Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (555)

Search Parameters:
Keywords = simultaneous scheduling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3904 KB  
Article
The Remote Sensing Data Transmission Problem in Communication Constellations: Shop Scheduling-Based Model and Algorithm
by Jiazhao Yin, Yuning Chen, Xiang Lin and Qian Zhao
Technologies 2025, 13(9), 384; https://doi.org/10.3390/technologies13090384 - 1 Sep 2025
Viewed by 56
Abstract
Advances in satellite miniaturisation have led to a steep rise in the number of Earth-observation platforms, turning the downlink of the resulting high-volume remote-sensing data into a critical bottleneck. Low-Earth-Orbit (LEO) communication constellations offer a high-throughput relay for these data, yet also introduce [...] Read more.
Advances in satellite miniaturisation have led to a steep rise in the number of Earth-observation platforms, turning the downlink of the resulting high-volume remote-sensing data into a critical bottleneck. Low-Earth-Orbit (LEO) communication constellations offer a high-throughput relay for these data, yet also introduce intricate scheduling requirements. We term the associated task the Remote Sensing Data Transmission in Communication Constellations (DTIC) problem, which comprises two sequential stages: inter-satellite routing, and satellite-to-ground delivery. This problem can be cast as a Hybrid Flow Shop Scheduling Problem (HFSP). Unlike the classical HFSP, every processor (e.g., ground antenna) in DTIC can simultaneously accommodate multiple jobs (data packets), subject to two-dimensional spatial constraints. This gives rise to a new variant that we call the Hybrid Flow Shop Problem with Two-Dimensional Processor Space (HFSP-2D). After an in-depth investigation of the characteristics of this HFSP-2D, we propose a constructive heuristic, denoted NEHedd-2D, and a Two-Stage Memetic Algorithm (TSMA) that integrates an Inter-Processor Job-Swapping (IPJS) operator and an Intra-Processor Job-Swapping (IAJS) operator. Computational experiments indicate that when TSMA is initialized with the solution produced by NEHedd-2D, the algorithm attains the optimal solutions for small-sized instances and consistently outperforms all benchmark algorithms across problems of every size. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

24 pages, 4843 KB  
Article
Enhancing Smart Grid Reliability Through Data-Driven Optimisation and Cyber-Resilient EV Integration
by Muhammed Cavus, Huseyin Ayan, Mahmut Sari, Osman Akbulut, Dilum Dissanayake and Margaret Bell
Energies 2025, 18(17), 4510; https://doi.org/10.3390/en18174510 - 25 Aug 2025
Viewed by 543
Abstract
This study presents a novel cyber-resilient, data-driven optimisation framework for real-time energy management in electric vehicle (EV)-integrated smart grids. The proposed framework integrates a hybrid optimisation engine—combining genetic algorithms and reinforcement learning—with a real-time analytics module to enable adaptive scheduling under uncertainty. It [...] Read more.
This study presents a novel cyber-resilient, data-driven optimisation framework for real-time energy management in electric vehicle (EV)-integrated smart grids. The proposed framework integrates a hybrid optimisation engine—combining genetic algorithms and reinforcement learning—with a real-time analytics module to enable adaptive scheduling under uncertainty. It accounts for dynamic electricity pricing, EV mobility patterns, and grid load fluctuations, dynamically reallocating charging demand in response to evolving grid conditions. Unlike existing GA/RL schedulers, this framework uniquely integrates adaptive optimisation with resilient forecasting under incomplete data and lightweight blockchain-inspired cyber-defence, thereby addressing efficiency, accuracy, and security simultaneously. To ensure secure and trustworthy EV–grid communication, a lightweight blockchain-inspired protocol is incorporated, supported by an intrusion detection system (IDS) for cyber-attack mitigation. Empirical evaluation using European smart grid datasets demonstrates a daily peak demand reduction of 9.6% (from 33 kWh to 29.8 kWh), with a 27% decrease in energy delivered at the original peak hour and a redistribution of demand that increases delivery at 19:00 h by nearly 25%. Station utilisation became more balanced, with weekly peak normalised utilisation falling from 1.0 to 0.7. The forecasting module achieved a mean absolute error (MAE) of 0.25 kWh and a mean absolute percentage error (MAPE) below 20% even with up to 25% missing data. Among tested models, CatBoost outperformed LightGBM and XGBoost with an RMSE of 0.853 kWh and R2 of 0.416. The IDS achieved 94.1% accuracy, an AUC of 0.97, and detected attacks within 50–300 ms, maintaining over 74% detection accuracy under 50% novel attack scenarios. The optimisation runtime remained below 0.4 s even at five times the nominal dataset scale. Additionally, the study outlines a conceptual extension to support location-based planning of charging infrastructure. This proposes the alignment of infrastructure roll-out with forecasted demand to enhance spatial deployment efficiency. While not implemented in the current framework, this forward-looking integration highlights opportunities for synchronising infrastructure development with dynamic usage patterns. Collectively, the findings confirm that the proposed approach is technically robust, operationally feasible, and adaptable to the evolving demands of intelligent EV–smart grid systems. Full article
Show Figures

