Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,492)

Search Parameters:
Keywords = simplex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5794 KiB  
Article
A More Rapid Method for Culturing LUHMES-Derived Neurons Provides Greater Cell Numbers and Facilitates Studies of Multiple Viruses
by Adam W. Whisnant, Stephanie E. Clark, José Alberto Aguilar-Briseño, Lorellin A. Durnell, Arnhild Grothey, Ann M. Miller, Steven M. Varga, Jeffery L. Meier, Charles Grose, Patrick L. Sinn, Jessica M. Tucker, Caroline C. Friedel, Wendy J. Maury, David H. Price and Lars Dölken
Viruses 2025, 17(7), 1001; https://doi.org/10.3390/v17071001 (registering DOI) - 16 Jul 2025
Abstract
The ability to study mature neuronal cells ex vivo is complicated by their non-dividing nature and difficulty in obtaining large numbers of primary cells from organisms. Thus, numerous transformed progenitor models have been developed that can be routinely cultured, then scaled, and differentiated [...] Read more.
The ability to study mature neuronal cells ex vivo is complicated by their non-dividing nature and difficulty in obtaining large numbers of primary cells from organisms. Thus, numerous transformed progenitor models have been developed that can be routinely cultured, then scaled, and differentiated to mature neurons. In this paper, we present a new method for differentiating one such model, the Lund human mesencephalic (LUHMES) dopaminergic neurons. This method is two days faster than some established protocols, results in nearly five times greater numbers of mature neurons, and involves fewer handling steps that could introduce technical variability. Moreover, it overcomes the problem of cell aggregate formation that commonly impedes high-resolution imaging, cell dissociation, and downstream analysis. While recently established for herpes simplex virus type 1, we demonstrate that LUHMES neurons can facilitate studies of other herpesviruses, as well as RNA viruses associated with childhood encephalitis and hemorrhagic fever. This protocol provides an improvement in the generation of large-scale neuronal cultures, which may be readily applicable to other neuronal 2D cell culture models and provides a system for studying neurotrophic viruses. We named this method the Streamlined Protocol for Enhanced Expansion and Differentiation Yield, or SPEEDY, method. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

28 pages, 2101 KiB  
Article
Optimizing Essential Oil Mixtures: Synergistic Effects on Cattle Rumen Fermentation and Methane Emission
by Memoona Nasir, María Rodríguez-Prado, Marica Simoni, Susana M. Martín-Orúe, José Francisco Pérez and Sergio Calsamiglia
Animals 2025, 15(14), 2105; https://doi.org/10.3390/ani15142105 (registering DOI) - 16 Jul 2025
Abstract
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. [...] Read more.
Ruminant livestock contribute significantly to methane emissions, necessitating sustainable mitigation strategies. Essential oils (EOs) show promise for modulating ruminal fermentation, but their synergistic effects remain underexplored. Two 24 h in vitro experiments evaluated the synergistic effects of EO blends on rumen microbial fermentation. Exp. 1 screened five oils using two triad combinations. Triad 1 tested 10 combinations of thyme (THY), peppermint (PPM), and cinnamon leaf (CIN) oils. Triad 2 tested 10 combinations of anise (ANI), clove leaf (CLO), and peppermint (PPM) oils. Each blend was tested at 400 mg/L, using batch culture methods measuring: pH, ammonia-N (NH3-N), and volatile fatty acids (VFAs). The two most effective blends, designated as T1 and T2, were selected for Exp. 2 to assess total gas and methane (CH4) production using pressure transducer methods. All treatments were incubated in a rumen fluid–buffer mix with a 50:50 forage-to-concentrate substrate (pH 6.6). In Exp. 1, data were analyzed according to the Simplex Centroid Design using R-Studio. In Exp. 2, an analysis was conducted using the MIXED procedure in SAS. Mean comparisons were assessed through Tukey’s test. The results from Exp. 1 identified CIN+PPM (80:20) and ANI+CLO (80:20) as optimal combinations, both increasing total VFAs while reducing acetate/propionate ratios and NH3-N concentrations. In Exp. 2, both combinations significantly reduced total gas and CH4 productions compared to the control, with CIN+PPM achieving the greatest methane reduction (similar to monensin, the positive control). Specific essential oil combinations demonstrated synergistic effects in modulating rumen fermentation and reducing methane emissions, offering potential for sustainable livestock production. Further in vivo validation is required to optimize dosing and assess long-term effects on animal performance. Full article
(This article belongs to the Special Issue Nutrients and Feed Additives in Ruminants)
Show Figures

