Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = shoulder torques

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1975 KiB  
Article
Decoding the Contribution of Shoulder and Elbow Mechanics to Barbell Kinematics and the Sticking Region in Bench and Overhead Press Exercises: A Link-Chain Model with Single- and Two-Joint Muscles
by Paolo Evangelista, Lorenzo Rum, Pietro Picerno and Andrea Biscarini
J. Funct. Morphol. Kinesiol. 2025, 10(3), 322; https://doi.org/10.3390/jfmk10030322 - 20 Aug 2025
Viewed by 186
Abstract
Objectives: This study investigates the biomechanics of the bench press and overhead press exercises by modeling the trunk and upper limbs as a kinematic chain of rigid links connected by revolute joints and actuated by single- and two-joint muscles, with motion constrained by [...] Read more.
Objectives: This study investigates the biomechanics of the bench press and overhead press exercises by modeling the trunk and upper limbs as a kinematic chain of rigid links connected by revolute joints and actuated by single- and two-joint muscles, with motion constrained by the barbell. The aims were to (i) assess the different contributions of shoulder and elbow torques during lifting, (ii) identify the parameters influencing joint loads, (iii) explain the origin of the sticking region, and (iv) validate the model against experimental barbell kinematics. Methods: Equations of motion and joint reaction forces were derived analytically in closed form. Dynamic simulations produced vertical barbell velocity profiles under various conditions. A waveform similarity analysis was used to compare simulated profiles with experimental data from maximal bench press trials. Results: The sticking region occurred when shoulder torque dropped below a critical threshold, resulting in a local velocity minimum. Adding elbow torque reduced this dip and shifted the velocity minimum from 38 cm to 23 cm above the chest, although it prolonged the time needed to overcome it. Static analysis revealed that grip width and barbell constraint had a greater effect on shaping the sticking region than muscle architecture parameters. Elbow extensors contributed minimally during early lift phases but became dominant near full extension. Model predictions showed high similarity to experimental data in the pre-sticking (SI = 0.962, p = 0.028) and sticking (SI = 0.949, p = 0.014) phases, with reduced, non-significant similarity post-sticking (SI = 0.881, p > 0.05) due to the assumption of constant torques. Conclusions: The model offers biomechanical insight into how joint torques and barbell constraints shape movement. The findings support training strategies that target shoulder strength early in the lift and elbow strength near lockout to minimize sticking and improve performance. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
Show Figures

Figure 1

14 pages, 889 KiB  
Article
Neuromuscular Assessment of Maximal Shoulder Flexion/Extension Torque Development in Male Gymnasts
by Dimitrios C. Milosis, Costas Dallas, Dimitrios A. Patikas, George Dallas and Theophanis Siatras
Biomechanics 2025, 5(3), 49; https://doi.org/10.3390/biomechanics5030049 - 1 Jul 2025
Viewed by 517
Abstract
Background/Objectives: The objective of this study was to compare muscular strength and neuromuscular activation characteristics between male gymnasts and physical education (PE) students during isometric shoulder extension and flexion tasks. Methods: Thirteen competitive male gymnasts (age: 19.59 ± 1.90 years; body [...] Read more.
Background/Objectives: The objective of this study was to compare muscular strength and neuromuscular activation characteristics between male gymnasts and physical education (PE) students during isometric shoulder extension and flexion tasks. Methods: Thirteen competitive male gymnasts (age: 19.59 ± 1.90 years; body mass: 66.54 ± 6.10 kg; height: 169.38 ± 6.28 cm; mean ± SD) and thirteen male physical education (PE) students (age: 20.96 ± 2.30 years; body mass: 74.00 ± 8.69 kg; height: 174.96 ± 4.93 cm) voluntarily participated in the study. Peak torque (PT), rate of torque development (RTD), RTD normalized to body mass (RTD/BM), and muscle activation assessed via surface electromyography (EMG), normalized to maximal EMG activity (EMG/EMGmax), were evaluated during bilateral isometric shoulder extension and flexion at a joint angle of 45°. Measurements were analyzed across the following time intervals: −50 to 0 ms (pre-tension), 0–30 ms, 0–50 ms, 0–100 ms, and 0–200 ms relative to contraction onset. Custom MATLAB R2024b scripts were used for data processing and visualization. One-way and two-way multivariate analyses of variance (MANOVAs) were conducted to test for group differences. Results: Gymnasts exhibit higher values of PT, PT/BM, RTD, and RTD/BM particularly within the early contraction phases (i.e., 0–50 ms and 0–100 ms) compared to PE students (p < 0.05 to <0.001; η2 = 0.04–0.66). Additionally, EMG activity normalized to maximal activation (EMG/EMGmax) was significantly greater in gymnasts during both early and mid-to-late contraction phases (0–100 ms and 0–200 ms), (p < 0.05 to <0.001; η2 = 0.04–0.48). Conclusions: These findings highlight gymnasts’ superior explosive neuromuscular capacity. Metrics like RTD, RTD/BM, and EMG offer valuable insights into rapid force production and neural activation, supporting performance monitoring, training optimization, and injury prevention across both athletic and general populations. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

