Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (380)

Search Parameters:
Keywords = single domains antibody

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1600 KiB  
Article
Characterization of a Potential Therapeutic Anti-Canine PD-1 Single Domain Antibody Produced in Yeast
by Kartikeya Vijayasimha, Andrew J. Annalora, Dan V. Mourich, Carl E. Ruby, Brian P. Dolan, Laura Crowell, Vu Ha Minh Le, Maureen K. Larson, Shay Bracha and Christopher K. Cebra
Vet. Sci. 2025, 12(7), 649; https://doi.org/10.3390/vetsci12070649 - 8 Jul 2025
Viewed by 651
Abstract
A single domain antibody (SDAb) targeting canine PD-1 was developed as a potential immunotherapeutic for canine cancer. An alpaca was immunized with canine PD-1 protein, and a phage-display library was constructed using mRNA isolated from peripheral lymphocytes. Screening of the library yielded multiple [...] Read more.
A single domain antibody (SDAb) targeting canine PD-1 was developed as a potential immunotherapeutic for canine cancer. An alpaca was immunized with canine PD-1 protein, and a phage-display library was constructed using mRNA isolated from peripheral lymphocytes. Screening of the library yielded multiple SDAb candidates capable of nanomolar binding to canine PD-1. Among these, clone STX-1b5 demonstrated high expression in a yeast-based recombinant system and was selected for further characterization. Binding and competition assays using ELISA confirmed its ability to bind canine PD-1 and block PDL-1 interaction. In silico structural modeling supported the interaction of STX-1b5 with key PD-1 residues implicated in ligand binding. These findings support the feasibility of using SDAbs and cost-effective yeast expression systems to generate immunotherapeutics for veterinary use, with STX-1b5 representing a promising lead candidate for future clinical development. Full article
(This article belongs to the Section Nutritional and Metabolic Diseases in Veterinary Medicine)
Show Figures