Figure 1

9 pages, 2671 KiB  
Article
Wood Species Identification and Property Evaluation of Archaeological Wood Excavated from J1 at Shenduntou Site, Fanchang, Anhui, China
by Liang Xu, Weiwei Yang, Mihaela Liu, Zhigao Wang and Xinyou Liu
Forests 2025, 16(7), 1173; https://doi.org/10.3390/f16071173 - 16 Jul 2025
Abstract
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as [...] Read more.
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as Firmiana simplex (L.), indicating ancient selection of this locally available species for its water resistance and mechanical suitability in well construction. Comprehensive degradation assessment revealed severe structural deterioration: maximum water content (1100% ± 85% vs. modern 120% ± 8%) demonstrated extreme porosity from hydrolysis; X-ray diffraction (XRD) showed a 69.5% reduction in cellulose crystallinity (16.1% vs. modern 52.8%); Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy confirmed near-total hemicellulose degradation, partial cellulose loss, and lignin enrichment due to chemical recalcitrance; Scanning Electron Microscopy (SEM) imaging documented multiscale damage including vessel thinning, pit membrane loss, and cell wall delamination from hydrolytic, microbial, and mineral degradation. These findings reflect Western Zhou inhabitants’ pragmatic resource utilisation while highlighting advanced material deterioration that poses significant conservation challenges, providing critical insights into Zhou-era woodcraft and human–environment interactions in the lower Yangtze region. Full article
(This article belongs to the Special Issue Wood Processing, Modification and Performance)
Show Figures

Figure 1

22 pages, 1765 KiB  
Review
Polyphenols as Antiviral Agents: Their Potential Against a Range of Virus Types
by Nurten Coşkun, Ranya Demir, Ahmet Alperen Canbolat, Sümeyye Sarıtaş, Burcu Pekdemir, Mikhael Bechelany and Sercan Karav
Nutrients 2025, 17(14), 2325; https://doi.org/10.3390/nu17142325 - 16 Jul 2025
Viewed by 25
Abstract
Polyphenols are structurally diverse plant metabolites that have attracted significant interest. Their compositions are versatile, depending on their structures, including the number of rings in the polyphenol composition. Based on these attributes, polyphenols can be classified as flavanols, anthocyanins, flavones, phenolic acids, stilbenes, [...] Read more.
Polyphenols are structurally diverse plant metabolites that have attracted significant interest. Their compositions are versatile, depending on their structures, including the number of rings in the polyphenol composition. Based on these attributes, polyphenols can be classified as flavanols, anthocyanins, flavones, phenolic acids, stilbenes, and lignans. Polyphenols mainly possess inhibition of viral replication, interference with viral protein synthesis, and modulation of immune responses, providing significant antiviral effects against several viruses, including herpes simplex virus, hepatitis C virus, and influenza. They are crucial for medical compounds in diverse, versatile treatments, namely in diabetes, cardiovascular disorders, cancer, and neurodegenerative problems. Plants are the primary source of bioactive molecules, which are valued for their anti-inflammatory, antioxidant, anticancer, and antiviral activities. Especially, polyphenols are extracted as the most abundant bioactive compounds of plants. Moreover, viral infections are one of the major factors in illnesses and diseases, along with bacteria and fungi. Numerous in vitro and in vivo studies report antiviral activity against SARS-CoV-2, Mayaro virus, dengue virus, herpesvirus, and influenza A virus, though clinical validation remains limited. Additionally, inhibition of viral entry, interference with viral replication, modulation of host immune response, and direct virucidal effects were examined. Full article
Show Figures

