, Sibel Bektaş, Fadile Nur Demir and Nergiz Bolat
J. Clin. Med. 2025, 14(8), 2597; https://doi.org/10.3390/jcm14082597 - 10 Apr 2025
Viewed by 973
Abstract
Objectives: This study aims to evaluate the effectiveness of current conventional and advanced irrigation techniques after minimally invasive instrumentation in necrotic oval root canals by histological analysis. Methods: Seventy extracted necrotic lower premolars with single oval canals classified utilizing bidirectional radiographs [...] Read more.
Objectives: This study aims to evaluate the effectiveness of current conventional and advanced irrigation techniques after minimally invasive instrumentation in necrotic oval root canals by histological analysis. Methods: Seventy extracted necrotic lower premolars with single oval canals classified utilizing bidirectional radiographs (mesiodistal diameter 2.5 times larger than buccolingual) were prepared up to 20.04 v. The samples were assigned to five experimental groups (n = 14) using the complementary irrigation technique: needle (control), passive ultrasonic, and shockwave-enhanced emission photo-acoustic streaming activation using Er:YAG laser (SWEEPS), Er,Cr:YSGG laser (Waterlase iPlus), and multisonic ultracleaning technology (GentleWave). After irrigation protocols, the roots were demineralized and the apical 5 mm was multi-sliced and processed for histologic examination. The residual necrotic tissue and debris percentage was calculated via image analysis software. One-way ANOVA and Tukey’s test were used to verify the variables influencing debridement (p < 0.05). Results: The mean value of the GentleWave group was the record low at 1.54 ± 1.46, and the utmost was needle irrigation with 15.64 ± 7.23. The main effect of techniques on the debridement was statistically significant (p < 0.001). The course of debridement effectiveness, according to the levels of significance between the groups, was as follows: Multisonic ultracleaning > Er:YAG > Er,Cr:YSGG > Passive ultrasonic irrigation > Needle irrigation (p <0.05). Conclusions: In necrotic oval-shaped canals after minimally invasive instrumentation, multisonic ultracleaning with updated software was considerably more effective in removing remnants in the apical level. Er:YAG and Er,Cr:YSGG lasers were highly promising, with results close to multisonic ultracleaning. It should be considered that needle irrigation and passive ultrasonic activation may not be able to provide competent debridement in treating such types of root canals. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

16 pages, 4066 KiB  
Article
Development of a Reliable Device for ‘Fluorokinetic’ Analysis Based on a Portable Diode Array MEMS Fluorimeter
by Domingo González-Arjona and Germán López-Pérez
Chemosensors 2025, 13(4), 128; https://doi.org/10.3390/chemosensors13040128 - 3 Apr 2025
Viewed by 2622
Abstract
A device was developed to study the evolution of fluorescence spectra as a function of time. A previously designed fluorimeter based on the diode array mini-spectrometer CM12880MA was used. The control and measurement were carried out by programming a SAM21D microcontroller. Considerations regarding [...] Read more.
A device was developed to study the evolution of fluorescence spectra as a function of time. A previously designed fluorimeter based on the diode array mini-spectrometer CM12880MA was used. The control and measurement were carried out by programming a SAM21D microcontroller. Considerations regarding the optimization of acquisition speed, memory, and computer interface have been analyzed and optimized. As a result, a very versatile device with great adaptability, reduced dimensions, portability, and a low budget (under EUR 500) has been built. The sensitivity, controlled by the integration time of the photodiodes, can be adjusted between 10 µs and 20 s, thus allowing sampling times ranging from 10 ms to more than 10 h. Under these conditions, chemical rate constants from 20 s−1 to 10−8 s−1 can be experimentally determined. It has a very wide operating range for the kinetic rate constant determination, over six orders of magnitude. As proof of the system performance, the oxidation reaction of Thiamine in a basic medium to form fluorescent Thiochrome has been employed. The evolution of the emission spectrum has been followed, and the decomposition rate constant has been measured at 2.1 × 10−3 s−1, a value which matches those values reported in the literature for this system. A Thiochrome calibration curve has also been performed, obtaining a detection limit of 13 nM, consistent with literature data. Additionally, the stability of Thiochrome has been tested, being the photo-decomposition rate constants 1.8 × 10−4 s−1 and 3.0 × 10−7 s−1, in the presence and absence of UV light (365 nm), respectively. Finally, experiments have been designed to obtain, in a single measurement, the values of both rate constants: the formation of Thiochrome from Thiamine and its photo-decomposition under UV light to a non-fluorescent product. The rate constant values obtained are in good agreement with those previously obtained through independent experiments under the same experimental conditions. These results show that, under these conditions, Thiochrome can be considered an unstable intermediate in a chemical reaction with successive stages. Full article
Show Figures

Graphical abstract

24 pages, 6126 KiB  
Article
Enhanced H2 Production Efficiency in Photo-Reforming of PET Waste Plastic Using Dark-Deposited Atom/Nanocomposite Pt/TiO2 Photocatalysts
by E. M. N. Thiloka Edirisooriya, Punhasa S. Senanayake, Pei Xu and Huiyao Wang
Catalysts 2025, 15(4), 334; https://doi.org/10.3390/catal15040334 - 31 Mar 2025
Cited by 1 | Viewed by 681
Abstract
Photo-reforming waste polyethylene terephthalate (PET) in alkaline aqueous solutions is a novel approach for green hydrogen production. This study focuses on improving the catalytic efficiency of Pt/TiO2 for the photo-reforming of waste PET using an innovative dark deposition method to deposit Pt [...] Read more.
Photo-reforming waste polyethylene terephthalate (PET) in alkaline aqueous solutions is a novel approach for green hydrogen production. This study focuses on improving the catalytic efficiency of Pt/TiO2 for the photo-reforming of waste PET using an innovative dark deposition method to deposit Pt single atoms on nano TiO2 (Pt/TiO2), thereby increasing the catalytic efficiency while reducing the cost of the catalyst. The precursor concentration was optimized to control the size and distribution of the Pt clusters/atoms, and the TiO2 support was annealed at different temperatures to modify the properties of Pt/TiO2. Nine Pt/TiO2 catalysts were synthesized using different Pt precursor concentrations and annealing temperatures. The catalysts were characterized to measure their morphological, crystalline, and electronic properties, as well as their hydrogen yields via PET photo-reforming. The hydrogen conversion efficiency and external quantum yield (EQY) were calculated and compared with those of traditional direct-deposited catalysts. The correlation between the different characteristics of the dark-deposited and direct-deposited catalysts and their influence on the hydrogen yield in the photo-reforming process was statistically analyzed using principal component analysis. Catalysts deposited under dark conditions exhibited 5-fold and 7-fold enhancements in hydrogen conversion efficiency and EQY, respectively, compared to conventional catalytic systems. These findings indicate that the proposed catalytic system provides a viable solution for minimizing Pt loading, reducing the cost of the catalyst, and maintaining a higher hydrogen conversion efficiency. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Figure 1

Back to TopTop