Neuromuscular Assessment of Maximal Shoulder Flexion/Extension Torque Development in Male Gymnasts
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Strength Assessment
2.2.2. Electromyography Recording
2.3. Statistical Analysis
3. Results
3.1. Differences in Demographic Characteristics Between Groups
Variables | Gymnasts | PE Students | |||||
---|---|---|---|---|---|---|---|
M | SD | M | SD | F | p | η2 | |
Age (years) | 19.59 | 1.90 | 20.96 | 2.30 | 2.72 | 0.112 | 0.10 |
Height (cm) | 169.38 | 6.28 | 174.96 | 4.93 | 25.38 | 0.001 | 0.13 |
Body mass (kg) | 66.54 | 6.10 | 74.00 | 8.69 | 6.42 | 0.018 | 0.51 |
3.2. Differences in PT and Peak RTD Between Groups
3.3. Differences in RTD Across Time Intervals
3.4. Differences in Maximum EMG (EMGmax) Across Time Intervals
3.5. Differences in Normalized EMG (EMG/EMGmax) Across Time Intervals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dotan, R.; Mitchell, C.J.; Cohen, R.; Gabriel, D.; Klentrou, P.; Falk, B. Explosive Sport Training and Torque Kinetics in Children. Appl. Physiol. Nutr. Metab. 2013, 38, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Gorosito, M.A. Relative Strength Requirement for Swallow Element Proper Execution: A Predictive Test. Sci. Gymnast. J. 2013, 5, 59–67. [Google Scholar] [CrossRef]
- Gupta, V. Gymnastic Performance and Motor Fitness and Its Components. Int. J. Adv. Res. Manag. Soc. Sci. 2014, 3, 169–178. [Google Scholar]
- Hübner, K.; Schärer, C. Relationship between Swallow, Support Scale and Iron Cross on Rings and Their Specific Preconditioning Strengthening Exercises. Sci. Gymnast. J. 2015, 7, 59–68. [Google Scholar] [CrossRef]
- Milosis, D.C.; Siatras, T.A.; Christoulas, K.I.; Patikas, D.A. Construct Validity of Gymnastics-Specific Assessment on the Neuromuscular Function of Shoulder Flexor and Extensor Muscles. Sport. Biomech. 2023, 22, 966–981. [Google Scholar] [CrossRef] [PubMed]
- Milosis, C.D.; Siatras, A.T.; Christoulas, I.K.; Proios, K.M.; Proios, K.M.; Papaioannou, G.A. Accuracy of University Students’ Skill-Specific Self-Efficacy and Self-Efficacy-Performance in Gymnastics Relationship. Int. J. Sport. Psychol. 2018, 49, 429–447. [Google Scholar]
- Prescott, J. Identification and Development of Talent in Young Female Gymnasts. Ph.D. Dissertation, Loughborough University, Loughborough, UK, 1999. [Google Scholar] [CrossRef]
- Siatras, T.A.; Douka, I.D.; Milosis, D.C. Feasibility and Reproducibility of Muscular Strength Measures in Gymnastics-Specific Body Positions Using Hand-Held Dynamometry. Isokinet. Exerc. Sci. 2010, 18, 223–234. [Google Scholar] [CrossRef]
- Milosis, D.C. Validity of Gymnastics-Specific Assessment of Neuromuscular Function of Shoulder Flexor and Extensor Muscles to Predict Performance in Gymnastics Skills. J. Strength. Cond. Res. 2023, 37, 652–660. [Google Scholar] [CrossRef]
- Caine, D.; Knutzen, K.; Howe, W.; Keeler, L.; Sheppard, L.; Henrichs, D.; Fast, J. A Three-Year Epidemiological Study of Injuries Affecting Young Female Gymnasts. Phys. Ther. Sport 2003, 1466, 10–23. [Google Scholar] [CrossRef]
- Andersen, L.L.; Aagaard, P. Influence of Maximal Muscle Strength and Intrinsic Muscle Contractile Properties on Contractile Rate of Force Development. Eur. J. Appl. Physiol. 2006, 96, 46–52. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased Rate of Force Development and Neural Drive of Human Skeletal Muscle Following Resistance Training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, A.; Enoka, R.M.; Farina, D. Specificity of Early Motor Unit Adaptations with Resistive Exercise Training. J. Physiol. 2024, 602, 2679–2688. [Google Scholar] [CrossRef]