Figure 1

17 pages, 2310 KiB  
Review
Evaluation of Corneal Sensitivity: Tools We Have
by Ezra Eio, Mingyi Yu, Chang Liu, Isabelle Xin Yu Lee, Regina Kay Ting Wong, Jipson Hon Fai Wong and Yu-Chi Liu
Diagnostics 2025, 15(14), 1785; https://doi.org/10.3390/diagnostics15141785 - 15 Jul 2025
Viewed by 140
Abstract
Corneal sensitivity is an important indicator of corneal health and innervation. Corneal hypoesthesia may be an early indicator of corneal diseases such as neurotrophic keratopathy. Various instruments have been used to measure corneal sensitivity, the first being the Cochet–Bonnet aesthesiometer. Over the years, [...] Read more.
Corneal sensitivity is an important indicator of corneal health and innervation. Corneal hypoesthesia may be an early indicator of corneal diseases such as neurotrophic keratopathy. Various instruments have been used to measure corneal sensitivity, the first being the Cochet–Bonnet aesthesiometer. Over the years, new devices employing different stimuli have been developed, such as the gas-based Belmonte aesthesiometer, the Swiss liquid-jet aesthesiometer, and the most recently released corneal Brill aesthesiometer. In this review, the progress and advancement of aesthesiometers since their introduction is described. The mechanism, advantages, and disadvantages of these aesthesiometers are discussed and compared. We also report the relationship between corneal sensitivity and corneal innervation in various conditions, including diabetes mellitus, Fuchs’ endothelial dystrophy, dry eye disease, glaucoma, keratoconus, herpes simplex keratitis, post-refractive surgery, and ocular graft-versus-host disease. Through this review, we aim to highlight the importance of the assessment of corneal sensitivity and innervation in the diagnosis, treatment, and monitoring of anterior and posterior segment ocular disorders. Full article
(This article belongs to the Special Issue Eye Diseases: Diagnosis and Management—2nd Edition)
Show Figures

Figure 1

20 pages, 12859 KiB  
Article
Polyclonal LC3B Antibodies Generate Non-Specific Staining in the Nucleus of Herpes Simplex Virus Type 1-Infected Cells: Caution in the Interpretation of LC3 Staining in the Immunofluorescence Analysis of Viral Infections
by Inés Ripa, Sabina Andreu, Daniel Galdo, Oliver Caballero, Raquel Bello-Morales and José Antonio López-Guerrero
Int. J. Mol. Sci. 2025, 26(14), 6682; https://doi.org/10.3390/ijms26146682 - 11 Jul 2025
Viewed by 158
Abstract
The most common marker used to monitor autophagy is the microtubule-associated protein light chain 3 (LC3). Upon induction of autophagy, LC3 is conjugated to phosphatidylethanolamine and targeted to autophagic membranes, which can be easily detected by immunofluorescence. However, this technique has some limitations. [...] Read more.
The most common marker used to monitor autophagy is the microtubule-associated protein light chain 3 (LC3). Upon induction of autophagy, LC3 is conjugated to phosphatidylethanolamine and targeted to autophagic membranes, which can be easily detected by immunofluorescence. However, this technique has some limitations. During the early stages of HSV-1 infection, strong LC3B nuclear staining is observed within the viral replication compartments. This staining is only detected when using polyclonal antibodies. It is noteworthy that monoclonal antibodies or the GFP-LC3 plasmid do not reveal any nuclear LC3 staining. Interestingly, LC3B is not detected in the nuclear fraction of infected cells by Western blotting, even when polyclonal antibodies are used. In infected LC3B knockout cells, nuclear staining is still observed when using polyclonal LC3B antibodies. This suggests that polyclonal LC3B antibodies generate non-specific nuclear staining in infected cells, which could result in misinterpretation and erroneous conclusions. These findings raise questions about the reliability of LC3-immunofluorescence assays in herpesvirus infections. It is imperative that the methodology employed for monitoring autophagy by immunofluorescence in viral infections be reviewed and updated, and that the specificity of anti-LC3B antibodies be tested before use. To ensure the accuracy of the results, it is essential to validate this technique with additional assays, such as by immunoblot analysis or via the use of autophagy-deficient cell lines. Full article
Show Figures