14 pages, 1850 KiB  
Article
Kinematic Analysis of Dynamic Coactivation During Arm Swing at the Shoulder and Elbow Joints
by Jae Ho Kim, Jaejin Hwang, Myung-Chul Jung and Seung-Min Mo
Appl. Sci. 2025, 15(12), 6593; https://doi.org/10.3390/app15126593 - 11 Jun 2025
Viewed by 489
Abstract
This study aimed to investigate the influence of different walking speeds on shoulder and elbow joint kinematics, specifically focusing on range of motion, angular velocity, and angular acceleration during arm swing. The natural rhythm of human gait was studied to develop an effective [...] Read more.
This study aimed to investigate the influence of different walking speeds on shoulder and elbow joint kinematics, specifically focusing on range of motion, angular velocity, and angular acceleration during arm swing. The natural rhythm of human gait was studied to develop an effective mechanical interface, particularly with respect to joint impedance and force controllability. The independent variable in this study was walking speed, operationalized at four levels—3.6 km/h (slow), 4.2 km/h (preferred walking speed, PWS), 5.4 km/h (normal), and 7.2 km/h (fast)—and defined as a within-subject factor. The dependent variables consisted of quantitative kinematic parameters, including joint range of motion (ROM, in degrees), peak and minimum joint angular velocity (deg/s), and peak and minimum joint angular acceleration (deg/s2). For each subject, data from twenty gait cycles were extracted for analysis. The kinematic variables of the shoulder and elbow were analyzed, showing increasing trends as the walking speed increased. As walking speed increases, adequate arm swing contributes to gait stability and energy efficiency. Notably, the ROM of shoulder was slightly reduced at the PWS compared to the slowest speed (3.6 km/h), which may reflect more natural and coordinated limb movements at the PWS. Dynamic covariation of torque patterns in the shoulder and elbow joints was observed, reflecting a synergistic coordination between these joints in response to human body movement. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

22 pages, 3432 KiB  
Article
The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation
by Tianlei Yang, Xiao Wei, Jiangfan Zhou, Hao Jiang, Xinyu Liu and Zongzhe Man
Symmetry 2025, 17(6), 917; https://doi.org/10.3390/sym17060917 - 10 Jun 2025
Viewed by 564
Abstract
Friction Stir Welding (FSW) is widely used for high-strength aluminum alloys due to its solid-state bonding, which ensures superior weld quality and service stability. However, thermo-mechanical interactions during welding can induce complex residual stress distributions, compromising joint integrity. Previous studies have primarily focused [...] Read more.
Friction Stir Welding (FSW) is widely used for high-strength aluminum alloys due to its solid-state bonding, which ensures superior weld quality and service stability. However, thermo-mechanical interactions during welding can induce complex residual stress distributions, compromising joint integrity. Previous studies have primarily focused on thermal load-driven stress evolution, often neglecting mechanical factors such as the shear force generated by the stirring pin. This study develops a three-dimensional thermo-mechanical coupled finite element model based on a moving heat source. The model incorporates axial pressure from the tool shoulder and torque-derived shear force from the stirring pin. A hybrid surface–volumetric heat source is applied to represent frictional heating, and realistic mechanical boundary conditions are introduced to reflect actual welding conditions. Simulations on AA6061-T6 aluminum alloy show that under stable welding, the peak temperature in the weld zone reaches approximately 453 °C. Residual stress analysis indicates a longitudinal tensile peak of ~170 MPa under thermal loading alone, which reduces to ~150 MPa when mechanical loads are included, forming a characteristic M-shaped distribution. Further comparison with a Coupled Eulerian–Lagrangian (CEL) model reveals stress asymmetry, with higher tensile stress on the advancing side. This is primarily attributed to the directional shear force, which promotes greater plastic deformation on the advancing side than on the retreating side. The consistency between the proposed model and CEL results confirms its validity. This study provides a reliable framework for residual stress prediction in FSW and supports process parameter optimization. Full article
(This article belongs to the Special Issue Symmetry in Impact Mechanics of Materials and Structures)
Show Figures