- Gruber, M.; Gruber, S.B.H.; Taube, W.; Schubert, M. Differential effects of ballistic versus sensorimotor training on rate of for. J. Strength Cond. Res. 2007, 21, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Holtermann, A.; Roeleveld, K.; Engstrøm, M.; Sand, T. Enhanced H-Reflex with Resistance Training Is Related to Increased Rate of Force Development. Eur. J. Appl. Physiol. 2007, 101, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of Force Development: Physiological and Methodological Considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef]
- Andersen, L.L.; Andersen, J.L.; Zebis, M.K.; Aagaard, P. Early and Late Rate of Force Development: Differential Adaptive Responses to Resistance Training? Scand. J. Med. Sci. Sport. 2010, 20, 162–169. [Google Scholar] [CrossRef]
- Stone Michael, H.; Oʼbryant Harold, S.; Mccoy Lora, S.; Coglianese Robert, S.; Lehmkuhl Mark, S.; Schilling Brian, S. Power and Maximum Strength Relationships During Performance of Dynamic and Static Weighted Jumps. J. Strength. Cond. Res. 2003, 17, 140–147. [Google Scholar]
- Hernández-Davó, J.; Sabido, R. Rate of Force Development: Reliability, Improvements and Influence on Performance. A Review. Eur. J. Hum. Mov. 2014, 33, 46–69. [Google Scholar]
- Vecchio, A.D.; Negro, F.; Holobar, A.; Casolo, A.; Folland, J.P.; Felici, F.; Farina, D.; Taylor, J.; Carson, R. You Are as Fast as Your Motor Neurons: Speed of Recruitment and Maximal Discharge of Motor Neurons Determine the Maximal Rate of Force Development in Humans. J. Physiol. 2019, 9, 2445–2456. [Google Scholar] [CrossRef]
- Folland, J.P.; Buckthorpe, M.W.; Hannah, R. Human Capacity for Explosive Force Production: Neural and Contractile Determinants. Scand. J. Med. Sci. Sports 2014, 24, 894–906. [Google Scholar] [CrossRef]
- Cossich, V.; Maffiuletti, N.A. Early vs. Late Rate of Torque Development: Relation with Maximal Strength and Influencing Factors. J. Electromyogr. Kinesiol. 2020, 55, 102486. [Google Scholar] [CrossRef] [PubMed]
- Čeklić, U.; Šarabon, N. Strength and Jumping Asymmetries in Gymnast and Their Non-Gymnast Peers. Sci. Gymnast. J. 2021, 13, 411–424. [Google Scholar] [CrossRef]
- Thompson, B.J.; Cazier, C.S.; Bressel, E.; Dolny, D.G. A Lower Extremity Strength-Based Profile of NCAA Division I Women’s Basketball and Gymnastics Athletes: Implications for Knee Joint Injury Risk Assessment. J. Sports Sci. 2018, 36, 1749–1756. [Google Scholar] [CrossRef]
- Mitchell, C.; Cohen, R.; Dotan, R.; Gabriel, D.; Klentrou, P.; Falk, B. Rate of Muscle Activation in Powerand Endurance-Trained Boys. Int. J. Sports Physiol. Perform. 2011, 6, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Kochanowicz, A.; Niespodziński, B.; Mieszkowski, J.; Sawczyn, S.; Cieszczyk, P.; Kochanowicz, K. Neuromuscular and Torque Kinetic Changes after 10 Months of Explosive Sport Training in Prepubertal Gymnasts. Pediatr. Exerc. Sci. 2019, 31, 77–84. [Google Scholar] [CrossRef]
- Aagaard, P. Training-Induced Changes in Neural Function. Exerc. Sport Sci. Rev. 2003, 31, 61–67. [Google Scholar] [CrossRef]
- Gruber, M.; Gollhofer, A. Impact of Sensorimotor Training on the Rate of Force Development and Neural Activation. Eur. J. Appl. Physiol. 2004, 92, 98–105. [Google Scholar] [CrossRef]
- Christoforidou, A.; Patikas, D.A.; Bassa, E.; Paraschos, I.; Lazaridis, S.; Christoforidis, C.; Kotzamanidis, C. Landing from Different Heights: Biomechanical and Neuromuscular Strategies in Trained Gymnasts and Untrained Prepubescent Girls. J. Electromyogr. Kinesiol. 2017, 32, 1–8. [CrossRef]
- Halin, R.; Germain, P.; Buttelli, O.; Kapitaniak, B. Differences in Strength and Surface Electromyogram Characteristics between Pre-Pubertal Gymnasts and Untrained Boys during Brief and Maintained Maximal Isometric Voluntary Contractions. Eur. J. Appl. Physiol. 2002, 87, 409–415. [Google Scholar] [CrossRef]