Figure 1

18 pages, 2565 KB  
Article
Rock Joint Segmentation in Drill Core Images via a Boundary-Aware Token-Mixing Network
by Seungjoo Lee, Yongjin Kim, Yongseong Kim, Jongseol Park and Bongjun Ji
Buildings 2025, 15(17), 3022; https://doi.org/10.3390/buildings15173022 - 25 Aug 2025
Viewed by 254
Abstract
The precise mapping of rock joint traces is fundamental to the design and safety assessment of foundations, retaining structures, and underground cavities in building and civil engineering. Existing deep learning approaches either impose prohibitive computational demands for on-site deployment or disrupt the topological [...] Read more.
The precise mapping of rock joint traces is fundamental to the design and safety assessment of foundations, retaining structures, and underground cavities in building and civil engineering. Existing deep learning approaches either impose prohibitive computational demands for on-site deployment or disrupt the topological continuity of subpixel lineaments that govern rock mass behavior. This study presents BATNet-Lite, a lightweight encoder–decoder architecture optimized for joint segmentation on resource-constrained devices. The encoder introduces a Boundary-Aware Token-Mixing (BATM) block that separates feature maps into patch tokens and directionally pooled stripe tokens, and a bidirectional attention mechanism subsequently transfers global context to local descriptors while refining stripe features, thereby capturing long-range connectivity with negligible overhead. A complementary Multi-Scale Line Enhancement (MLE) module combines depth-wise dilated and deformable convolutions to yield scale-invariant responses to joints of varying apertures. In the decoder, a Skeletal-Contrastive Decoder (SCD) employs dual heads to predict segmentation and skeleton maps simultaneously, while an InfoNCE-based contrastive loss enforces their topological consistency without requiring explicit skeleton labels. Training leverages a composite focal Tversky and edge IoU loss under a curriculum-thinning schedule, improving edge adherence and continuity. Ablation experiments confirm that BATM, MLE, and SCD each contribute substantial gains in boundary accuracy and connectivity preservation. By delivering topology-preserving joint maps with small parameters, BATNet-Lite facilitates rapid geological data acquisition for tunnel face mapping, slope inspection, and subsurface digital twin development, thereby supporting safer and more efficient building and underground engineering practice. Full article
Show Figures

