Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = silver conductive inks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3091 KiB  
Article
Fabrication and Evaluation of Screen-Printed Electrodes on Chitosan Films for Cardiac Patch Applications with In Vitro and In Vivo Evaluation
by Yu-Hsin Lin, Yong-Ji Chen, Jen-Tsai Liu, Ching-Shu Yen, Yi-Zhen Lin, Xiu-Wei Zhou, Shu-Ying Chen, Jhe-Lun Hu, Chi-Hsiang Wu, Ching-Jung Chen, Pei-Leun Kang and Shwu-Jen Chang
Polymers 2025, 17(15), 2088; https://doi.org/10.3390/polym17152088 - 30 Jul 2025
Viewed by 23
Abstract
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the [...] Read more.
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the fabrication and evaluation of screen-printed electrodes (SPEs) on chitosan film as a novel platform for cardiac patch applications. Chitosan is a biodegradable and biocompatible natural polymer that provides an ideal substrate for SPEs, providing mechanical stability and promoting cell adhesion. Silver ink was employed to enhance electrochemical performance, and the electrodes exhibited strong adhesion and structural integrity under wet conditions. Mechanical testing and swelling ratio analysis were conducted to assess the patch’s physical robustness and aqueous stability. Silver ink was employed to enhance electrochemical performance, which was evaluated using cyclic voltammetry. In vitro, electrical stimulation through the chitosan–SPE patch significantly increased the expression of cardiac-specific genes (GATA-4, β-MHC, troponin I) in bone marrow mesenchymal stem cells (BMSCs), indicating early cardiogenic differentiation potential. In vivo, the implantation of the chitosan–SPE patch in a rat MI model demonstrated good tissue integration, preserved myocardial structure, and enhanced ventricular wall thickness, indicating that the patch has the potential to serve as a functional cardiac scaffold. These findings support the feasibility of screen-printed electrodes fabricated on chitosan film substrates as a cost-effective and scalable platform for cardiac repair, offering a foundation for future applications in cardiac tissue engineering. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 5527 KiB  
Article
Screen Printing Conductive Inks on Textiles: Impact of Plasma Treatment
by Julia Guérineau, Jollan Ton and Mariia Zhuldybina
Sensors 2025, 25(13), 4240; https://doi.org/10.3390/s25134240 - 7 Jul 2025
Viewed by 381
Abstract
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, [...] Read more.
Textile-based wearable devices are rapidly gaining traction in the Internet of Things paradigm and offer distinct advantages for data collection and analysis across a wide variety of applications. Seamlessly integrating electronics in textiles remains a technical challenge, especially when the textiles’ essential properties, such as comfort, breathability, and flexibility, are meant to be preserved. This article investigates screen printing as a textile post-processing technique for electronic integration, and highlights its versatility, cost-effectiveness, and adaptability in terms of design and customization. The study examines two silver-based inks screen-printed on an Oxford polyester textile substrate with a focus on substrate preparation and treatment. Before printing, the textile samples were cleaned with nitrogen gas and then subjected to low-pressure oxygen plasma treatment. For comparative analysis, two samples printed on polyethylene terephthalate (PET) serve as a reference. The findings highlight the importance of plasma treatment in optimizing the printability of textiles and demonstrate that it notably improves the electrical properties of conductive inks. Despite some remaining challenges, the study indicates that screen-printed electronics show promising potential for advancing the development of e-textiles and sensor-integrated wearables. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