Figure 1

29 pages, 5028 KiB  
Article
Moloney Murine Leukemia Virus-like Nanoparticles Pseudo-Typed with SARS-CoV-2 RBD for Vaccination Against COVID-19
by Bernhard Kratzer, Pia Gattinger, Peter A. Tauber, Mirjam Schaar, Al Nasar Ahmed Sehgal, Armin Kraus, Doris Trapin, Rudolf Valenta and Winfried F. Pickl
Int. J. Mol. Sci. 2025, 26(13), 6462; https://doi.org/10.3390/ijms26136462 - 4 Jul 2025
Viewed by 609
Abstract
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of [...] Read more.
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of yet. Here, we variably fused the wildtype SARS-CoV-2 spike, its receptor-binding domain (RBD) and nucleocapsid (NC) to the minimal CD16b-GPI anchor acceptor sequence for expression on the surface of VNP. Moreover, a CD16b-GPI-anchored single-chain version of IL-12 was tested for its adjuvanticity. VNPs expressing RBD::CD16b-GPI alone or in combination with IL-12::CD16b-GPI were used to immunize BALB/c mice intramuscularly and subsequently to investigate virus-specific humoral and cellular immune responses. CD16b-GPI-anchored viral molecules and IL-12-GPI were well-expressed on HEK-293T-producer cells and purified VNPs. After the immunization of mice with VNPs, RBD-specific antibodies were only induced with RBD-expressing VNPs, but not with empty control VNPs or VNPs solely expressing IL-12. Mice immunized with RBD VNPs produced RBD-specific IgM, IgG2a and IgG1 after the first immunization, whereas RBD-specific IgA only appeared after a booster immunization. Protein/peptide microarray and ELISA analyses confirmed exclusive IgG reactivity with folded but not unfolded RBD and showed no specific IgG reactivity with linear RBD peptides. Notably, booster injections gradually increased long-term IgG antibody avidity as measured by ELISA. Interestingly, the final immunization with RBD–Omicron VNPs mainly enhanced preexisting RBD Wuhan Hu-1-specific antibodies. Furthermore, the induced antibodies significantly neutralized SARS-CoV-2 and specifically enhanced cellular cytotoxicity (ADCC) against RBD protein-expressing target cells. In summary, VNPs expressing viral proteins, even in the absence of adjuvants, efficiently induce functional SARS-CoV-2-specific antibodies of all three major classes, making this technology very interesting for future vaccine development and boosting strategies with low reactogenicity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 3401 KiB  
Article
Interleukin 21-Armed EGFR-VHH-CAR-T Cell Therapy for the Treatment of Esophageal Squamous Cell Carcinoma
by Chenglin Zhang, Yanyan Liu, Haoran Guo, Ying Peng, Lei Huang, Shuangshuang Lu and Zhimin Wang
Biomedicines 2025, 13(7), 1598; https://doi.org/10.3390/biomedicines13071598 - 30 Jun 2025
Viewed by 494
Abstract
Background/Objectives: Esophageal squamous cell carcinoma (ESCC) is a common form of esophageal cancer with a poor prognosis and limited treatment options. Epidermal growth factor receptor (EGFR), an overexpressed oncogenic gene in all ESCC patients, is an attractive target for developing therapies against ESCC. [...] Read more.
Background/Objectives: Esophageal squamous cell carcinoma (ESCC) is a common form of esophageal cancer with a poor prognosis and limited treatment options. Epidermal growth factor receptor (EGFR), an overexpressed oncogenic gene in all ESCC patients, is an attractive target for developing therapies against ESCC. There is an extremely urgent need to develop immunotherapy tools targeting EGFR for the treatment of ESCC. Methods: In this study, we developed human Interleukin-21 (hIL-21)-armed, chimeric-antigen-receptor-modified T (CAR-T) cells targeting EGFR as a new therapeutic approach. The CAR contains a variable domain of the llama heavy chain of heavy-chain antibodies (VHHs), also known as nanobodies (Nbs), as a promising substitute for the commonly used single-chain variable fragment (ScFv) for CAR-T development. Results: We show that nanobody-derived, EGFR-targeting CAR-T cells specifically kill EGFR-positive esophageal cancer cells in vitro and in animal models. Human IL-21 expression in CAR-T cells further improved their expansion and antitumor ability and were observed to secrete more interferon-gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and Interleukin-2 (IL-2) when co-cultured with ESCC cell lines in vitro. More CD8+ CAR-T cells and CD3+CD8+CD45RO+CD62L+ central memory T cells were detected in CAR-T cells expressing hIL-21 cells. Notably, hIL-21-expressing CAR-T cells showed superior antitumor activity in vivo in a KYSE-150 xenograft mouse model. Conclusions: Our results show that hIL-21-armed, nanobody-derived, EGFR-specific CAR-T cell therapy is a highly promising option for treating ESCC patients. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

17 pages, 1733 KiB  
Article
Humanized VHH-hFc Fusion Proteins Targeting the L-HN Fragment of Tetanus Toxin Provided Protection In Vivo
by Yating Li, Kexuan Cheng, Jiazheng Guo, Yujia Jiang, Qinglin Kang, Rong Wang, Peng Du, Chen Gao, Yunzhou Yu, Zhixin Yang, Wei Wang and Jiansheng Lu
Antibodies 2025, 14(2), 48; https://doi.org/10.3390/antib14020048 - 13 Jun 2025
Viewed by 461
Abstract
Background: Tetanus toxin, produced by Clostridium tetani, is the second deadliest known toxin. Antibodies capable of neutralizing tetanus toxin (TeNT) are vital for preventing and treating tetanus disease. Methods: Herein, we screened thirty-six single variable domains on a heavy chain (VHHs) binding [...] Read more.
Background: Tetanus toxin, produced by Clostridium tetani, is the second deadliest known toxin. Antibodies capable of neutralizing tetanus toxin (TeNT) are vital for preventing and treating tetanus disease. Methods: Herein, we screened thirty-six single variable domains on a heavy chain (VHHs) binding to the light chain (L) and the translocation domain (HN) (L-HN) fragment of TeNT from a phage-display library. Then, the L-HN-specific clones were identified, humanized, and fused with a human fragment crystallizable region (hFc) to form humanized VHH-hFc fusion proteins. Results: The humanized VHH-hFc fusion proteins TL-16-h1-hFc, TL-25-h1-hFc, and TL-34-h1-hFc possessed potent efficacy with high binding affinity, specificity, and neutralizing activity. Only 0.3125 μg was required for TL-16-h1-hFc or TL-25-h1-hFc, and 0.625 μg was required for TL-34-h1-hFc to provide full protection against 10 × Lethal Dose 50 (LD50) TeNT. In the prophylactic setting, 125 μg/kg of TL-16-h1-hFc or TL-25-h1-hFc provided full protection even when they were injected 12 days before exposure to 10 × LD50 TeNT, while TL-34-h1-hFc was less effective. In the therapeutic setting, 25 μg/kg of TL-16-h1-hFc or TL-25-h1-hFc could provide complete protection when administered 24 h after exposure to 5 × LD50 TeNT, while TL-34-h1-hFc required 50 μg/kg. Conclusion: Our results suggest that TL-16-h1-hFc, TL-25-h1-hFc, and TL-34-h1-hFc provide a bright future for the development of anti-TeNT preventive or therapeutic drugs. Full article
Show Figures