Figure 1

20 pages, 642 KiB  
Article
Effects of Protein Supplementation During High-Intensity Functional Training on Physical Performance in Recreationally Trained Males and Females: A Randomized Controlled Trial
by Christina Karpouzi, Ioannis Kosmidis, Anatoli Petridou, Gabriela Voulgaridou, Sousana K. Papadopoulou, Gregory C. Bogdanis and Vassilis Mougios
Nutrients 2025, 17(9), 1441; https://doi.org/10.3390/nu17091441 - 25 Apr 2025
Cited by 1 | Viewed by 2416
Abstract
Background/Objectives: High-intensity functional training (HIFT) combines multijoint aerobic and resistance exercises. Despite its popularity, limited research has investigated dietary or supplementation strategies to enhance adaptations to HIFT. Hence, this study aimed to examine the effects of egg white and whey protein supplementation [...] Read more.
Background/Objectives: High-intensity functional training (HIFT) combines multijoint aerobic and resistance exercises. Despite its popularity, limited research has investigated dietary or supplementation strategies to enhance adaptations to HIFT. Hence, this study aimed to examine the effects of egg white and whey protein supplementation during HIFT on physical performance in trained individuals. Methods: Thirty recreationally trained volunteers (20 males, 10 females), aged 23–55, underwent 6 weeks of HIFT (three times/week) while receiving 0.6 g/kg/day of egg white protein, whey protein, or maltodextrin (placebo) in a researcher-blinded, randomized, triple-crossover, and counterbalanced design, with 2 weeks of washout between supplements. Participants followed isoenergetic diets providing 1.0 g/kg/day of protein. Before and after each intervention, VO2max, the maximal strength (1 RM) and force–velocity relationship of shoulder press, the peak torque and strength endurance of knee extensors and flexors, and the strength endurance of core muscles were measured. The training session load was monitored during each intervention period’s first and last weeks. Data were analyzed by three-way ANOVA (supplement × time × sex), with repeated measures on supplement and time. Results: The duration, energy expenditure, training load score, and cardio load of each training session increased from the beginning to the end of each training period by 2–11% (p < 0.05). The 1 RM of shoulder press and strength endurance of core muscles increased by 3–6% (p < 0.001). Protein supplementation did not affect any of these outcomes. Conclusions: Short-term HIFT improved exercise capacity, upper-body strength, and core endurance. However, increasing protein intake from 1.0 to 1.6 g/kg/day did not further enhance performance. Full article
(This article belongs to the Special Issue Protein Intake and Metabolism in Sports Performance)
Show Figures