19 pages, 3763 KiB  
Article
Elaboration of Conductive Hydrogels by 3D Printer for the Development of Strain Sensors
by Lucas Carravero Costa, Isabelle Pochard, Cédric C. Buron and Florian E. Jurin
Gels 2025, 11(7), 474; https://doi.org/10.3390/gels11070474 - 20 Jun 2025
Viewed by 428
Abstract
The development of biocompatible, conductive hydrogels via direct ink writing (DIW) has gained increasing attention for strain sensor applications. In this work, a hydrogel matrix composed of polyvinyl alcohol (PVA) and κ-carrageenan (KC) was formulated and enhanced with polyvinylidene fluoride (PVDF) and silver [...] Read more.
The development of biocompatible, conductive hydrogels via direct ink writing (DIW) has gained increasing attention for strain sensor applications. In this work, a hydrogel matrix composed of polyvinyl alcohol (PVA) and κ-carrageenan (KC) was formulated and enhanced with polyvinylidene fluoride (PVDF) and silver nanoparticles (AgNPs) to impart piezoelectric properties. The ink formulation was optimized to achieve shear-thinning and thixotropic recovery behavior, ensuring printability through extrusion-based 3D printing. The resulting hydrogels exhibited high water uptake (~280–300%) and retained mechanical integrity. Rheological assessments showed that increasing PVDF content improved stiffness without compromising printability. Electrical characterization demonstrated that AgNPs were essential for generating piezoelectric signals under mechanical stress, as PVDF alone was insufficient. While AgNPs did not significantly alter the crystalline phase distribution of PVDF, they enhanced conductivity and signal responsiveness. XRD and SEM-EDX analyses confirmed the presence and uneven distribution of AgNPs within the hydrogel. The optimized ink formulation (5% PVA, 0.94% KC, 6% PVDF) enabled the successful fabrication of functional sensors, highlighting the material’s strong potential for use in wearable or biomedical strain-sensing applications. Full article
(This article belongs to the Special Issue Hydrogel-Based Flexible Electronics and Devices)
Show Figures

Figure 1

17 pages, 18158 KiB  
Article
Novel Terpineol-Based Silver Nanoparticle Ink with High Stability for Inkjet Printing
by Aleksandrs Novikovs, Tamara Tsebriienko, Annamarija Trausa, Anete Berzina, George Chikvaidze, Dmitry Bocharov, Mohammad Yusuf Mulla, Juris Purans and Boris Polyakov
Nanomaterials 2025, 15(13), 955; https://doi.org/10.3390/nano15130955 - 20 Jun 2025
Viewed by 462
Abstract
This study presents a novel silver nanoparticle ink formulation designed for inkjet printing applications using terpineol as an eco-friendly solvent and butylamine as a stabilizer to ensure stability, high conductivity, and compatibility with inkjet technology. Silver nanoparticles were synthesized using a modified one-pot [...] Read more.
This study presents a novel silver nanoparticle ink formulation designed for inkjet printing applications using terpineol as an eco-friendly solvent and butylamine as a stabilizer to ensure stability, high conductivity, and compatibility with inkjet technology. Silver nanoparticles were synthesized using a modified one-pot method in the presence of highly effective stabilizers and surface modifiers such as oleic acid and oleylamine, resulting in uniform particles of less than 10 nm in size, which were then dispersed in a mixture of terpineol and butylamine. The resulting ink demonstrated exceptional stability over 85 days, maintaining optimal rheological properties for inkjet printing. The ink exhibited a perfect jetting performance. We were able to obtain silver conductive patterns reaching 81% of bulk silver conductivity. These results highlight the ink’s promise for scalable, sustainable manufacturing, combining environmental advantages with high-performance functionality. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

20 pages, 14795 KiB  
Article
Inkjet-Printed Conductive Patterns on Electrospun Substrates for the Modular Fabrication of Nonplanar Circuits
by Fabricio N. Molinari, Emanuel Bilbao and Leandro N. Monsalve
Appl. Nano 2025, 6(2), 10; https://doi.org/10.3390/applnano6020010 - 18 Jun 2025
Viewed by 423
Abstract
Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns [...] Read more.
Placing printed conductive patterns onto nonplanar substrates is a challenging task. In this work, we tested a simple method for depositing inkjet-printed conductive patterns onto 3D-printed pieces with cavities and sharp edges. First, a silver nanoparticle ink was used to print conductive patterns onto a flexible and porous substrate made of electrospun polycaprolactone (PCL). Then, the printed patterns were transferred to 3D-printed pieces made of polylactic acid (PLA) by temperature-promoted adhesion. Finally, the printed patterns were cured to render them conductive. The influence of the number of printed layers on their electrical and mechanical properties was evaluated. The printed patterns were also transferred to flexible substrates, such as thermoplastic polyurethane (TPU) and polyethylene terephthalate (PET) sheets, achieving conductivity after curing. Moreover, the printed patterns were effective for modular interconnection among successive transferred patterns, since it was possible to achieve electrical contact between them during the transfer process. Full article
Show Figures