Figure 1

11 pages, 454 KiB  
Article
Direct PCR for Rapid and Safe Pathogen Detection: Laboratory Evaluation Supporting Field Use in Infectious Disease Outbreak
by Ivan Brukner and Matthew Oughton
LabMed 2025, 2(3), 12; https://doi.org/10.3390/labmed2030012 - 11 Jul 2025
Viewed by 175
Abstract
Rapid, safe, and field-deployable molecular diagnostics are crucial for the effective management of infectious disease outbreaks, particularly those involving highly infectious pathogens, which can produce clinical symptoms similar to less infectious pathogens, thus raising potential biosafety concerns. In this study, we evaluated DNA/RNA [...] Read more.
Rapid, safe, and field-deployable molecular diagnostics are crucial for the effective management of infectious disease outbreaks, particularly those involving highly infectious pathogens, which can produce clinical symptoms similar to less infectious pathogens, thus raising potential biosafety concerns. In this study, we evaluated DNA/RNA Defend Pro (DRDP) buffer, a novel viral-inactivating transport medium designed to stabilize nucleic acids and allow direct PCR without nucleic acid extraction. To ensure critical qPCR parameters were not compromised by using DRDP, we conducted serial dilution tests using herpes simplex viruses 1 and 2 (HSV-1, HSV-2) and varicella-zoster virus (VZV), comparing DRDP to standard universal transport medium (UTM). Detection sensitivity, determined by cycle quantification (Cq) values, favored DRDP, as UTM samples required a 2–3-fold dilution to mitigate PCR inhibition. DRDP maintained reliable PCR compatibility at reaction volumes containing up to 25% buffer. At higher DRDP concentrations (30–35%), PCR inhibition occurred due to EDTA content but was fully reversible by adding supplemental magnesium. Furthermore, DRDP samples did not require an initial 95 °C thermal lysis step, thus simplifying the procedure without reducing PCR sensitivity or efficiency. Full article
(This article belongs to the Special Issue Rapid Diagnostic Methods for Infectious Diseases)
Show Figures

Figure 1

16 pages, 871 KiB  
Article
Primary HSV-2 Infection in an Immunocompromised Patient Reveals High Diversity of Drug-Resistance Mutations in the Viral DNA Polymerase
by Hanna Helena Schalkwijk, Sarah Gillemot, Emilie Frobert, Florence Morfin, Sophie Ducastelle, Anne Conrad, Pierre Fiten, Ghislain Opdenakker, Robert Snoeck and Graciela Andrei
Viruses 2025, 17(7), 962; https://doi.org/10.3390/v17070962 - 9 Jul 2025
Viewed by 305
Abstract
Herpes simplex virus 2 (HSV-2) remains a significant cause of morbidity and mortality in immunocompromised individuals, despite the availability of effective antivirals. Infections caused by drug-resistant isolates are an emerging concern among these patients. Understanding evolutionary aspects of HSV-2 resistance is crucial for [...] Read more.
Herpes simplex virus 2 (HSV-2) remains a significant cause of morbidity and mortality in immunocompromised individuals, despite the availability of effective antivirals. Infections caused by drug-resistant isolates are an emerging concern among these patients. Understanding evolutionary aspects of HSV-2 resistance is crucial for designing improved therapeutic strategies. Here, we characterized 11 HSV-2 isolates recovered from various body sites of a single immunocompromised patient suffering from a primary HSV-2 infection unresponsive to acyclovir and foscarnet. The isolates were analyzed phenotypically and genotypically (Sanger sequencing of viral thymidine kinase and DNA polymerase genes). Viral clone isolations, deep sequencing, viral growth kinetics, and dual infection competition assays were performed retrospectively to assess viral heterogeneity and fitness. Sanger sequencing identified mixed populations of DNA polymerase mutant variants. Viral clones were plaque-purified and genotyped, revealing 17 DNA polymerase mutations (K533E, A606V, C625R, R628C, A724V, S725G, S729N, I731F, Q732R, M789T/K, Y823C, V842M, R847C, F923L, T934A, and R964H) associated with acyclovir and foscarnet resistance. Deep-sequencing of the DNA polymerase detected drug-resistant variants ranging between 1 and 95%, although the first two isolates had a wild-type DNA polymerase. Some mutants showed reduced fitness, evidenced by (i) the frequency of variants identified by deep-sequencing not correlating with the proportion of mutants found by plaque-purification, (ii) loss of the variants upon passaging in cell culture, or (iii) reduced frequencies in competition assays. This study reveals the rapid evolution of heterogeneous drug-resistant HSV-2 populations under antiviral therapy, highlighting the need for alternative treatment options and resistance surveillance, especially in severe infections. Full article
(This article belongs to the Special Issue Mechanisms of Herpesvirus Resistance)
Show Figures