Figure 1

22 pages, 6697 KiB  
Article
Research on the Bearingless Brushless DC Motor Structure with Like-Tangential Parallel-Magnetization Interpolar Magnetic Poles and Its Air-Gap Magnetic Field Analytical Calculation
by Wenshao Bu, Zongang Fan, Jinghui Zhang and Wenqing Tao
Actuators 2025, 14(4), 198; https://doi.org/10.3390/act14040198 - 19 Apr 2025
Cited by 2 | Viewed by 726
Abstract
This work focuses on the small Bearingless Brushless DC Motor (BL-BLDCM), to solve the problems, such as larger commutation torque ripple and difficult solution of air-gap magnetic field, a novel BL-BLDCM structure with like-tangential parallel-magnetization interpolar magnetic poles (LTPMIMPs) is proposed, which is [...] Read more.
This work focuses on the small Bearingless Brushless DC Motor (BL-BLDCM), to solve the problems, such as larger commutation torque ripple and difficult solution of air-gap magnetic field, a novel BL-BLDCM structure with like-tangential parallel-magnetization interpolar magnetic poles (LTPMIMPs) is proposed, which is abbreviated as BL-BLDCM-LTPMIMP in this work, and the analytical calculation model of its air-gap magnetic field has been investigated. First, inserting a like-tangential parallel magnetizing auxiliary magnetic pole between every two adjacent single-radial-magnetizing main poles, and forming several combination magnetic poles, each of which is composed of a radial-magnetizing main magnetic pole and two semi-auxiliary-magnetic-poles (with different magnetization directions) located on both sides. Then, by solving the Laplace equation and Poisson equation in every subdomain, and combining the relative permeability function, the analytical expressions of the air-gap magnetic fields for the BL-BLDCM-LTPMIMP was obtained. The armature reaction magnetic fields of the torque windings and suspension windings are also analyzed. Finally, through the finite element method (FEM), the correctness and computational accuracy of the analytical calculation model for the air-gap magnetic field is proven. Additionally, the comparison of electromagnetic characteristics with ordinary BL-BLDCM shows that the BL-BLDCM-LTPMIMP can not only effectively improve the amplitude and stability of electromagnetic torque on the basis of obtaining a shoulder-shrugged trapezoidal wave air-gap magnetic field but also has stable radial magnetic levitation force control characteristics. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

18 pages, 8611 KiB  
Article
Effect of Preventive Exercise Programs for Swimmer’s Shoulder Injury on Rotator Cuff Torque and Balance in Competitive Swimmers: A Randomized Controlled Trial
by Nuno Tavares, João Paulo Vilas-Boas and Maria António Castro
Healthcare 2025, 13(5), 538; https://doi.org/10.3390/healthcare13050538 - 1 Mar 2025
Viewed by 2736
Abstract
Background: Over the season, competitive swimmers experience a progressive imbalance in rotator cuff strength, predisposing them to a significant risk factor for a swimmer’s shoulder injury. Objectives: Verify the effectiveness of two 12-week preventive programs on the shoulder rotators’ peak torque and conventional/functional [...] Read more.
Background: Over the season, competitive swimmers experience a progressive imbalance in rotator cuff strength, predisposing them to a significant risk factor for a swimmer’s shoulder injury. Objectives: Verify the effectiveness of two 12-week preventive programs on the shoulder rotators’ peak torque and conventional/functional ratios. Design: A care provider- and participant-blinded, parallel, randomized controlled trial with three groups. Participants: Competitive swimmers aged 16 to 35 years with no prior clinical issues related to their shoulders. Interventions: Twice a week, over 12 weeks, the two experimental groups performed five exercises where the only difference was executing the program with weights or elastic bands, and the control group performed a sham intervention. Main outcome measures: The concentric and eccentric peak torque of the internal and external rotators of the dominant shoulder were assessed before and after the intervention using an isokinetic dynamometer Biodex System 3, at 60°/s, 120°/s, and 180°/s. Results: Among the experimental groups, only one test indicated a reduction (p ≤ 0.05) in rotator peak torque, while the control group showed a decrease (p ≤ 0.05) in five tests. Swimmers who completed the prevention programs demonstrated less imbalance in conventional/functional ratios than controls. Conclusions: Implementing a 12-week preventive program minimizes the progressive shoulder rotational imbalance over the season in competitive swimmers. Clinical Trial Registration number: NCT06552585. Full article
Show Figures