Figure 1

29 pages, 3201 KiB  
Review
Screen Printing for Energy Storage and Functional Electronics: A Review
by Juan C. Rubio and Martin Bolduc
Electron. Mater. 2025, 6(2), 7; https://doi.org/10.3390/electronicmat6020007 - 30 May 2025
Cited by 1 | Viewed by 1792
Abstract
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, [...] Read more.
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, mesh selection and squeegee dynamics govern film uniformity, pattern resolution and ultimately device performance. Recent progress in advanced ink systems is surveyed, highlighting carbon allotropes (graphene, carbon nano-onions, carbon nanotubes, graphite), silver and copper nanostructures, MXene and functional oxides that collectively enhance mechanical robustness, electrical conductivity and radio-frequency behavior. Parallel improvements in substrate engineering such as polyimide, PET, TPU, cellulose and elastomers demonstrate the technique’s capacity to accommodate complex geometries for wearable, medical and industrial applications while supporting environmentally responsible material choices such as water-borne binders and bio-based solvents. By mapping two decades of developments across energy-storage layers and functional electronics, the article identifies the key process elements, recurring challenges and emerging sustainable practices that will guide future optimization of screen-printing materials and protocols for high-performance, customizable and eco-friendly flexible devices. Full article
Show Figures

Figure 1

15 pages, 2458 KiB  
Article
High-Performance EMI Shielding Film Based on Low-Dk Polyimide and Trimodal Ag Ink for High-Speed Signal Integrity Enhancement
by Moses Gu, Suin Chae, Seonwoo Kim, Yubin Kim, Shinui Kang, Soobin Park, Se-Hoon Park, Sung-Hoon Choa and Hyunjin Nam
Micro 2025, 5(2), 26; https://doi.org/10.3390/micro5020026 - 28 May 2025
Viewed by 1077
Abstract
Electromagnetic interference (EMI) shielding is critical for maintaining signal integrity in high-speed electronic packaging. However, conventional shielding approaches face limitations in process complexity and spatial efficiency. In this study, an EMI shielding film based on trimodal silver (Ag) ink and low-dielectric polyimide (PI) [...] Read more.
Electromagnetic interference (EMI) shielding is critical for maintaining signal integrity in high-speed electronic packaging. However, conventional shielding approaches face limitations in process complexity and spatial efficiency. In this study, an EMI shielding film based on trimodal silver (Ag) ink and low-dielectric polyimide (PI) resin was developed and comprehensively evaluated. The fabricated film exhibited an average shielding effectiveness (SE) of −99.7 dB in the 6–18 GHz frequency range and demonstrated a 50% increase in electrical conductivity after lamination (from 0.752 × 105 S/m to 1.13 × 105 S/m). The horizontal thermal conductivity reached 34.614 W/m·K, which was 3.4 times higher than the vertical value (10.249 W/m·K). Signal integrity simulations showed significant reductions in near-end crosstalk (NEXT, 77.8%) and far-end crosstalk (FEXT, 65%). Moreover, cyclic bending tests confirmed excellent mechanical durability, with a normalized resistance change below 0.6 after 1000 cycles at a bending radius of 4 mm. Notably, the film enabled a 50% reduction in signal line spacing while maintaining signal integrity, even without strict compliance with the 3W Rule. These results demonstrate the potential of the proposed EMI shielding film as a high-performance solution for advanced packaging applications requiring high-frequency operation, thermal management, and mechanical flexibility. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