Figure 1

20 pages, 2626 KiB  
Article
Development of an Influenza/COVID-19 Combination mRNA Vaccine Containing a Novel Multivalent Antigen Design That Enhances Immunogenicity of Influenza Virus B Hemagglutinins
by Elena Thornhill-Wadolowski, Dana L. Ruter, Feng Yan, Mayur Gajera, Evan Kurt, Labannya Samanta, Kimberlin Leigh, Jianbo Zhu, Zhijun Guo, Zihao Wang, Yuanqing Liu, Jaewoo Lee and Marcin Bugno
Vaccines 2025, 13(6), 628; https://doi.org/10.3390/vaccines13060628 - 11 Jun 2025
Viewed by 2002
Abstract
Background/Objectives: Developing next-generation mRNA-based seasonal influenza vaccines remains challenging, primarily because of the relatively low immunogenicity of influenza B hemagglutinin (HA) antigens. We describe a systematic vaccine development strategy that combined vector and antigen design optimization. Methods: Novel untranslated region (UTR) sequences and [...] Read more.
Background/Objectives: Developing next-generation mRNA-based seasonal influenza vaccines remains challenging, primarily because of the relatively low immunogenicity of influenza B hemagglutinin (HA) antigens. We describe a systematic vaccine development strategy that combined vector and antigen design optimization. Methods: Novel untranslated region (UTR) sequences and a hybrid poly(A) tail were used to increase plasmid stability and mRNA expression. Fusion proteins containing HA antigens linked by T4 foldon domains were engineered to enhance the immune responses against influenza B HA antigens and to permit the expression of multiple HA ectodomains from a single mRNA species. The vaccine performance was verified in a traditional encapsulated lipid nanoparticle (LNP) formulation that requires long-term storage at temperatures below −15 °C as well as in a proprietary thermo-stable LNP formulation developed for the long-term storage of the mRNA vaccine at 2–8 °C. Results: In preclinical studies, our next-generation seasonal influenza vaccine tested alone or as a combination influenza/COVID-19 mRNA vaccine elicited hemagglutination inhibition (HAI) titers significantly higher than Fluzone HD, a commercial inactivated influenza vaccine, across all 2024/2025 seasonal influenza strains, including the B/Victoria lineage strain. At the same time, the combination mRNA vaccine demonstrated superior neutralizing antibody titers to 2023/2024 Spikevax, a commercial COVID-19 comparator mRNA vaccine. Conclusions: Our data demonstrate that the multimerization of antigens expressed as complex fusion proteins is a powerful antigen design approach that may be broadly applied toward mRNA vaccine development. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