Figure 1

19 pages, 9800 KiB  
Article
Assist-as-Needed Controller of a Rehabilitation Exoskeleton for Upper-Limb Natural Movements
by Shuo Pei, Jiajia Wang, Chenghua Tian, Xibin Li, Bingqi Guo, Junlong Guo and Yufeng Yao
Appl. Sci. 2025, 15(5), 2644; https://doi.org/10.3390/app15052644 - 28 Feb 2025
Cited by 1 | Viewed by 1567
Abstract
Active patient participation in the rehabilitation process after stroke has been shown to accelerate neural remodeling. The control framework of rehabilitation robots should provide appropriate assistive forces to users. An assist-as-needed (AAN) control method is proposed to help users to move upper limbs [...] Read more.
Active patient participation in the rehabilitation process after stroke has been shown to accelerate neural remodeling. The control framework of rehabilitation robots should provide appropriate assistive forces to users. An assist-as-needed (AAN) control method is proposed to help users to move upper limbs in the workspace freely, and to control the exoskeleton to provide assistance. The method is based on zero moment control (ZMC), helping the user achieve robotic traction with minimal interaction force. Based on the posture of the upper arm and forearm, an AAN controller can modify assistive forces at two human–robot-interaction (HRI) points along the direction opposite to gravity. A shoulder motion prediction model is proposed to enable the exoskeleton to mimic the user’s upper limb natural movements. In order to improve the transparency during rehabilitation training, a nonlinear numerical friction model based on the Stribeck friction model is developed. A healthy adult male was recruited to perform various activities of daily living (ADL) tests to assess the effectiveness of the controllers. The experimental results show that the proposed ZMC controller has high HRI transparency and can control the exoskeleton to complete a wide range of upper limb movements, and the maximum interaction force and torque can be captured within −7.76 N and 4.58 Nm, respectively. The AAN controller can provide appropriate assistance in the desired direction, and the exoskeleton maintains kinematic synchronization with the user’s shoulder during shoulder girdle movement. Full article
(This article belongs to the Special Issue Emerging Technologies for Assistive Robotics)
Show Figures

Figure 1

14 pages, 887 KiB  
Article
Psychometric Properties of the Athletic Shoulder Test in Adolescent Tennis Players
by Achilleas Paliouras, Marina Porgiopoulou, Giorgos Varverakis, Giorgos Stavrakakis, Nikolaos Strimpakos and Eleni Kapreli
J. Clin. Med. 2025, 14(4), 1146; https://doi.org/10.3390/jcm14041146 - 10 Feb 2025
Cited by 1 | Viewed by 1057
Abstract
Background/Objectives: The Athletic Shoulder Test (ASH) has been described as one of the most promising upper-extremity tests to assess performance in overhead athletes. Its high reliability rates, short testing period, and applicability in any environment with portable and cheap equipment have been [...] Read more.
Background/Objectives: The Athletic Shoulder Test (ASH) has been described as one of the most promising upper-extremity tests to assess performance in overhead athletes. Its high reliability rates, short testing period, and applicability in any environment with portable and cheap equipment have been highlighted as some of the advantages of the test. However, it has yet to be evaluated in a non-adult athletic population. Therefore, the aim of this study was to investigate the ASH test’s psychometric properties in a sample of young tennis players. Methods: A total of 33 adolescent tennis players were evaluated among two sessions with a week interval. Intra-rater, inter-rater, and test-retest reliability were investigated. Additionally, possible correlations with measures of rotational shoulder strength and upper-extremity performance were examined. Two novice physiotherapists performed all the measurements following appropriate training. Results: The relative reliability scores, as calculated by intraclass correlation coefficient (ICC) indices, were found to be excellent (ICC = 0.924–0.988). Standard error of measurement and minimal detectable change scores have been estimated per position (SEM = 2.74–7.06 N, MDC = 7.55–19.42N). Test-retest reliability provided slightly higher SEM and MDC scores on average (SEM = 3.33–6.47, MDC = 9.32–18.04) than intra-rater and inter-rater reliability. Associations between ASH and the two tests were found to be moderate to strong (r = 0.584–0.856), with the dominant arm providing higher correlation scores (r = 0.605–0.856) than the non-dominant one (r = 0.584–0.823). Absolute values were collected and are provided for all three upper-limb tests; normalized values were calculated for ASH and rotational strength and peak torque only for the ASH measurements. Conclusions: The excellent reliability rates establish the ASH test as a highly recommended testing protocol for adolescent tennis players. Full article
Show Figures