14 pages, 2407 KiB  
Review
An Overview of Silver Nanowire Polyol Synthesis Using Millifluidic Flow Reactors for Continuous Transparent Conductive Film Manufacturing by Direct Ink Writing
by Destiny F. Williams and Shohreh Hemmati
Nanomanufacturing 2025, 5(2), 7; https://doi.org/10.3390/nanomanufacturing5020007 - 6 May 2025
Viewed by 1018
Abstract
Silver nanowires (AgNWs) have garnered significant attention in nanotechnology due to their unique mechanical and electrical properties and versatile applications. This review explores the synthesis of AgNWs, with a specific focus on the utilization of millifluidic flow reactors (MFRs) as a promising platform [...] Read more.
Silver nanowires (AgNWs) have garnered significant attention in nanotechnology due to their unique mechanical and electrical properties and versatile applications. This review explores the synthesis of AgNWs, with a specific focus on the utilization of millifluidic flow reactors (MFRs) as a promising platform for controlled and efficient production. It begins by elucidating the exceptional characteristics and relevance of AgNWs in various technological domains and then delves into the principles and advantages of MFRs by showcasing their pivotal role in enhancing the precision and scalability of nanowire synthesis. Within this review, an overview of the diverse synthetic methods employed for AgNW production using MFRs is provided. Special attention is given to the intricate parameters and factors influencing synthesis and how MFRs offer superior control over these critical variables. Recent advances in this field are highlighted, revealing innovative strategies and promising developments that have emerged. As with any burgeoning field, challenges are expected, so future directions are explored, offering insights into the current limitations and opportunities for further exploration. In conclusion, this review consolidates the state-of-the-art knowledge in AgNW synthesis and emphasizes the critical role of MFRs in shaping the future of nanomaterial production and nanomanufacturing. Full article
Show Figures

Figure 1

17 pages, 8911 KiB  
Article
Study on Hybrid Assemblies of Graphene and Conducting Polymers with Embedded Gold Nanoparticles for Potential Electrode Purposes
by Alexandru F. Trandabat, Oliver Daniel Schreiner, Thomas Gabriel Schreiner, Olga Plopa and Romeo Cristian Ciobanu
Chemosensors 2025, 13(4), 130; https://doi.org/10.3390/chemosensors13040130 - 4 Apr 2025
Viewed by 767
Abstract
This article outlines the method of creating electrodes for electrochemical sensors using hybrid nanostructures composed of graphene and conducting polymers with insertion of gold nanoparticles. The technology employed for graphene dispersion and support stabilization was based on the chemical vapor deposition technique followed [...] Read more.
This article outlines the method of creating electrodes for electrochemical sensors using hybrid nanostructures composed of graphene and conducting polymers with insertion of gold nanoparticles. The technology employed for graphene dispersion and support stabilization was based on the chemical vapor deposition technique followed by electrochemical delamination. The method used to obtain hybrid nanostructures from graphene and conductive polymers was drop-casting, utilizing solutions of P3HT, PANI-EB, and F8T2. Additionally, the insertion of gold nanoparticles utilized an innovative dip-coating technique, with the graphene-conducting polymer frameworks submerged in a HAuCl4/2-propanol solution and subsequently subjected to controlled heating. The integration of gold nanoparticles differs notably, with P3HT showing the least adhesion of gold nanoparticles, while PANI-EB exhibits the highest. An inkjet printer was employed to create electrodes with metallization accomplished through the use of commercial silver ink. Notable variations in roughness (grain size) result in unique behaviors of these structures, and therefore, any potential differences in the sensitivity of the generated sensing structures can be more thoroughly understood through this spatial arrangement. The electrochemical experiments utilized a diluted sulfuric acid solution at three different scan rates. The oxidation and reduction potentials of the structures seem fairly alike. Nevertheless, a notable difference is seen in the anodic and cathodic current densities, which appear to be largely influenced by the active surface of gold nanoparticles linked to the polymeric grains. The graphene–PANI-EB structure with Au nanoparticles showed the highest responsiveness and will be further evaluated for biomedical applications. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