15 pages, 1763 KiB  
Article
Single Tri-Epitopic Antibodies (TeAbs) to Botulinum Neurotoxin Serotypes B, E, and F Recapitulate the Full Potency of a Combination of Three Monoclonal Antibodies in Toxin Neutralization
by Jianlong Lou, Wei Hua Wen, Fraser Conrad, Christina C. Tam, Consuelo Garcia-Rodriguez, Shauna Farr-Jones and James D. Marks
Toxins 2025, 17(6), 281; https://doi.org/10.3390/toxins17060281 - 4 Jun 2025
Viewed by 541
Abstract
Recombinant monoclonal antibody (mAb) botulinum neurotoxin (BoNT) antitoxins, consisting of three mAbs that bind non-overlapping epitopes, are highly potent. However, the three-mAb mixtures pose unique development and manufacturing challenges. Combining even more mAbs to create multivalent antitoxin drugs multiplies those challenges. We previously [...] Read more.
Recombinant monoclonal antibody (mAb) botulinum neurotoxin (BoNT) antitoxins, consisting of three mAbs that bind non-overlapping epitopes, are highly potent. However, the three-mAb mixtures pose unique development and manufacturing challenges. Combining even more mAbs to create multivalent antitoxin drugs multiplies those challenges. We previously reported that a single tri-epitopic IgG1-based mAb (TeAb) containing the variable domains of the three parental BoNT/A mAbs and an Fc was as potent as the combination of three IgGs in the mouse neutralization assay (MNA). Here, we extended the tri-epitopic strategy to three other BoNT serotypes. Each TeAb (TeAb-B for BoNT/B, TeAb-E for BoNT/E, and TeAb-F for BoNT/F) binding was measured using fluorescence-activated cell sorting and flow fluorimetry, and the potency was tested in the MNA. The three TeAbs displayed binding affinities that were the same within error of the parental IgGs for each epitope, and all had higher avidity to each serotype of BoNT than that of the parental mAbs. The potency of the BoNT/B, BoNT/E, and BoNT/F TeAbs was similar to the combinations of the three parental IgGs binding BoNT/B, BoNT/E, and BoNT/F in the MNA. We now have four examples of a single TeAb recapitulating the affinity and in vivo potency of a three-mAb antitoxin. The tri-epitopic strategy could be applied to streamline the production and bioanalytics of antibody drugs where three-mAb binding is required for activity. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