Figure 1

12 pages, 17346 KiB  
Article
Do Elite Female Judokas Show Asymmetry in the Internal and External Rotators of the Shoulder? A One-Dimensional and Principal Component Approach
by Esteban Aedo-Muñoz, Pablo Merino Muñoz, Luciano Bernardes Leite, Pedro Forte, Bianca Miarka, Matias Gonzalez Valenzuela, Cristian Hernandez-Wimmer, David Arriagada-Tarifeño and Ciro José Brito
Biomechanics 2024, 4(4), 738-749; https://doi.org/10.3390/biomechanics4040054 - 1 Dec 2024
Viewed by 1154
Abstract
Background/Aims: Asymmetry of the internal (IR) and external (ER) shoulder rotators can increase the risk of injuries in judokas. Discrete analyses are usually performed in time series data, but they can have biases by removing trends, so other approaches have been proposed to [...] Read more.
Background/Aims: Asymmetry of the internal (IR) and external (ER) shoulder rotators can increase the risk of injuries in judokas. Discrete analyses are usually performed in time series data, but they can have biases by removing trends, so other approaches have been proposed to avoid these biases such as statistical parametric mapping (SPM) and principal component analysis (PCA). This study analyzed the asymmetry in the shoulder rotators in female judokas, comparing dominant (D) vs. non-dominant (ND) upper limbs. Methods: For this, 11 elite athletes (age: 20.1 ± 2.9 yrs.; experience: 4.0 ± 0.5 yrs.; body mass: 66.0 ± 14.6 kg; height: 1.6 ± 0.1 m; BMI: 24.8 ± 4.3 kg/m2), were evaluated in an isokinetic dynamometer (Cybex® Humac/Norm Dynamometer CSMI, 502140, Stoughton, MA, USA). All participants performed the concentric (CON/CON) isokinetic evaluations of internal and external rotation of the shoulder in 60°/s and 180°/s angular velocities. Results: There was no significative asymmetry between IR vs. ER at 60°/s; similar results were observed at 180°/s when analyzed by PCA or SPM methods (p > 0.05 for all comparison). There was no difference between peak torque at 60°/s or 180°/s (p > 0.05 for all comparison). Conclusions: no asymmetry was observed in IR and ER in elite female athletes, regardless of the analysis method. Full article
(This article belongs to the Special Issue Biomechanics in Sport, Exercise and Performance)
Show Figures

Figure 1

14 pages, 4660 KiB  
Article
Research on Sealing Premium Connections in Corrosive CO2 Environments
by Yinping Cao, Pengsheng Gu, Yang Yu and Yihua Dou
Processes 2024, 12(12), 2680; https://doi.org/10.3390/pr12122680 - 28 Nov 2024
Viewed by 799
Abstract
To investigate corrosion and resulting changes in the sealing performance of premium connections in corrosive CO2 environments, we carried out a simulation analysis of their secondary current distribution and structural mechanics based on multi-physics field coupling. A finite element calculation model of [...] Read more.
To investigate corrosion and resulting changes in the sealing performance of premium connections in corrosive CO2 environments, we carried out a simulation analysis of their secondary current distribution and structural mechanics based on multi-physics field coupling. A finite element calculation model of Ф88.9 mm × 6.45 mm taper–taper premium connections (steel grade P110) was established using COMSOL6.0 general software. By analyzing corrosion laws under different environmental parameters, five internal pressures and tensile displacements were set. We simulated premium connections under different operating conditions using a secondary current distribution module. To investigate the distribution of the corrosion current density in premium connections under different operating conditions, the sealing performance before and after corrosion was quantitatively evaluated using a seal strength index. The results show that the current density is higher at the torque shoulder of the premium connections, which is more susceptible to damage. As the internal pressure increases, the current density in the inner wall of the column increases, and on the threads, the current density is highest at the rounded corners of the root of the thread, which is also more likely to be damaged. Under different internal pressures, although the sealing strength of the premium connections meets the sealing criterion, the corroded ones show a significant reduction in sealing performance. The results of this study provide a reliable theoretical basis for research on sealing premium connections in corrosive environments. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