15 pages, 5934 KiB  
Article
A Waterborne, Flexible, and Highly Conductive Silver Ink for Ultra-Rapid Fabrication of Epidermal Electronics
by Patrick Rwei, Jia-Wei Shiu, Mehmet Senel, Amirhossein Hajiaghajani, Chengyang Qian, Chin-Wen Chen, Peter Tseng and Michelle Khine
Sensors 2025, 25(7), 2092; https://doi.org/10.3390/s25072092 - 27 Mar 2025
Cited by 1 | Viewed by 1315
Abstract
Epidermal electronics provide a promising solution to key challenges in wearable electronics, such as motion artifacts and low signal-to-noise ratios caused by an imperfect sensor–skin interface. To achieve the optimal performance, skin-worn electronics require high conductivity, flexibility, stability, and biocompatibility. Herein, we present [...] Read more.
Epidermal electronics provide a promising solution to key challenges in wearable electronics, such as motion artifacts and low signal-to-noise ratios caused by an imperfect sensor–skin interface. To achieve the optimal performance, skin-worn electronics require high conductivity, flexibility, stability, and biocompatibility. Herein, we present a nontoxic, waterborne conductive ink made of silver and child-safe slime for the fabrication of skin-compatible electronics. The ink formulation includes polyvinyl acetate (PVAc), known as school glue, as a matrix, glyceryl triacetate (GTA) as a plasticizer, sodium tetraborate (Borax) as a crosslinker, and silver (Ag) flakes as the conducting material. Substituting citric acid (CA) for GTA enhances the deformability by more than 100%. With exceptional conductivity (up to 1.17 × 104 S/cm), we demonstrate the ink’s potential in applications such as an epidermal near-field communication (NFC) antenna patch and a wireless ECG system for motion monitoring. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 14063 KiB  
Article
TiO2 Ceramic Nanotubes—Conducting Polymer Assemblies with Embedded Gold Particles for Potential Use as Chemosensors in the Detection of Oral Diseases
by Oliver Daniel Schreiner, Alexandru F. Trandabat, Romeo Cristian Ciobanu and Thomas Gabriel Schreiner
Chemosensors 2025, 13(4), 117; https://doi.org/10.3390/chemosensors13040117 - 22 Mar 2025
Viewed by 2726
Abstract
Our research outlines a method for creating chemosensors utilizing hybrid nanostructures derived from TiO2 ceramic nanotubes alongside conducting polymers, with embedded gold nanoparticles. The method used to create hybrid nanostructures from ceramic nanotubes and conducting polymers was drop-casting. AFM analysis highlighted an [...] Read more.
Our research outlines a method for creating chemosensors utilizing hybrid nanostructures derived from TiO2 ceramic nanotubes alongside conducting polymers, with embedded gold nanoparticles. The method used to create hybrid nanostructures from ceramic nanotubes and conducting polymers was drop-casting. AFM analysis highlighted an increased roughness, particularly for PANI-EB, exhibiting a significantly larger grain size exceeding 3.5 μm, with an increased inclusion of gold and uniform arrangement on the surface. The Rku parameter values being around three suggested that the layers primarily exhibited peaks rather than depressions, showing a Gaussian distribution. A chemiresistor was created by using an ink-jet printer and a multilayer metallization was achieved with commercial silver ink for printed electronics. Based on the experimental calibration curve, which exhibits adequate linearity over a wider range of H2S concentrations in air up to 1 ppm, the detection limit was established at 0.1 ppm, a threshold appropriate for recognizing oral diseases. The sensor is a simple, affordable, and durable device designed for individual use, offering significant benefits for patients by enabling improved tracking of the syndrome’s advancement or treatment success. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
Show Figures