18 pages, 4356 KiB  
Article
The Intrabody Against Murine Double Minute 2 via a p53-Dependent Pathway Induces Apoptosis of Cancer Cell
by Changli Wang, Wanting Liu, Haotian Guo, Tian Lan, Tianyi Wang and Bing Wang
Int. J. Mol. Sci. 2025, 26(11), 5286; https://doi.org/10.3390/ijms26115286 - 30 May 2025
Viewed by 486
Abstract
Murine double minute 2 (MDM2) is involved in various cancers and is an attractive target. The RING domain of MDM2 has been discussed as an alternative target to stabilize p53. Designing drugs to target the RING domain of MDM2 is an alternative approach [...] Read more.
Murine double minute 2 (MDM2) is involved in various cancers and is an attractive target. The RING domain of MDM2 has been discussed as an alternative target to stabilize p53. Designing drugs to target the RING domain of MDM2 is an alternative approach to preventing MDM2-mediated deactivation of p53. In this study, we obtained a human VH single-domain antibody and revealed its regulatory effects and mechanisms. The RING domain of MDM2 was synthesized using a chemical synthesis method, and antibodies against the MDM2 RING domain were screened from a human VH single-domain antibody library and expressed intracellularly. A nuclear localization sequence was designed to ensure intrabody efficiency. The binding activity of the individually cloned antibodies was detected using ELISA. MTT and flow cytometry assays were used to detect the reactions related to intrabody in vitro. The combination and its influence on MDM2 were detected using immunoprecipitation assays, confocal microscopy, and Western blotting. The effects on apoptosis-related mitochondrial pathways downstream of p53 were examined using Western blotting. The influence on cell cycle distribution and cyclin-related proteins was detected using flow cytometry and Western blotting. A549 cell xenografts were constructed to assess the effect of intrabodies on growth in vivo. The molecular mechanisms of MDM2 and p53 were studied using Western blotting. Eight individual cloned antibodies were positive compared to the signals on the BSA-coated plates, especially intrabodies VH-HT3. In A549 and MCF-7 cell lines, VH-HT3 exhibited significant inhibitory effects on cell proliferation and apoptosis. VH-HT3 co-localized with MDM2 in the nucleus and cytoplasm. The specific combination of VH-HT3 triggered no significant effect on MDM2 activity for p53 degradation but upregulated the levels of factors downstream of p53, especially those in the mitochondrial apoptosis pathway. Moreover, VH-HT3 induced cell cycle arrest, and the expression of cyclin-related proteins was consistent with this observation. VH-HT3 also retarded the growth of A549 xenografts in vivo. Further tests suggested that VH-HT3 inhibited MDM2 function by increasing HIPK2 levels and activating p53 at the Ser46 site. VH-HT3, prepared from a human VH single-domain antibody library, inhibited p53 activity and produced a tumor-suppressive effect. The intrabody VH-HT3 is a candidate for the development of novel MDM2 inhibitors. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 23341 KiB  
Article
Discovery of Synergistic Broadly Neutralizing Antibodies Targeting Non-Dominant Epitopes on SARS-CoV-2 RBD and NTD
by Hualong Feng, Zuowei Wang, Ling Li, Yunjian Li, Maosheng Lu, Xixian Chen, Lin Hu, Yi Sun, Ruiping Du, Rongrong Qin, Xuanyi Chen, Liwei Jiang and Teng Zuo
Vaccines 2025, 13(6), 592; https://doi.org/10.3390/vaccines13060592 - 30 May 2025
Viewed by 658
Abstract
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal [...] Read more.
Background/Objectives: Identification and characterization of broadly neutralizing monoclonal antibodies from individuals exposed to SARS-CoV-2, either by infection or vaccination, can inform the development of next-generation vaccines and antibody therapeutics with pan-SARS-CoV-2 protection. Methods: Through single B cell sorting and RT-PCR, monoclonal antibodies (mAbs) were isolated from a donor who experienced a BA.5 or BF.7 breakthrough infection after three doses of inactivated vaccines. Their binding and neutralizing capacities were measured with ELISA and a pseudovirus-based neutralization assay, respectively. Their epitopes were mapped by competition ELISA and site-directed mutation. Results: Among a total of 67 spike-specific mAbs cloned from the donor, four mAbs (KXD643, KXD652, KXD681, and KXD686) can neutralize all tested SARS-CoV-2 variants from wild-type to KP.3. Moreover, KXD643, KXD652, and KXD681 belong to a clonotype encoded by IGHV5-51 and IGKV1-13 and recognize the cryptic and conserved RBD-8 epitope on the receptor-binding domain (RBD). In contrast, KXD686 is encoded by IGHV1-69 and IGKV3-20 and targets a conserved epitope (NTD Site iv) outside the antigenic supersite (NTD Site i) of the N-terminal domain (NTD). Notably, antibody cocktails containing these two groups of mAbs can neutralize SARS-CoV-2 more potently due to synergistic effects. In addition, bispecific antibodies derived from KXD643 and KXD686 demonstrate further improved neutralizing potency compared to antibody cocktails. Conclusions: These four mAbs can be developed as candidates of pan-SARS-CoV-2 antibody therapeutics through further antibody engineering. On the other hand, vaccines designed to simultaneously elicit neutralizing antibodies towards RBD-8 and NTD Site iv have the potential to provide pan-SARS-CoV-2 protection. Full article
Show Figures

Figure 1

40 pages, 3437 KiB  
Review
Nanobodies: From Discovery to AI-Driven Design
by Haoran Zhu and Yu Ding
Biology 2025, 14(5), 547; https://doi.org/10.3390/biology14050547 - 14 May 2025
Cited by 1 | Viewed by 2256
Abstract
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces [...] Read more.
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces the historical discovery of nanobodies, highlighting key milestones in their isolation, characterization, and therapeutic development. We then explore their structure–function relationship, emphasizing features like their single-domain architecture and long CDR3 loop that contribute to their binding versatility. Additionally, we examine the growing interest in multiepitope nanobodies, in which binding to different epitopes on the same antigen not only enhances neutralization and specificity but also allows these nanobodies to be used as controllable modules for precise antigen manipulation. This review also discusses the integration of AI in nanobody design and optimization, showcasing how machine learning and deep learning approaches are revolutionizing rational design, humanization, and affinity maturation processes. With continued advancements in structural biology and computational design, nanobodies are poised to play an increasingly vital role in addressing both existing and emerging biomedical challenges. Full article
Show Figures