Figure 1

15 pages, 7210 KB  
Article
Diagnosis-Related Outcome Following Palliative Spatially Fractionated Radiation Therapy (Lattice) of Large Tumors
by Gabriela Studer, Tino Streller, David Jeller, Dirk Huebner, Bruno Fuchs and Christoph Glanzmann
Cancers 2025, 17(17), 2752; https://doi.org/10.3390/cancers17172752 - 23 Aug 2025
Viewed by 530
Abstract
Background: Lattice Radiation Therapy (LRT), a spatially fractionated stereotactic radiotherapy (SBRT) technique, has shown promising results in the palliative treatment of large tumors. The focus of our first analysis of 56 lesions ≥7 cm was on the extent of shrinkage following palliative LRT [...] Read more.
Background: Lattice Radiation Therapy (LRT), a spatially fractionated stereotactic radiotherapy (SBRT) technique, has shown promising results in the palliative treatment of large tumors. The focus of our first analysis of 56 lesions ≥7 cm was on the extent of shrinkage following palliative LRT (mean 50%) and assessment of its effect duration (: mean 6 months). Herewith we present an updated analysis of our single-center LRT cohort, with a focus on LRT outcome across diagnoses and applied LRT regimens. Methods: We assessed the clinical outcome following LRT in 66 patients treated for 81 lesions between 01.2022 and 05.2025. LRT protocols included simultaneous integrated boost (sib-) LRT in 49 lesions (5 × 4–5 Gy to the entire mass with sib of 9–13 Gy to lattice vertices). Alternatively mainly in pre-irradiated and/or very large lesions—a single-fraction stereotactic LRT (SBRT-LRT) of 1 × 20 Gy to vertices only was delivered to 26 lesions. In six cases with modest response to single fraction SBRT-LRT, the sib-LRT schedule was added 4–8 weeks later. Results: The median age was 68 years (18–93). Main tumor locations were abdomino-pelvic (n = 34) and thoracic (n = 17). Histopathological diagnoses included carcinoma (n = 34), sarcoma (n = 31), and melanoma (n = 16). 31% of all lesions have been previously irradiated. 73% of cases underwent concurrent or peri-LRT systemic therapy. The mean/median overall survival (OS) time of the cohort was 7.6/4.6 months (0.4–40.2), 11.9/5.8 months in 16/66 alive, and 6.4/4.3 months in deceased patients, respectively. 82% of symptomatic patients reported immediate subjective improvement (PROM), with a lifelong response duration in most cases. Progressive disease (PD: >10% increase in initial volume) was found in 9%, stable disease (SD +/−10% of initial volume) in 19% of scanned lesions, and shrinkage (>10% reduction in initial volume) in 75%, with a mean/median tumor volume reduction of 51/60%. The extent of shrinkage was found to be 11–30%/31–60%/61–100% in 38/24/38% of lesions. Response rates (PD, SD, shrinkage) following the two applied LRT regimens, as well as those related to sarcoma and carcinoma diagnoses, were found to be comparable. Treatment tolerance was excellent (G0-1). Conclusions: Palliative LRT provides rapid subjective relief in ~80% of symptomatic patients. Radiologic shrinkage was stated in 75% of FU-scanned lesions, with a lifelong effect duration in most patients. LRT was found effective across histologies, with a similar extent of shrinkage in carcinoma and sarcoma following 1F SBRT- and 5F sib-LRT regimens, respectively. Full article
(This article belongs to the Special Issue Palliative Radiotherapy for Cancer)
Show Figures

Figure 1

18 pages, 891 KB  
Article
A Study on the Environmental and Economic Benefits of Flexible Resources in Green Power Trading Markets Based on Cooperative Game Theory: A Case Study of China
by Liwei Zhu, Xinhong Wu, Zerong Wang, Yuexin Li, Lifei Song and Yongwen Yang
Energies 2025, 18(17), 4490; https://doi.org/10.3390/en18174490 - 23 Aug 2025
Viewed by 532
Abstract
This paper addresses the synergy between environmental and economic benefits in the green power trading market by constructing a collaborative game model for environmental rights value and electricity energy value. Based on this, a model for maximizing the benefits of flexible resource operation [...] Read more.
This paper addresses the synergy between environmental and economic benefits in the green power trading market by constructing a collaborative game model for environmental rights value and electricity energy value. Based on this, a model for maximizing the benefits of flexible resource operation is proposed. Through the combination of non-cooperative and cooperative games, the conflict and synergy mechanisms of multiple stakeholders are quantified, and the Shapley value allocation rule is designed to achieve Pareto optimality. Simultaneously, considering the spatiotemporal regulation capability of flexible resources, dynamic weight adjustment, cross-period environmental rights reserve, and risk diversification strategies are proposed. Simulation results show that under the scenario of a carbon price of 50 CNY/ton (≈7.25 USD/ton) and a peak–valley electricity price difference of 0.9 CNY/kWh (≈0.13 USD/kWh), when the environmental weight coefficient α = 0.5, the total revenue reaches 6.857 × 107 CNY (≈9.94 × 106 USD), with environmental benefits accounting for 90%, a 15.3% reduction in carbon emission intensity, and a 1.74-fold increase in energy storage cycle utilization rate. This research provides theoretical support for green power market mechanism design and resource optimization scheduling under “dual-carbon” goals. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