- da Silva, R.S.; Cerqueira, M.S.; Maciel, D.G.; da Silva, S.T.; de Figueiredo, M.C.C.; Cardoso, D.C.R.; Neto, S.B.N.; Bezerra, C.F.; Pereira, R.; de Brito Vieira, W.H.; et al. Rate of Torque Development of Paretic Lower Limb Is an Excellent Predictor of Walking Speed in Chronic Stroke Individuals. Clin. Biomech. 2022, 91, 105527. [Google Scholar] [CrossRef]
- Wu, C.; Hao, W.; He, W.; Xiao, X.; Li, X.; Sun, W. Biomechanical and Neuromuscular Strategies on Backward Somersault Landing in Artistic Gymnastics: A Case Study. Math. Biosci. Eng. 2019, 16, 5862–5876. [Google Scholar] [CrossRef]
- Goulart, N.B.A.; Dias, C.P.; Lemos, F.d.A.; Geremia, J.M.; Oliva, J.C.; Vaz, M.A. Gymnasts and Non-Athletes Muscle Activation and Torque Production at the Ankle Joint. Rev. Bras. Cineantropom. Desempenho Hum. 2014, 16, 555–562. [Google Scholar] [CrossRef]
- Niespodziński, B.; Grad, R.; Kochanowicz, A.; Mieszkowski, J.; Marina, M.; Zasada, M.; Kochanowicz, K. The Neuromuscular Characteristics of Gymnasts’ Jumps and Landings at Particular Stages of Sports Training. J. Hum. Kinet. 2021, 78, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Milosis, D.C.; Siatras, T.A.; Christoulas, K.I.; Patikas, D.A. Relative and Absolute Reliability of Isometric and Isokinetic Shoulder Maximal Moment and Flexion/Extension Ratios in Gymnasts. Sci. Gymnast. J. 2018, 10, 227–244. [Google Scholar] [CrossRef]
- CSMI. Humac®/NormTM Testing & Rehabilitation System User’s Guide Model 770; Computer Sports Medicine, Inc.: Stoughton, MA, USA, 2006. [Google Scholar]
- Moudgil, R.; Karpovich, P.V. Duration of a Maximal Isometric Muscular Contraction. Res. Q. 1969, 40, 536–539. [Google Scholar] [CrossRef] [PubMed]
- Perrin, D.H. Isokinetic Exercise and Assessment; Human Kinetics: Champaign, IL, USA, 1993. [Google Scholar]
- Moskowitz, S.; Russ, D.W.; Clark, L.A.; Wages, N.P.; Grooms, D.R.; Woods, A.J.; Suhr, J.; Simon, J.E.; O’Shea, A.; Criss, C.R.; et al. Is Impaired Dopaminergic Function Associated with Mobility Capacity in Older Adults? GeroScience 2021, 43, 1383–1404. [Google Scholar] [CrossRef]
- Tillin, N.A.; Jimenez-Reyes, P.; Pain, M.T.G.; Folland, J.P. Neuromuscular Performance of Explosive Power Athletes versus Untrained Individuals. Med. Sci. Sports Exerc. 2010, 42, 781–790. [Google Scholar] [CrossRef]
- Dotan, R.; Jenkins, G.; O’Brien, T.D.; Hansen, S.; Falk, B. Torque-Onset Determination: Unintended Consequences of the Threshold Method. J. Electromyogr. Kinesiol. 2016, 31, 7–13. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of Recommendations for SEMG Sensors and Sensor Placement Procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- De Luca, C.J. The use of surface electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef]
- Besomi, M.; Hodges, P.W.; Clancy, E.A.; Van Dieën, J.; Hug, F.; Lowery, M.; Merletti, R.; Søgaard, K.; Wrigley, T.; Besier, T.; et al. Consensus for Experimental Design in Electromyography (CEDE) Project: Amplitude Normalization Matrix. J. Electromyogr. Kinesiol. 2020, 53, 102438. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Neural Adaptation to Resistance Training: Changes in Evoked V-Wave and H-Reflex Responses. J. Appl. Physiol. 2002, 92, 2309–2318. [Google Scholar] [CrossRef] [PubMed]
- Dotan, R.; Mitchell, C.; Cohen, R.; Gabriel, D.; Klentrou, P.; Falk, B. Child-Adult Differences in the Kinetics of Torque Development. J. Sports Sci. 2013, 31, 945–953. [Google Scholar] [CrossRef]