Figure 1

13 pages, 1960 KiB  
Article
Generative Deep Learning Design of Single-Domain Antibodies Against Venezuelan Equine Encephalitis Virus
by Jinny L. Liu, Gabrielle C. Bayacal, Jerome Anthony E. Alvarez, Lisa C. Shriver-Lake, Ellen R. Goldman and Scott N. Dean
Antibodies 2025, 14(2), 41; https://doi.org/10.3390/antib14020041 - 14 May 2025
Viewed by 920
Abstract
Background/Objectives: Venezuelan equine encephalitis virus (VEEV) represents a significant biothreat with no FDA-approved vaccine currently available, highlighting the need for alternative therapeutic strategies. Single-domain antibodies (sdAbs) present a potential alternative to conventional antibodies, due to their small size and ability to recognize cryptic [...] Read more.
Background/Objectives: Venezuelan equine encephalitis virus (VEEV) represents a significant biothreat with no FDA-approved vaccine currently available, highlighting the need for alternative therapeutic strategies. Single-domain antibodies (sdAbs) present a potential alternative to conventional antibodies, due to their small size and ability to recognize cryptic epitopes. Methods: This research describes the development and preliminary evaluation of VEEV-binding sdAbs generated using a generative artificial intelligence (AI) platform. Using a dataset of known alphavirus-binding sdAbs, the AI model produced sequences with predicted affinity for the E2 glycoprotein of VEEV. These candidate sdAbs were expressed in a bacterial periplasmic system and purified for initial assessment. Results: Enzyme-linked immunosorbent assays (ELISAs) indicated binding activity of the sdAbs to VEEV antigens. In vitro neutralization tests suggested inhibition of VEEV infection in cultured cells for some of the candidates. Conclusions: This study demonstrates how generative AI can expedite antiviral therapeutic development and establishes a framework for quick responses to emerging viral threats when extensive example databases are unavailable. Additional refinement and validation of AI-generated sdAbs could establish effective VEEV therapeutics. Full article
(This article belongs to the Section Antibody Discovery and Engineering)
Show Figures

Graphical abstract

26 pages, 7008 KiB  
Article
Single-Domain Antibodies That Specifically Recognize Intact Capsids of Multiple Foot-and-Mouth Disease Serotype O Strains
by Michiel M. Harmsen, Nishi Gupta, Quillan Dijkstra, Sandra van de Water, Marga van Setten and Aldo Dekker
Vaccines 2025, 13(5), 500; https://doi.org/10.3390/vaccines13050500 - 8 May 2025
Viewed by 630
Abstract
Background/Objectives: Intact (146S) foot-and-mouth disease virus (FMDV) particles easily dissociate into 12S particles with a concomitant decreased immunogenicity. Vaccine quality control with 146S-specific single-domain antibodies (VHHs) is hampered by the high strain specificity of most 146S-specific VHHs. This study aimed to isolate 146S-specific [...] Read more.
Background/Objectives: Intact (146S) foot-and-mouth disease virus (FMDV) particles easily dissociate into 12S particles with a concomitant decreased immunogenicity. Vaccine quality control with 146S-specific single-domain antibodies (VHHs) is hampered by the high strain specificity of most 146S-specific VHHs. This study aimed to isolate 146S-specific VHHs that recognize all serotype O strains. Methods: Biopanning was performed with the FMDV strain O/SKR/7/2010 146S, using a secondary library of mutagenized M170F VHH that did not recognize O/SKR/7/2010 or using phage-display libraries from llamas immunized with other serotype O strains. Novel VHHs were yeast-produced and their strain-, particle-, and antigenic-site specificities were determined by ELISA. Results: M170F mutagenesis did not improve the cross-reaction with O/SKR/7/2010. However, selection from immune libraries resulted in four VHHs that exhibited high 146S specificity for all five serotype O strains analyzed. These VHHs presumably recognize all serotype O strains since the five strains analyzed represent different phylogenetic clades. They bind the same antigenic site as M170F, which was previously shown to be a conserved site in serotypes A and O, and which has an altered 3D structure when 146S dissociates into 12S particles. M916F had the lowest limit of detection, which varied from 0.7 to 5.9 ng/mL 146S particles for three serotype O strains. Conclusions: We identified four VHHs (M907F, M910F, M912F, and M916F) that specifically bind 146S particles of probably all serotype O strains. They enable further improved FMDV vaccine quality control. Full article
(This article belongs to the Special Issue Vaccine and Vaccination in Veterinary Medicine)
Show Figures