29 pages, 2173 KB  
Review
A Review and Prototype Proposal for a 3 m Hybrid Wind–PV Rotor with Flat Blades and a Peripheral Ring
by George Daniel Chiriță, Viviana Filip, Alexis Daniel Negrea and Dragoș Vladimir Tătaru
Appl. Sci. 2025, 15(16), 9119; https://doi.org/10.3390/app15169119 - 19 Aug 2025
Viewed by 373
Abstract
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, [...] Read more.
This paper presents a literature review of low-power hybrid wind–photovoltaic (PV) systems and introduces a 3 m diameter prototype rotor featuring twelve PV-coated pivoting blades stiffened by a peripheral rim. Existing solutions—foldable umbrella concepts, Darrieus rotors with PV-integrated blades, and morphing blades—are surveyed, and current gaps in simultaneous wind + PV co-generation on a single moving structure are highlighted. Key performance indicators such as power coefficient (Cp), DC ripple, cell temperature difference (ΔT), and levelised cost of energy (LCOE) are defined, and an integrated assessment methodology is proposed based on blade element momentum (BEM) and computational fluid dynamics (CFD) modelling, dynamic current–voltage (I–V) testing, and failure modes and effects analysis (FMEA) to evaluate system performance and reliability. Preliminary results point to moderate aerodynamic penalties (ΔCp ≈ 5–8%), PV output during rotation equal to 15–25% of the nominal PV power (PPV), and an estimated 70–75% reduction in blade–root bending moment when the peripheral ring converts each blade from a cantilever to a simply supported member, resulting in increased blade stiffness. Major challenges include the collective pitch mechanism, dynamic shading, and wear of rotating components (slip rings); however, the suggested technical measures—maximum power point tracking (MPPT), string segmentation, and redundant braking—keep performance within acceptable limits. This study concludes that the concept shows promise for distributed microgeneration, provided extensive experimental validation and IEC 61400-2-compliant standardisation are pursued. This paper has a dual scope: (i) a concise literature review relevant to low-Re flat-blade aerodynamics and ring-stiffened rotor structures and (ii) a multi-fidelity aero-structural study that culminates in a 3 m prototype proposal. We present the first evaluation of a hybrid wind–PV rotor employing untwisted flat-plate blades stiffened by a peripheral ring. Using low-Re BEM for preliminary loading, steady-state RANS-CFD (k-ω SST) for validation, and elastic FEM for sizing, we assemble a coherent load/performance dataset. After upsizing the hub pins (Ø 30 mm), ring (50 × 50 mm), and spokes (Ø 40 mm), von Mises stresses remain < 25% of the 6061-T6 yield limit and tip deflection ≤ 0.5%·R acrosscut-in (3 m s−1), nominal (5 m s−1), and extreme (25 m s−1) cases. CFD confirms a broad efficiency plateau at λ = 2.4–2.8 for β ≈ 10° and near-zero shaft torque at β = 90°, supporting a three-step pitch schedule (20° start-up → 10° nominal → 90° storm). Cross-model deviations for Cp, torque, and pressure/force distributions remain within ± 10%. This study addresses only the rotor; off-the-shelf generator, brake, screw-pitch, and azimuth/tilt drives are intended for later integration. The results provide a low-cost manufacturable architecture and a validated baseline for full-scale testing and future transient CFD/FEM iterations. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

28 pages, 3075 KB  
Article
A Synchronized Optimization Method of Frequency Setting, Timetabling, and Train Circulation Planning for URT Networks with Overlapping Lines: A Case Study of the Addis Ababa Light Rail Transit Service
by Wenliang Zhou, Addishiwot Alemu and Mehdi Oldache
Mathematics 2025, 13(16), 2654; https://doi.org/10.3390/math13162654 - 18 Aug 2025
Viewed by 510
Abstract
Urban rail transit (URT) systems are essential to ensuring efficient and sustainable urban mobility. However, the core components of operational planning, service frequency setting, train timetabling, and train allocation are often optimized separately, leading to fragmented decision-making and suboptimal system performance. This study [...] Read more.
Urban rail transit (URT) systems are essential to ensuring efficient and sustainable urban mobility. However, the core components of operational planning, service frequency setting, train timetabling, and train allocation are often optimized separately, leading to fragmented decision-making and suboptimal system performance. This study addresses that gap by proposing an integrated optimization framework that simultaneously considers all three planning layers under time-dependent passenger demand conditions. The problem is formulated as a bi-objective Integer Nonlinear Programming (INLP) model, aiming to jointly minimize passenger waiting time and total operational cost. To solve this large-scale, combinatorial problem, a tailored Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is developed. The algorithm incorporates discrete variable handling, constraint-preserving mechanisms, and a customized encoding scheme that aligns with the structural characteristics of URT operations. The proposed framework is applied to real-world data from the Addis Ababa Light Rail Transit (AALRT) system. The results demonstrate that the MOPSO-based approach offers a more diverse and operationally feasible set of trade-off solutions compared to a widely used benchmark algorithm, NSGA-II. Specifically, it provides transit planners with a flexible decision-support tool capable of identifying schedules that balance service quality and cost, based on varying strategic or budgetary priorities. By integrating interdependent planning decisions into a unified model and leveraging the strengths of a customized metaheuristic algorithm, this study contributes a scalable, adaptable, and practically relevant methodology for improving the performance of urban rail systems. Full article
Show Figures