Graphical abstract

13 pages, 2014 KiB  
Case Report
Complicated Diagnosis and Treatment of Rare Painless Acanthamoeba Keratitis
by Dominika Wróbel-Dudzińska, Marta Ziaja-Sołtys, Beata Rymgayłło-Jankowska, Monika Derda, Robert Klepacz, Daniel Zalewski, Tomasz Żarnowski and Anna Bogucka-Kocka
J. Clin. Med. 2025, 14(13), 4763; https://doi.org/10.3390/jcm14134763 - 5 Jul 2025
Viewed by 332
Abstract
Objectives: The aim was to present the complicated diagnostic and therapeutic process of atypical, painless keratitis caused by a cosmopolitan protozoan of the genus Acanthamoeba. Methods: This Case Report describes a medical case involving a 48-year-old woman who occasionally wears [...] Read more.
Objectives: The aim was to present the complicated diagnostic and therapeutic process of atypical, painless keratitis caused by a cosmopolitan protozoan of the genus Acanthamoeba. Methods: This Case Report describes a medical case involving a 48-year-old woman who occasionally wears soft contact lenses and was referred to our hospital for treatment due to deteriorating visual acuity in her left eye. The diagnostic process included the isolation of amoebae from corneal scrapings and the morphological and molecular identification of the etiological agent of the infection. Results: After examination, painless atypical keratitis was diagnosed, initially considered recurrent herpetic keratitis. However, antiviral treatment did not bring about any improvement. Further observation revealed a dense, central, annular infiltrate on the periphery of the cornea. Despite treatment, the corneal infiltrate did not improve and the patient required therapeutic penetrating keratoplasty. Ultimately, the patient underwent combined surgery: corneal transplantation with cataract phacoemulsification and intraocular lens implantation. The postoperative course was uneventful. Conclusions: Acanthamoeba keratitis should be included in the differential diagnosis of keratitis, even in the absence of its characteristic feature of severe ocular pain, especially in contact lens wearers and patients who have had herpetic keratitis. Infection of the cornea with the Herpes simplex type 1 virus causes nerve degeneration, which probably translates into a painless course of Acanthamoeba castellanii infection. Full article
(This article belongs to the Special Issue Influence of the Environment on Ocular Diseases)
Show Figures

Figure 1

24 pages, 732 KiB  
Review
Advances in Oncolytic Viral Therapy in Melanoma: A Comprehensive Review
by Ayushi Garg, Rohit Rao, Felicia Tejawinata, Gazi Amena Noor Shamita, McKay S. Herpel, Akihiro Yoshida, Gordon Goolamier, Jessica Sidiropoulos, Iris Y. Sheng, Salim-Tamuz Abboud, Luke D. Rothermel, Nami Azar and Ankit Mangla
Vaccines 2025, 13(7), 727; https://doi.org/10.3390/vaccines13070727 - 3 Jul 2025
Viewed by 714
Abstract
Checkpoint inhibitor therapy revolutionized the treatment of patients with melanoma. However, in patients where melanoma exhibits resistance to checkpoint inhibitor therapy, the treatment options are limited. Oncolytic viruses are a unique form of immunotherapy that uses live viruses to infect and lyse tumor [...] Read more.
Checkpoint inhibitor therapy revolutionized the treatment of patients with melanoma. However, in patients where melanoma exhibits resistance to checkpoint inhibitor therapy, the treatment options are limited. Oncolytic viruses are a unique form of immunotherapy that uses live viruses to infect and lyse tumor cells to release the elusive neoantigen picked up by the antigen-presenting cells, thus increasing the chances of an immune response against cancer. Coupled with checkpoint inhibitors, intratumoral injections of the oncolytic virus can help an enhanced immune response, especially in a tumor that displays resistance to checkpoint inhibitors. However, oncolytic viruses are not bereft of challenges and face several obstacles in the tumor microenvironment. From the historical use of wild viruses to the sophisticated use of genetically modified viruses in the current era, oncolytic virus therapy has evolved tremendously in the last two decades. Increasing the ability of the virus to select the malignant cells over the non-malignant ones, circumventing the antiviral immune response from the body, and enhancing the oncolytic properties of the viral platform by attaching various ligands are some of the several improvements made in the last three decades. In this manuscript, we trace the journey of the development of oncolytic virus therapy, especially in the context of melanoma. We review the clinical trials of talimogene laherparepvec in patients with melanoma. We also review the data available from the clinical trials of vusolimogene oderparepvec in patients with melanoma. Finally, we review the use of various oncolytic viruses and their challenges in clinical development. This manuscript aims to create a comprehensive literature review for clinicians to understand and implement oncolytic virus therapy in patients diagnosed with melanoma. Full article
(This article belongs to the Special Issue Next-Generation Vaccine and Immunotherapy)
Show Figures