Figure 1

11 pages, 358 KiB  
Article
Vaccine-Induced Humoral and Cellular Response to SARS-CoV-2 in Multiple Sclerosis Patients on Ocrelizumab
by Jelena Drulovic, Olivera Tamas, Neda Nikolovski, Nikola Momcilovic, Vanja Radisic, Marko Andabaka, Bojan Jevtic, Goran Stegnjaic, Milica Lazarevic, Nikola Veselinovic, Maja Budimkic, Sarlota Mesaros, Djordje Miljkovic and Tatjana Pekmezovic
Vaccines 2025, 13(5), 488; https://doi.org/10.3390/vaccines13050488 - 30 Apr 2025
Viewed by 774
Abstract
Background/Objectives: The aim of our study was to investigate B cell and T cell responses in people with multiple sclerosis (PwMS) treated with ocrelizumab, a humanized anti-CD20 antibody, who were vaccinated with second and/or booster doses of various vaccine brands against COVID-19. [...] Read more.
Background/Objectives: The aim of our study was to investigate B cell and T cell responses in people with multiple sclerosis (PwMS) treated with ocrelizumab, a humanized anti-CD20 antibody, who were vaccinated with second and/or booster doses of various vaccine brands against COVID-19. Additionally, we detected the outcomes related to COVID-19 in PwMS after vaccination, based on follow-up for at least 12 months. Methods: We enrolled 91 PwMS on ocrelizumab and 42 healthy controls (HCs) in a prospective, single-center study, conducted at the Clinic of Neurology, UCCS, between January 2022 and October 2024. The serological responses were measured using the spike receptor-binding domain (RBD) Architect SARS-CoV-2 IgG Quant kit (Abbot), and cellular responses were measured by quantifying IFN-γ secretion in blood incubated with SARS-CoV-2 antigens. Results: A total of 58.2% (53/91) of PwMS on ocrelizumab and 100% of the HCs (42/42) were seropositive after a second or booster vaccination (p < 0.001), irrespective of the vaccine brand received. Anti-spike antibody levels were significantly lower in PwMS on ocrelizumab compared to the HCs (p < 0.001), again irrespective of the vaccine type. Interferon-γ responses were detected in 95.6% of the PwMS receiving ocrelizumab therapy and 97.6% of HCs after vaccination (p = 0.570). In our cohort, PCR-confirmed SARS-CoV-2 infections after vaccination occurred in a similar proportion of the PwMS (45/91, 49.5%) and HCs (15/32, 46.9%) (p = 0.139). Most of the PwMS (36/45, 79.2%) and HCs (13/15, 87.8%) had COVID-19 of mild severity. Conclusions: PwMS treated with ocrelizumab developed diminished humoral and robust cellular responses following two and three SARS-CoV-2 vaccinations. The obtained immunity after SARS-CoV-2 vaccination may translate into lower incidence and severity of COVID-19. Full article
(This article belongs to the Special Issue Effectiveness and Safety of Vaccines in Special Populations)
Show Figures