Figure 1

29 pages, 5522 KB  
Article
An Improved NSGA-II for Three-Stage Distributed Heterogeneous Hybrid Flowshop Scheduling with Flexible Assembly and Discrete Transportation
by Zhiyuan Shi, Haojie Chen, Fuqian Yan, Xutao Deng, Haiqiang Hao, Jialei Zhang and Qingwen Yin
Symmetry 2025, 17(8), 1306; https://doi.org/10.3390/sym17081306 - 12 Aug 2025
Viewed by 447
Abstract
This study tackles scheduling challenges in multi-product assembly within distributed manufacturing, where components are produced simultaneously at dedicated factories (single capacity per site) and assembled centrally upon completion. To minimize makespan and maximum tardiness, we design a symmetry-exploiting enhanced Non-dominated Sorting Genetic Algorithm [...] Read more.
This study tackles scheduling challenges in multi-product assembly within distributed manufacturing, where components are produced simultaneously at dedicated factories (single capacity per site) and assembled centrally upon completion. To minimize makespan and maximum tardiness, we design a symmetry-exploiting enhanced Non-dominated Sorting Genetic Algorithm II (NSGA-II) integrated with Q-learning. Our approach systematically explores the solution space using dual symmetric variable neighborhood search (VNS) strategies and two novel crossover operators that enhance solution-space symmetry and genetic diversity. An ε-greedy policy leveraging maximum Q-values guides the symmetry-aware search toward optimality while enabling strategic exploration. We validate an MILP model (Gurobi-implemented) and present our symmetry-refined algorithm against six heuristics. Multi-scale experiments confirm superiority, with Friedman tests demonstrating statistically significant gains over benchmarks, providing actionable insights for efficient distributed manufacturing scheduling. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

31 pages, 2889 KB  
Article
Multi-Team Agile Software Project Scheduling Using Dual-Indicator Group Learning Particle Swarm Optimization
by Jiangyi Shi, Hui Lou, Xiaoning Shen and Jiyong Xu
Symmetry 2025, 17(8), 1267; https://doi.org/10.3390/sym17081267 - 8 Aug 2025
Viewed by 381
Abstract
Core problems in agile software project scheduling, such as resource-constrained balancing and iteration cycle optimization, embody the pursuit of symmetry. Simultaneously, optimization algorithms find extensive applications in symmetry problems, for example, in graphs and pattern recognition. Considering the cooperation among multiple teams and [...] Read more.
Core problems in agile software project scheduling, such as resource-constrained balancing and iteration cycle optimization, embody the pursuit of symmetry. Simultaneously, optimization algorithms find extensive applications in symmetry problems, for example, in graphs and pattern recognition. Considering the cooperation among multiple teams and environmental changes in complex agile software development, a dynamic periodic scheduling model for multi-team agile software project is constructed, which includes three tightly coupled sub-problems, namely user story selection, user story-development team allocation, and task-employee allocation. To solve the model, a group learning particle swarm optimization algorithm is proposed, which includes three novel strategies. First, the population is divided into four groups based on dual indicators of objective values and potential values. Second, different learning objects are selected according to the characteristic of each group so that the search diversity can be improved. Third, to react to the environmental changes and enhance the mining ability, heuristic population initialization and local search strategies are designed by utilizing the problem-specific information. Systematic experimental results on 13 instances indicate that compared with the state-of-the-art algorithms, the proposed algorithm is able to provide a schedule with better precision for the project manager in each sprint of the agile development. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 1090 KB  
Article
Inbound Truck Scheduling for Workload Balancing in Cross-Docking Terminals
by Younghoo Noh, Seokchan Lee, Jeongyoon Hong, Jeongeum Kim and Sung Won Cho
Mathematics 2025, 13(15), 2533; https://doi.org/10.3390/math13152533 - 6 Aug 2025
Viewed by 396
Abstract
The rapid growth of e-commerce and advances in information and communication technologies have placed increasing pressure on last-mile delivery companies to enhance operational productivity. As investments in logistics infrastructure require long-term planning, maximizing the efficiency of existing terminal operations has become a critical [...] Read more.
The rapid growth of e-commerce and advances in information and communication technologies have placed increasing pressure on last-mile delivery companies to enhance operational productivity. As investments in logistics infrastructure require long-term planning, maximizing the efficiency of existing terminal operations has become a critical priority. This study proposes a mathematical model for inbound truck scheduling that simultaneously minimizes truck waiting times and balances workload across temporary inventory storage located at outbound chutes in cross-docking terminals. The model incorporates a dynamic rescheduling strategy that updates the assignment of inbound trucks in real time, based on the latest terminal conditions. Numerical experiments, based on real operational data, demonstrate that the proposed approach significantly outperforms conventional strategies such as First-In First-Out (FIFO) and Random assignment in terms of both load balancing and truck turnaround efficiency. In particular, the proposed model improves workload balance by approximately 10% and 12% compared to the FIFO and Random strategies, respectively, and it reduces average truck waiting time by 17% and 18%, thereby contributing to more efficient workflow and alleviating bottlenecks. The findings highlight the practical potential of the proposed strategy for improving the responsiveness and efficiency of parcel distribution centers operating under fixed infrastructure constraints. Future research may extend the proposed approach by incorporating realistic operational factors, such as cargo heterogeneity, uncertain arrivals, and terminal shutdowns due to limited chute storage. Full article
Show Figures