Figure 1

30 pages, 4520 KiB  
Article
Optimization of Eugenol, Camphor, and Terpineol Mixture Using Simplex-Centroid Design for Targeted Inhibition of Key Antidiabetic Enzymes
by Amine Elbouzidi, Mohamed Jeddi, Abdellah Baraich, Mohamed Taibi, Mounir Haddou, Naoufal El Hachlafi, Meryem Idrissi Yahyaoui, Reda Bellaouchi, Bouchra El Guerrouj, Khalid Chaabane and Mohamed Addi
Curr. Issues Mol. Biol. 2025, 47(7), 512; https://doi.org/10.3390/cimb47070512 - 2 Jul 2025
Viewed by 275
Abstract
The optimization of bioactive compound mixtures is critical for enhancing pharmacological efficacy. This study investigates, for the first time, the combined effects of eugenol, camphor, and terpineol, focusing on their half-maximal inhibitory concentrations (IC50) across multiple biological responses related to diabetes [...] Read more.
The optimization of bioactive compound mixtures is critical for enhancing pharmacological efficacy. This study investigates, for the first time, the combined effects of eugenol, camphor, and terpineol, focusing on their half-maximal inhibitory concentrations (IC50) across multiple biological responses related to diabetes management. Using a mixture design approach, the objective was to determine the optimal formulation that maximizes bioactivity and validate the findings experimentally. A simplex-centroid design was applied to evaluate the combined effects of eugenol, camphor, and terpineol on AAI IC50, AGI IC50, LIP IC50, and ALR IC50 responses. The desirability function was used to determine the ideal composition. The optimized formulation was experimentally validated using in vitro assays, and IC50 values were measured for each response using standard protocols. Results: The optimal formulation identified was 44% eugenol, 0.19% camphor, and 37% terpineol, yielding IC50 values of 10.38 µg/mL (AAI), 62.22 µg/mL (AGI), 3.42 µg/mL (LIP), and 49.58 µg/mL (ALR). The desirability score (0.99) confirmed the effectiveness of the optimized blend. Experimental validation of the optimal mixture resulted in IC50 values of 11.02 µg/mL (AAI), 60.85 µg/mL (AGI), 3.75 µg/mL (LIP), and 50.12 µg/mL (ALR), showing less than 10% deviation from predicted values, indicating high model accuracy. This study confirms the combined potential of eugenol, camphor, and terpineol, with eugenol and terpineol significantly enhancing bioactivity. The validated formulation demonstrates potential for pharmaceutical and cosmeceutical applications. Future research should explore mechanistic interactions, bioavailability, and in vivo efficacy to support the development of optimized natural compound-based therapies. Full article
Show Figures

Figure 1

15 pages, 762 KiB  
Article
Evaluating the Linkage Between Resistin and Viral Seropositivity in Psoriasis: Evidence from a Tertiary Centre
by Habeeb Ali Baig, Waseema Sultana, Mohamed Soliman, Dhaifallah Alenizi, Awwad Alenezy, Srinath Mote, Ahmed M. S. Hegazy, Bader Khalid Alanazi, Mansour Srhan Alanazi, Yousef Albedaiwi and Nawal Salama Gouda
Life 2025, 15(7), 1054; https://doi.org/10.3390/life15071054 - 30 Jun 2025
Viewed by 380
Abstract
Psoriasis, a chronic immune-mediated inflammatory skin disorder, presents complex pathogenetic mechanisms potentially influenced by viral infections. This comprehensive study explored the possible interplay of resistance and viral infections among psoriasis patients using serological screening techniques. The investigation involved 90 patients aged 23–45 years, [...] Read more.
Psoriasis, a chronic immune-mediated inflammatory skin disorder, presents complex pathogenetic mechanisms potentially influenced by viral infections. This comprehensive study explored the possible interplay of resistance and viral infections among psoriasis patients using serological screening techniques. The investigation involved 90 patients aged 23–45 years, systematically examining viral seropositivity for HSV (herpes simplex virus), HZ (herpes zoster), HBV (hepatitis B virus), HIV (human immunodeficiency virus), and HCV (hepatitis C virus) through ELISA testing. The findings revealed notable active or recent viral infection rates: 8.9% HSV positivity, 2.2% HZ antibody detection, 4.4% HCV positivity, and 4.4% HIV positivity. The research can contribute to current knowledge gaps, broaden the knowledge regarding the relationship between psoriasis and viral infection, and assess resistance, as it can mediate the interaction. The results can lead to improved diagnosis, treatment, and patient care options. This study emphasizes the importance of thorough viral testing for psoriasis patients, as well as focused therapeutic regimens that take into account viral co-infections. It elucidates the complex networks of biological relationships between immune factors, contributes information that is critical to our understanding of the multifactorial etiology of psoriasis, and concludes with a strong argument for investigating the mechanisms of viral involvement in this chronic-relapsing inflammatory disease. Full article
(This article belongs to the Special Issue Innovative Approaches in Dermatological Therapies and Diagnostics)
Show Figures