26 pages, 17896 KiB  
Article
Configuration and Parameter Optimization Design of a Novel RBR-2RRR Spherical Hybrid Bionic Shoulder Joint
by Shuyang Shi, Fengxin Wang and Yulin Zhou
Machines 2024, 12(10), 683; https://doi.org/10.3390/machines12100683 - 29 Sep 2024
Cited by 1 | Viewed by 1119
Abstract
To improve the workspace, linear displacement stiffness, and driving torque utilization of humanoid robot shoulder joint mechanisms, an offset-designed RBR-2RRR (R represents the revolute pair, and B represents the ball cage joint) spherical hybrid bionic shoulder joint configuration (SHBSJC) is proposed and its [...] Read more.
To improve the workspace, linear displacement stiffness, and driving torque utilization of humanoid robot shoulder joint mechanisms, an offset-designed RBR-2RRR (R represents the revolute pair, and B represents the ball cage joint) spherical hybrid bionic shoulder joint configuration (SHBSJC) is proposed and its structural parameters are optimized. Firstly, the shoulder joint’s physiological structure is biomimetically designed, a prototype mechanism of RBR-2RRR SHBSJC is proposed, and its kinematics are solved. The deformation response of RBR-2RRR and 3-RRR under the same load is compared to verify the obtained configuration can improve the linear displacement stiffness. Considering the workspace and singularity, using the GCI and GDCI as optimization functions, the recommended and adopted values of structural parameters are obtained. The distribution diagrams of the LCI and LDCI demonstrate that the configuration meets performance expectations. To further increase the prototype mechanism’s workspace and match the human shoulder joint’s motion range, an offset-designed RBR-2RRR SHBSJC is proposed, and the offset angle, installation posture angle, and spatial mapping relationship of the mechanism are determined. The results of workspace comparison and virtual model machine action simulation indicate that the final configuration meets the workspace expectations. This work enriches the shoulder joint configuration types and has engineering application value. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

13 pages, 1981 KiB  
Article
Correlation between Muscular Activity and Vehicle Motion during Double Lane Change Driving
by Myung-Chul Jung and Seung-Min Mo
Sensors 2024, 24(18), 5982; https://doi.org/10.3390/s24185982 - 15 Sep 2024
Cited by 1 | Viewed by 1812
Abstract
The aim of this study was to compare the correlation between electromyography (EMG) activity and vehicle motion during double lane change driving. This study measured five vehicle motions: the steering wheel angle, steering wheel torque, lateral acceleration, roll angle, and yaw velocity. The [...] Read more.
The aim of this study was to compare the correlation between electromyography (EMG) activity and vehicle motion during double lane change driving. This study measured five vehicle motions: the steering wheel angle, steering wheel torque, lateral acceleration, roll angle, and yaw velocity. The EMG activity for 19 muscles and vehicle motions was applied for envelope detection. There was a significantly high positive correlation between muscles (mean correlation coefficient) for sternocleidomastoid (0.62) and biceps brachii (0.71) and vehicle motions for steering wheel angle, steering wheel torque, lateral acceleration, and yaw velocity, but a negative correlation between the muscles for middle deltoid (−0.75) and triceps brachii long head (−0.78) and these vehicle motions. The ANOVA test was used to analyze statistically significant differences in the main and interaction effects of muscle and vehicle speed. The mean absolute correlation coefficient exhibited an increasing trend with the increasing vehicle speed for the muscles (increasing rate%): upper trapezius (30.5%), pectoralis major sternal (38.7%), serratus anterior (13.3%), and biceps brachii (11.0%). The mean absolute correlation coefficient showed a decreasing trend with increasing vehicle speed for the masseter (−9.6%), sternocleidomastoid (−12.9%), middle deltoid (−5.5%), posterior deltoid (−20.0%), pectoralis major clavicular (−13.4%), and triceps brachii long head (−6.3%). The sternocleidomastoid muscle may decrease with increasing vehicle speed as the neck rotation decreases. As shoulder stabilizers, the upper trapezius, pectoralis major sternal, and serratus anterior muscles are considered to play a primary role in maintaining body balance. This study suggests that the primary muscles reflecting vehicle motions include the sternocleidomastoid, deltoid, upper trapezius, pectoralis major sternal, serratus anterior, biceps, and triceps muscles under real driving conditions. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