Figure 1

20 pages, 2990 KB  
Article
Examination of Interrupted Lighting Schedule in Indoor Vertical Farms
by Dafni D. Avgoustaki, Vasilis Vevelakis, Katerina Akrivopoulou, Stavros Kalogeropoulos and Thomas Bartzanas
AgriEngineering 2025, 7(8), 242; https://doi.org/10.3390/agriengineering7080242 - 1 Aug 2025
Viewed by 525
Abstract
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial [...] Read more.
Indoor horticulture requires a substantial quantity of electricity to meet crops extended photoperiodic requirements for optimal photosynthetic rate. Simultaneously, global electricity costs have grown dramatically in recent years, endangering the sustainability and profitability of indoor vertical farms and/or modern greenhouses that use artificial lighting systems to accelerate crop development and growth. This study investigates the growth rate and physiological development of cherry tomato plants cultivated in a pilot indoor vertical farm at the Agricultural University of Athens’ Laboratory of Farm Structures (AUA) under continuous and disruptive lighting. The leaf physiological traits from multiple photoperiodic stress treatments were analyzed and utilized to estimate the plant’s tolerance rate under varied illumination conditions. Four different photoperiodic treatments were examined and compared, firstly plants grew under 14 h of continuous light (C-14L10D/control), secondly plants grew under a normalized photoperiod of 14 h with intermittent light intervals of 10 min of light followed by 50 min of dark (NI-14L10D/stress), the third treatment where plants grew under 14 h of a load-shifted energy demand response intermittent lighting schedule (LSI-14L10D/stress) and finally plants grew under 13 h photoperiod following of a load-shifted energy demand response intermittent lighting schedule (LSI-13L11D/stress). Plants were subjected also under two different light spectra for all the treatments, specifically WHITE and Blue/Red/Far-red light composition. The aim was to develop flexible, energy-efficient lighting protocols that maintain crop productivity while reducing electricity consumption in indoor settings. Results indicated that short periods of disruptive light did not negatively impact physiological responses, and plants exhibited tolerance to abiotic stress induced by intermittent lighting. Post-harvest data indicated that intermittent lighting regimes maintained or enhanced growth compared to continuous lighting, with spectral composition further influencing productivity. Plants under LSI-14L10D and B/R/FR spectra produced up to 93 g fresh fruit per plant and 30.4 g dry mass, while consuming up to 16 kWh less energy than continuous lighting—highlighting the potential of flexible lighting strategies for improved energy-use efficiency. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