Figure 1

22 pages, 2149 KiB  
Article
Liposomal Delivery of a Biotechnological Lavandula angustifolia Miller Extract Rich in Rosmarinic Acid for Topical Herpes Simplex Therapy
by Federica Fulgheri, Fabrizio Angius, Matteo Perra, Ilenia Delogu, Silvia Puxeddu, Milen I. Georgiev, Renáta Novotná, Jana Franková, Misia Lobina, Aldo Manzin, Maria Manconi and Maria Letizia Manca
Antioxidants 2025, 14(7), 811; https://doi.org/10.3390/antiox14070811 - 30 Jun 2025
Viewed by 431
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread pathogen responsible for recurrent infections, primarily affecting the skin and mucous membranes. With the aim of targeting both the viral infection and the associated inflammatory response, biotechnologically produced Lavandula angustifolia Miller (L. angustifolia [...] Read more.
Herpes simplex virus type 1 (HSV-1) is a widespread pathogen responsible for recurrent infections, primarily affecting the skin and mucous membranes. With the aim of targeting both the viral infection and the associated inflammatory response, biotechnologically produced Lavandula angustifolia Miller (L. angustifolia) extract, rich in rosmarinic acid, was incorporated into liposomal formulations intended for topical application. Lavender is known for its strong anti-inflammatory, antioxidant, wound-healing, and antiviral properties. However, its low stability under certain conditions limits its therapeutic potential. Four different formulations were developed: conventional liposomes, glycerosomes, hyalurosomes, and glycerohyalurosomes. The vesicles were characterized for size, stability, and entrapment efficiency. Glycerosomes were the smallest (~58 nm), while the other formulations ranged around 77 nm, all maintaining a highly negative surface charge, ensuring stability and reduced aggregation. Glycerol-containing formulations demonstrated superior stability over 12 months, while liposomes and hyalurosomes increased their size after only two months. Entrapment efficiency reached up to 100% for most vesicles, except for glycerohyalurosomes (~54%). In vitro studies on Normal Human Dermal Fibroblasts (NHDFs) demonstrated that all formulations were biocompatible and enhanced cell viability under oxidative stress. Glycerosomes, hyalurosomes, and glycerohyalurosomes exhibited significant anti-inflammatory activity by reducing MMP-1 and IL-6 levels in LPS-stimulated fibroblasts. Furthermore, these preliminary results highlighted promising antiviral activity against HSV-1 of the obtained formulations, particularly when applied during or post-infection. Overall, these phospholipid vesicles offer a dual therapeutic approach, combining antioxidant, anti-inflammatory, and antiviral effects, positioning them as promising candidates for the treatment of HSV-induced skin lesions and related inflammatory conditions. Full article
(This article belongs to the Special Issue Recent Trends in Nanoantioxidants—2nd Edition)
Show Figures