63 pages, 37620 KiB  
Article
BLUE SABINO: Development of a BiLateral Upper-Limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output
by Christopher K. Bitikofer, Sebastian Rueda Parra, Rene Maura, Eric T. Wolbrecht and Joel C. Perry
Machines 2024, 12(9), 617; https://doi.org/10.3390/machines12090617 - 3 Sep 2024
Cited by 3 | Viewed by 2532
Abstract
Arm and hand function play a critical role in the successful completion of everyday tasks. Lost function due to neurological impairment impacts millions of lives worldwide. Despite improvements in the ability to assess and rehabilitate arm deficits, knowledge about underlying sources of impairment [...] Read more.
Arm and hand function play a critical role in the successful completion of everyday tasks. Lost function due to neurological impairment impacts millions of lives worldwide. Despite improvements in the ability to assess and rehabilitate arm deficits, knowledge about underlying sources of impairment and related sequela remains limited. The comprehensive assessment of function requires the measurement of both biomechanics and neuromuscular contributors to performance during the completion of tasks that often use multiple joints and span three-dimensional workspaces. To our knowledge, the complexity of movement and diversity of measures required are beyond the capabilities of existing assessment systems. To bridge current gaps in assessment capability, a new exoskeleton instrument is developed with comprehensive bilateral assessment in mind. The development of the BiLateral Upper-limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output (BLUE SABINO) expands on prior iterations toward full-arm assessment during reach-and-grasp tasks through the development of a dual-arm and dual-hand system, with 9 active degrees of freedom per arm and 12 degrees of freedom (six active, six passive) per hand. Joints are powered by electric motors driven by a real-time control system with input from force and force/torque sensors located at all attachment points between the user and exoskeleton. Biosignals from electromyography and electroencephalography can be simultaneously measured to provide insight into neurological performance during unimanual or bimanual tasks involving arm reach and grasp. Design trade-offs achieve near-human performance in exoskeleton speed and strength, with positional measurement at the wrist having an error of less than 2 mm and supporting a range of motion approximately equivalent to the 50th-percentile human. The system adjustability in seat height, shoulder width, arm length, and orthosis width accommodate subjects from approximately the 5th-percentile female to the 95th-percentile male. Integration between precision actuation, human–robot-interaction force-torque sensing, and biosignal acquisition systems successfully provide the simultaneous measurement of human movement and neurological function. The bilateral design enables use with left- or right-side impairments as well as intra-subject performance comparisons. With the resulting instrument, the authors plan to investigate underlying neural and physiological correlates of arm function, impairment, learning, and recovery. Full article
(This article belongs to the Special Issue Advances in Assistive Robotics)
Show Figures

Figure 1

22 pages, 10563 KiB  
Article
Low-Cost Cable-Driven Robot Arm with Low-Inertia Movement and Long-Term Cable Durability
by Van Pho Nguyen, Wai Tuck Chow, Sunil Bohra Dhyan, Bohan Zhang, Boon Siew Han and Hong Yee Alvin Wong
Robotics 2024, 13(9), 128; https://doi.org/10.3390/robotics13090128 - 27 Aug 2024
Cited by 5 | Viewed by 8300
Abstract
Our study presents a novel design for a cable-driven robotic arm, emphasizing low cost, low inertia movement, and long-term cable durability. The robotic arm shares similar specifications with the UR5 robotic arm, featuring a total of six degrees of freedom (DOF) distributed in [...] Read more.
Our study presents a novel design for a cable-driven robotic arm, emphasizing low cost, low inertia movement, and long-term cable durability. The robotic arm shares similar specifications with the UR5 robotic arm, featuring a total of six degrees of freedom (DOF) distributed in a 1:1:1:3 ratio at the arm base, shoulder, elbow, and wrist, respectively. The three DOF at the wrist joints are driven by a cable system, with heavy motors relocated from the end-effector to the shoulder base. This repositioning results in a lighter cable-actuated wrist (weighing 0.8 kg), which enhances safety during human interaction and reduces the torque requirements for the elbow and shoulder motors. Consequently, the overall cost and weight of the robotic arm are reduced, achieving a payload-to-body weight ratio of 5:8.4 kg. To ensure good positional repeatability, the shoulder and elbow joints, which influence longer moment arms, are designed with a direct-drive structure. To evaluate the design’s performance, tests were conducted on loading capability, cable durability, position repeatability, and manipulation. The tests demonstrated that the arm could manipulate a 5 kg payload with a positional repeatability error of less than 0.1 mm. Additionally, a novel cable tightener design was introduced, which served dual functions: conveniently tightening the cable and reducing the high-stress concentration near the cable locking end to minimize cable loosening. When subjected to an initial cable tension of 100 kg, this design retained approximately 80% of the load after 10 years at a room temperature of 24 °C. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

Back to TopTop