34 pages, 2947 KB  
Article
Optimization and Empirical Study of Departure Scheduling Considering ATFM Slot Adherence
by Zheng Zhao, Siqi Zhao, Yahao Zhang and Jie Leng
Aerospace 2025, 12(8), 683; https://doi.org/10.3390/aerospace12080683 - 30 Jul 2025
Viewed by 319
Abstract
Departure punctuality (KPI01) and ATFM slot adherence (KPI03) have been emphasized by the International Civil Aviation Organization as key performance indicators (KPIs) in the Global Air Navigation Plan. To address the inherent conflict between these two objectives in departure scheduling, a multi-objective optimization [...] Read more.
Departure punctuality (KPI01) and ATFM slot adherence (KPI03) have been emphasized by the International Civil Aviation Organization as key performance indicators (KPIs) in the Global Air Navigation Plan. To address the inherent conflict between these two objectives in departure scheduling, a multi-objective optimization model is proposed that aims to simultaneously enhance departure punctuality, ATFM slot adherence, and taxiing efficiency. A simulated annealing algorithm based on a resource transmission mechanism was developed to solve the model effectively. Based on full-scale operational data from Nanjing Lukou International Airport in June 2023, the empirical results confirm the model’s effectiveness in two primary dimensions: (1) Significant improvement in taxiing efficiency: The average unimpeded taxi-out time was reduced by 6.4% (from 17.2 to 16.1 min). The number of flights with taxi-out times exceeding 30 min decreased by 58%. For representative taxi routes (e.g., stand 118 to runway 6), the excess taxi-out time was reduced by 82.3% (from 5.61 to 1.10 min). (2) Enhanced operational punctuality: Departure punctuality improved by 10.7% (from 67.9% to 78.7%), while ATFM slot adherence increased by 31.2% (from 64.6% to 95.8%). This study presents an innovative departure scheduling approach and offers a practical framework for improving collaborative operational efficiency among airports, air traffic management units, and airlines. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

23 pages, 783 KB  
Article
An Effective QoS-Aware Hybrid Optimization Approach for Workflow Scheduling in Cloud Computing
by Min Cui and Yipeng Wang
Sensors 2025, 25(15), 4705; https://doi.org/10.3390/s25154705 - 30 Jul 2025
Viewed by 371
Abstract
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling [...] Read more.
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling algorithms to find optimal or near-optimal task-to-VM allocation solutions that meet users’ specific QoS requirements still remains an open area of research. In this paper, we propose a hybrid QoS-aware workflow scheduling algorithm named HLWOA to address the problem of simultaneously minimizing the completion time and execution cost of workflow scheduling in cloud computing. First, the workflow scheduling problem in cloud computing is modeled as a multi-objective optimization problem. Then, based on the heterogeneous earliest finish time (HEFT) heuristic optimization algorithm, tasks are reverse topologically sorted and assigned to virtual machines with the earliest finish time to construct an initial workflow task scheduling sequence. Furthermore, an improved Whale Optimization Algorithm (WOA) based on Lévy flight is proposed. The output solution of HEFT is used as one of the initial population solutions in WOA to accelerate the convergence speed of the algorithm. Subsequently, a Lévy flight search strategy is introduced in the iterative optimization phase to avoid the algorithm falling into local optimal solutions. The proposed HLWOA is evaluated on the WorkflowSim platform using real-world scientific workflows (Cybershake and Montage) with different task scales (100 and 1000). Experimental results demonstrate that HLWOA outperforms HEFT, HEPGA, and standard WOA in both makespan and cost, with normalized fitness values consistently ranking first. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

17 pages, 624 KB  
Article
Predicting Out-of-Stock Risk Under Delivery Schedules Using Neural Networks
by Lu Xu
Electronics 2025, 14(15), 3012; https://doi.org/10.3390/electronics14153012 - 29 Jul 2025
Viewed by 360
Abstract
In retail logistics, one typical task is to arrange a delivery schedule that guides the intake of inventory from the distribution center to stores. It is essential to accurately predict the out-of-stock (OOS) outcome for various delivery schedules to identify the optimal patterns [...] Read more.
In retail logistics, one typical task is to arrange a delivery schedule that guides the intake of inventory from the distribution center to stores. It is essential to accurately predict the out-of-stock (OOS) outcome for various delivery schedules to identify the optimal patterns for minimizing the OOS ratio. This paper investigates the feasibility of utilizing a neural network to accurately predict the out-of-stock (OOS) risk under each delivery pattern. Due to the zero-inflated distribution of the target values, it is necessary to evaluate two prediction accuracies simultaneously: the accuracy on data with a positive ground truth OOS rate and the accuracy on data with a zero ground truth OOS rate. In this paper, I examine how a selection of features associated with delivery schedules and the choice of activation function at the output layer, would impact the accuracy of the model. Full article
Show Figures

Figure 1

20 pages, 1676 KB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 544
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

Back to TopTop