Figure 1

13 pages, 1990 KiB  
Article
Elephant Cathelicidin-Derived Peptides Inhibit Herpes Simplex Virus 1 Infection
by Haiche Yisihaer, Peng Dong, Pengpeng Li, Enjie Deng, Rui Meng, Lin Jin and Guilan Li
Antibiotics 2025, 14(7), 655; https://doi.org/10.3390/antibiotics14070655 - 28 Jun 2025
Viewed by 266
Abstract
Herpes simplex virus type 1 (HSV-1) is a globally prevalent pathogen that can infect a variety of animal species as well as humans. However, existing antiviral therapies are constrained in their capacity to effectively target viral latency and prevent recurrent infections. Antimicrobial peptides [...] Read more.
Herpes simplex virus type 1 (HSV-1) is a globally prevalent pathogen that can infect a variety of animal species as well as humans. However, existing antiviral therapies are constrained in their capacity to effectively target viral latency and prevent recurrent infections. Antimicrobial peptides (AMPs), particularly cathelicidins, as part of innate immune system have demonstrated broad-spectrum efficacy against viral pathogens. In this study, four peptides derived from Elephas maximus cathelicidin EM were designed and optimized (EM-1 to EM-4). We identified low toxicity peptide derivatives through hemolytic and cytotoxicity assays, quantified their anti-HSV-1 activity by determining IC50. Antiviral mechanisms were investigated using RT-qPCR and antiviral efficacy was ultimately validated in C57BL/6J mice through viral load quantification in brain, lung, and heart tissues. Our findings revealed that EM-1 significantly inhibited HSV-1 replication in U251 cells. In a murine footpad inoculation model, EM-1 administration substantially reduced viral loads and alleviated inflammatory responses. Histological assessment demonstrated that EM-1 treatment mitigated HSV-1 induced tissue damage in infected mice. We also found that EM-1 exerted its antiviral effects by upregulating the expression of interferon-gamma and its downstream genes, such as ISG15 and MX1. These findings indicated that EM-1 is a dual function peptide that inhibits replication of HSV-1 as well as enhances host antiviral immunity. Collectively, this study highlights the therapeutic potential of elephant cathelicidin derived peptides in antiviral development. Full article
(This article belongs to the Special Issue The Discovery of Novel Antimicrobial Agents to Combat Infections)
Show Figures

Figure 1

21 pages, 6020 KiB  
Article
Anti-Herpes Simplex Virus (Wild-Type and Drug-Resistant) Properties of Herbal KerraTM, KSTM, and MinozaTM
by Chaleampol Loymunkong, Kiattawee Choowongkomon, Chukkris Heawchaiyaphum, Nutchanat Chatchawankanpanich, Chamsai Pientong, Tipaya Ekalaksananan and Jureeporn Chuerduangphui
Viruses 2025, 17(7), 889; https://doi.org/10.3390/v17070889 - 24 Jun 2025
Viewed by 742
Abstract
Commercial herbal compounds are a main attractive target to explore for a novel drug for the treatment of HSV. This study investigated the anti-HSV infectivity of extracts derived from the Thai commercial herbals KerraTM, KSTM, and MinozaTM. [...] Read more.
Commercial herbal compounds are a main attractive target to explore for a novel drug for the treatment of HSV. This study investigated the anti-HSV infectivity of extracts derived from the Thai commercial herbals KerraTM, KSTM, and MinozaTM. Wild-type HSV-1 KOS, HSV-2, and drug-resistant HSV-1 dxpIII were used to investigate any inhibitory effects of these extracts. A plaque formation assay was performed to investigate the effects of all extracts. The viral ICP4, UL30, gD, and gB and cellular IL1β, IL6, STAT3, and NFKB1 expression levels were evaluated. The KerraTM, KSTM, and MinozaTM extracts at 50–200 μg/mL significantly inhibited HSV-1 KOS and dxpIII infection in the post-entry step, whereas only MinozaTM could not reduce plaque formation of HSV-2. In addition, ICP4, UL30, and gD mRNAs and gB protein were significantly decreased in KerraTM- and KSTM-treated cells. Furthermore, IL1B, IL6, STAT3, and NFKB1 expression was upregulated in KerraTM- and KSTM-treated cells. KerraTM and KSTM could be agents against HSV infection, especially the HSV acyclovir (ACV)-resistant strain. From the docking result and drug-likeness prediction, 2-Methoxy-9H-xanthen-9-one, piperine, and sargassopenilline D found in KerraTM, KSTM, and MinozaTM show high binding energy closely resembling ACV, and are desirable as drug-like characteristics. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

Back to TopTop