Figure 1

6 pages, 651 KiB  
Proceeding Paper
The Development of an Affordable Graphite-Based Conductive Ink for Printed Electronics
by Anandita Dey, Ankur Jyoti Kalita, Hiramoni Khatun and Utpal Sarma
Eng. Proc. 2025, 87(1), 17; https://doi.org/10.3390/engproc2025087017 - 13 Mar 2025
Viewed by 962
Abstract
Printed electronics (PEs) are rapidly attracting interest, especially in wearable sensors, smart textiles, and IoT devices. Conductive inks, essential for the fabrication of PE, must be highly conductive, cost-effective, biocompatible, easy to prepare, and less viscous. Conductive inks comprise a conducting material (metals [...] Read more.
Printed electronics (PEs) are rapidly attracting interest, especially in wearable sensors, smart textiles, and IoT devices. Conductive inks, essential for the fabrication of PE, must be highly conductive, cost-effective, biocompatible, easy to prepare, and less viscous. Conductive inks comprise a conducting material (metals like silver, gold, copper, or carbon-based alternatives like graphite, graphene, and carbon nanotubes), a binder, and a solvent. In this work, a water-based graphite conductive ink is developed using graphite as a conductive material, corn starch powder (non-toxic and biodegradable) as a binder, and distilled water as a solvent. Firstly, corn starch powder is added to distilled water, which is heated up to 100 °C and stirred continuously until a homogeneous gel-like mixture is formed. After cooling the mixture, graphite powder is added to it, and it is stirred for an hour at 450 rpm to obtain the ink. To check the conductivity, the ink is brush-painted on a paper substrate with a dimension of 20 mm × 10 mm and the result shows a low ohmic resistance of ~560 Ω, confirming the highly conductive nature of the ink. Additionally, thermogravimetric analysis (TGA) is performed on the prepared ink to evaluate its thermal stability, and a very strong X-ray diffraction (XRD) peak obtained at 2θ° = 26.5426° and a small peak at 2θ° = 54.6145°, along with a few other small peaks, confirms the presence of graphite with corn starch. Thus, this conductive ink can be used for PEs owing to its affordability, biocompatibility, and ease of preparation. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 3204 KiB  
Article
Electrical Characterization of Cost-Effective Screen-Printed Sensors Based on Thermoplastic Polyurethane, Polyimide, and Polyethylene Terephthalate
by Muhammad Faiz ul Hassan, Yan Wang, Kai Yang, Yading Wen, Shichao Jin, Yi Zhang and Xiaosheng Zhang
Micromachines 2025, 16(3), 319; https://doi.org/10.3390/mi16030319 - 10 Mar 2025
Cited by 1 | Viewed by 886
Abstract
In recent years, the improvement in living standards and the corresponding increase in quality-of-life expectations have significantly increased the demand for advanced electronic products. This trend has generated great interest in human health monitoring and extensive research efforts. Flexible sensors in particular are [...] Read more.
In recent years, the improvement in living standards and the corresponding increase in quality-of-life expectations have significantly increased the demand for advanced electronic products. This trend has generated great interest in human health monitoring and extensive research efforts. Flexible sensors in particular are being given preference because of their high extensibility, excellent biocompatibility properties, low weight, and low cost. In the present work, we took this idea further and designed flexible sensors using different substrates such as thermoplastic polyurethane (TPU), polyimide (PI), and polyethylene terephthalate (PET), fabricating them with silver paste ink using screen-printing technology. A uniform and homogeneous conductive layer was formed, which was identified through Scanning Electron Microscopy (SEM) analysis. Additionally, the width of the printed silver paste ink was approximately 100 µm. This study contributes to the design and fabrication of a new generation of flexible sensors for health monitoring. The results demonstrate that these sensors are technically possible as part of long-term wearable health-monitoring solutions for wearable health care technologies. Full article
(This article belongs to the Special Issue Flexible and Wearable Sensors, 3rd Edition)
Show Figures