- Kochanowicz, A.; Niespodziñski, B.; Mieszkowski, J.; Kochanowicz, K.; Sawczyn, S. The Effect of Gymnastic Training on Muscle Strength and Co-Activation during Isometric Elbow and Glenohumeral Flexion/Extension. J. Sports Med. Phys. Fit. 2018, 58, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson: Boston, MA, USA, 2012. [Google Scholar] [CrossRef]
- Čeklić, U.; Šarabon, N. Comparison between Gymnasts and Non-Gymnasts in Isometric Strength of the Lower Limbs. Eur. J. Transl. Myol. 2021, 31, 9663. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, J.; Baudry, S. Training Adaptation of the Neuromuscular System. In Neuromuscular Aspects of Sport Performance; Komi, P.V., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; Volume 17, pp. 216–253. [Google Scholar] [CrossRef]
- Gabriel, D.A.; Kamen, G.; Frost, G. Neural Adaptations to Resistive Exercise: Mechanisms and Recommendations for Training Practices. Sport. Med. 2006, 36, 133–149. [Google Scholar] [CrossRef]
- Kochanowicz, A.; Niespodzinski, B.; Mieszkowski, J.; Marina, M.; Kochanowicz, K.; Zasada, M. Changes in the Muscle Activity of Gymnasts during a Handstand on Various Apparatus. J. Strength. Cond. Res. 2019, 33, 1609–1618. [Google Scholar] [CrossRef]
- Tillin, N.A.; Folland, J.P. Maximal and Explosive Strength Training Elicit Distinct Neuromuscular Adaptations, Specific to the Training Stimulus. Eur. J. Appl. Physiol. 2014, 114, 365–374. [Google Scholar] [CrossRef]
- Amiridis, I.G. Co-Activation and Tension-Regulating Phenomena during Isokinetic Knee Extension in Sedentary and Highly Skilled Humans. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 149–156. [Google Scholar] [CrossRef]
- Tillin, N.A.; Pain, M.T.G.; Folland, J.P. Short-Term Unilateral Resistance Training Affects the Agonist-Antagonist but Not the Force-Agonist Activation Relationship. Muscle Nerve 2011, 43, 375–384. [Google Scholar] [CrossRef]
Variables | Gymnasts | PE Students | |||||
---|---|---|---|---|---|---|---|
M | SD | M | SD | F | p | η2 | |
Ext_PT (Nm) | 272.60 | 31.62 | 211.89 | 46.92 | 14.96 | 0.001 | 0.38 |
Flex_PT (Nm) | 202.37 | 38.74 | 166.72 | 38.22 | 5.58 | 0.027 | 0.19 |
Ext_PT/BM (Nm/kg) | 4.11 | 0.43 | 2.84 | 0.50 | 47.14 | 0.001 | 0.66 |
Flex_PT/BM (Nm/kg) | 3.05 | 0.59 | 2.24 | 0.44 | 15.52 | 0.001 | 0.39 |
Ext_RTD (Nm/s) | 2683.56 | 562.61 | 2129.51 | 758.57 | 4.47 | 0.045 | 0.16 |
Flex_RTD (Nm/s) | 2627.10 | 961.21 | 1938.10 | 707.20 | 4.33 | 0.048 | 0.15 |
Ext_RTD/BM (Nm/s/kg) | 40.84 | 10.47 | 28.63 | 9.35 | 9.83 | 0.004 | 0.29 |
Flex_RTD/BM (Nm/s/kg) | 39.95 | 15.25 | 25.97 | 8.35 | 8.40 | 0.008 | 0.26 |
Ext_EMGmax (mV) | 769.17 | 165.39 | 564.68 | 198.41 | 8.15 | 0.009 | 0.25 |
Flex_EMGmax (mV) | 795.01 | 186.13 | 582.42 | 190.51 | 8.28 | 0.008 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milosis, D.C.; Dallas, C.; Patikas, D.A.; Dallas, G.; Siatras, T. Neuromuscular Assessment of Maximal Shoulder Flexion/Extension Torque Development in Male Gymnasts. Biomechanics 2025, 5, 49. https://doi.org/10.3390/biomechanics5030049
Milosis DC, Dallas C, Patikas DA, Dallas G, Siatras T. Neuromuscular Assessment of Maximal Shoulder Flexion/Extension Torque Development in Male Gymnasts. Biomechanics. 2025; 5(3):49. https://doi.org/10.3390/biomechanics5030049
Chicago/Turabian StyleMilosis, Dimitrios C., Costas Dallas, Dimitrios A. Patikas, George Dallas, and Theophanis Siatras. 2025. "Neuromuscular Assessment of Maximal Shoulder Flexion/Extension Torque Development in Male Gymnasts" Biomechanics 5, no. 3: 49. https://doi.org/10.3390/biomechanics5030049
APA StyleMilosis, D. C., Dallas, C., Patikas, D. A., Dallas, G., & Siatras, T. (2025). Neuromuscular Assessment of Maximal Shoulder Flexion/Extension Torque Development in Male Gymnasts. Biomechanics, 5(3), 49. https://doi.org/10.3390/biomechanics5030049