Figure 1

22 pages, 2019 KiB  
Article
A Single-Domain VNAR Nanobody Binds with High-Affinity and Selectivity to the Heparin Pentasaccharide Fondaparinux
by Martha Gschwandtner, Rupert Derler, Elisa Talker, Christina Trojacher, Nina Gubensäk, Walter Becker, Tanja Gerlza, Zangger Klaus, Pawel Stocki, Frank S. Walsh, Julia Lynn Rutkowski and Andreas Kungl
Int. J. Mol. Sci. 2025, 26(9), 4045; https://doi.org/10.3390/ijms26094045 - 24 Apr 2025
Viewed by 877
Abstract
Glycosaminoglycans (GAGs) are key ligands for proteins involved in physiological and pathological processes. Specific GAG-binding patterns are rarely identified, with the heparin pentasaccharide as an Antithrombin-III ligand being the best characterized. Generating glycan-specific antibodies is difficult due to their size, pattern dispersion, and [...] Read more.
Glycosaminoglycans (GAGs) are key ligands for proteins involved in physiological and pathological processes. Specific GAG-binding patterns are rarely identified, with the heparin pentasaccharide as an Antithrombin-III ligand being the best characterized. Generating glycan-specific antibodies is difficult due to their size, pattern dispersion, and flexibility. Single-domain variable new antigen receptors (VNAR nanobodies) from nurse sharks are highly soluble, stable, and versatile. Their unique properties suggest advantages over conventional antibodies, particularly for challenging biotherapeutic targets. Here we have used VNAR semi-synthetic phage libraries to select high-affinity fondaparinux-binding VNARs that did not show cross-reactivity with other GAG species. Competition ELISA and surface plasmon resonance identified a single fondaparinux-selective VNAR clone. This VNAR exhibited an extraordinarily stable protein fold: the beta-strands are stabilized by a robust hydrophobic network, as revealed by heteronuclear NMR. Docking fondaparinux to the VNAR structure revealed a large contact surface area between the CDR3 loop of the antibody and the glycan. Fusing the VNAR with a human Fc domain resulted in a stable product with a high affinity for fondaparinux (Kd = 9.3 × 10−8 M) that could efficiently discriminate between fondaparinux and other glycosaminoglycans. This novel glycan-targeting screening technology represents a promising therapeutic strategy for addressing GAG-related diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 3207 KiB  
Article
Integrating Biochemical and Computational Approaches Reveal Structural Insights in Trastuzumab scFv-Fc Antibody Engineering
by Olga Bednova, Jessica Pougoue Ketchemen, Hazem Mslati, Mark Barok, Heikki Joensuu, Natalie Zeytuni, Francesco Gentile, Leon Sanche, Humphrey Fonge and Jeffrey Victor Leyton
Biomolecules 2025, 15(5), 606; https://doi.org/10.3390/biom15050606 - 22 Apr 2025
Viewed by 945
Abstract
Antibody-based agents have become a preferred treatment for various diseases, including cancer, due to significant advances in antibody engineering. The use of single-chain Fv-Fcs (scFv-Fcs) has been a promising engineering approach for therapeutic design. The concept is that the Fc provides increased stability [...] Read more.
Antibody-based agents have become a preferred treatment for various diseases, including cancer, due to significant advances in antibody engineering. The use of single-chain Fv-Fcs (scFv-Fcs) has been a promising engineering approach for therapeutic design. The concept is that the Fc provides increased stability and target binding and ultimately improves performance. However, the structural and dynamic relationship between the variable and Fc domains, which are fused in close proximity, and the impact on stability and target binding are not well understood. This study evaluated trastuzumab-derived scFv-Fc antibodies, focusing on the impact of their design on important biopharmaceutical parameters. Computational modelling and molecular dynamics, alongside experimental studies, were used to ascertain their dynamics, expression and purification, stabilities, and binding potencies. The results showed that the scFv subunits exhibited stochastic interplays that lead to diverse shapes and were associated with functional performance. This new understanding of scFv-Fc antibodies and their structural and functional nuances provides important details to further guide the design of more effective and less toxic therapeutics. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

20 pages, 2047 KiB  
Article
Design and Preliminary Immunogenicity Evaluation of Nipah Virus Glycoprotein G Epitope-Based Peptide Vaccine in Mice
by Seungyeon Kim, Rochelle A. Flores, Seo Young Moon, Seung Yun Lee, Bujinlkham Altanzul, Jiwon Baek, Eun Bee Choi, Heeji Lim, Eun Young Jang, Yoo-kyoung Lee, In-Ohk Ouh and Woo H. Kim
Vaccines 2025, 13(4), 428; https://doi.org/10.3390/vaccines13040428 - 18 Apr 2025
Viewed by 1201
Abstract
Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment [...] Read more.
Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39–3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15–30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application. Full article
(This article belongs to the Section Pathogens-Host Immune Boundaries)
Show Figures

Figure 1

Back to TopTop