Figure 1

7 pages, 4149 KiB  
Proceeding Paper
Empowering Smart Surfaces: Optimizing Dielectric Inks for In-Mold Electronics
by Priscilla Hong, Gibson Soo Chin Yuan, Yeow Meng Tan and Kebao Wan
Eng. Proc. 2024, 78(1), 8; https://doi.org/10.3390/engproc2024078008 - 6 Feb 2025
Viewed by 536
Abstract
Dielectric materials have gained traction for their energy-storage capacitive and electrically insulating properties as sensors and in smart surface technologies such as in In-Mold Electronics (IME). IME is a disruptive technology that involves environmentally protected electronics in plastic thermoformed and molded structures. The [...] Read more.
Dielectric materials have gained traction for their energy-storage capacitive and electrically insulating properties as sensors and in smart surface technologies such as in In-Mold Electronics (IME). IME is a disruptive technology that involves environmentally protected electronics in plastic thermoformed and molded structures. The use of IME in a human–machine interface (HMI) provides a favorable experience to the users and helps reduce production costs due to a smaller list of parts and lower material costs. A few functional components that are compatible with one another are crucial to the final product’s properties in the IME structure. Of these components, the dielectric layers are an important component in the smart surface industry, providing insulation for the prevention of leakage currents in multilayered printed structures and capacitance sensing on the surface of specially designed shapes in IME. Advanced dielectric materials are non-conductive materials that impend and polarize electron movements within the material, store electrical energy, and reduce the flow of electric current with exceptional thermal stability. The selection of a suitable dielectric ink is an integral stage in the planning of the IME smart touch surface. The ink medium, solvent, and surface tension determine the printability, adhesion, print quality, and the respective reaction with the bottom and top conductive traces. The sequence in which the components are deposited and the heating processes in subsequent thermoforming and injection molding are other critical factors. In this study, various commercially available dielectric layers were each printed in two to four consecutive layers with a mesh thickness of 50–60 µm or 110–120 µm, acting as an insulator between conductive silver traces overlaid onto a polycarbonate substrate. Elemental mapping and optical analysis on the cross-section were conducted to determine the compatibility and the adhesion of the dielectric layers on the conductive traces and polycarbonate substrate. The final selection was based on the functionality, reliability, repeatability, time-stability, thickness, total processing time, appearance, and cross-sectional analysis results. The chosen candidate was then placed through the final product design, circuitry design, and plastic thermoforming process. In summary, this study will provide a general guideline to optimize the selection of dielectric inks for in-mold electronics applications. Full article
Show Figures

Figure 1

15 pages, 17491 KiB  
Article
Preparation and Optoelectrical Property of Silver Nanowire Transparent Conductive Film via Slot Die Coating
by Jiaqi Shan, Ye Hong, Haoyu Wang, Kaixuan Cui, Jianbao Ding and Xingzhong Guo
Coatings 2025, 15(1), 95; https://doi.org/10.3390/coatings15010095 - 15 Jan 2025
Viewed by 1560
Abstract
Silver nanowire transparent conductive films (AgNW TCFs), as the novel transparent electrode materials replacing ITO, are anticipated to be applied in numerous optoelectronic devices, and slot-die coating is currently acknowledged as the most suitable method for the mass production of large-sized AgNW TCFs. [...] Read more.
Silver nanowire transparent conductive films (AgNW TCFs), as the novel transparent electrode materials replacing ITO, are anticipated to be applied in numerous optoelectronic devices, and slot-die coating is currently acknowledged as the most suitable method for the mass production of large-sized AgNW TCFs. In this study, sodium carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), as film-forming aids, and AgNWs, as conductive materials, were utilized to prepare a specialized AgNW ink, and a slot-die coating is employed to print and prepare AgNW TCFs. The optoelectrical properties of AgNW TCFs are optimized by adjusting the compositions of AgNW ink and the process parameters of slot-die coating. The suitable compositions of AgNW ink and the optimal parameters of slot-die coating are a CMC type of V, a PVA volume of 1 mL, a AgNW volume of 1.5 mL, a volume ratio of 30 and 45 nm AgNWs (2:1), and a coating height of 400 μm. The resultant AgNW TCFs achieve excellent comprehensive optoelectronic performance, with a sheet resistance of less than 50 Ω/sq, a visible light transmittance exceeding 92%, and a haze below 1.8%. This research provides a valuable approach to producing AgNW TCFs on a large scale via the slot-die coating. Full article
(This article belongs to the Special Issue Advanced Films and Coatings for Flexible Electronics)
Show Figures

Figure 1

Back to TopTop