Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,220)

Search Parameters:
Keywords = short-chained fatty acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1190 KB  
Article
Compositional Group Analysis of Biocrude Oils Obtained from Swine Manure by Slow Pyrolysis
by Lenia Gonsalvesh, Stefan Marinov, Maya Stefanova, Jan Czech, Robert Carleer and Jan Yperman
Processes 2026, 14(2), 382; https://doi.org/10.3390/pr14020382 (registering DOI) - 22 Jan 2026
Abstract
The study comprises an in-depth characterization of compositional groups of the liquid by-products obtained from the pyrolysis of swine manure at 500 °C, with the aim of providing an alternative and efficient approach for the valorisation of this waste stream, alongside with the [...] Read more.
The study comprises an in-depth characterization of compositional groups of the liquid by-products obtained from the pyrolysis of swine manure at 500 °C, with the aim of providing an alternative and efficient approach for the valorisation of this waste stream, alongside with the production of biogas and char, the latter of which can be further converted into activated carbon. Two samples were considered: de-watered cake and solid product from anaerobic digestion of swine manure. Biocrude oils were fractionated into weak acidic, strong acidic, alkaline and neutral oil fractions. Subsequently, the neutral oil fraction was separated into paraffinic–naphthenic, slightly polar and polar fractions. All fractions were analyzed by GC–MS. The major identified compositional groups were: (i) for de-watered cake: steroids (40.7%), fatty acids, FAs (23.7%) and n-alkenes/n-alkanes (23.3%); (ii) for solid product from anaerobic digestion: FAs (31.0%), phenols/methoxy phenols (26.6%), n-alkenes/n-alkanes (10.8%) and steroids (10.6%). A variety of short-chain FAs (i.e., linear saturated, mono- and di-unsaturated, cis (i-), trans (ai-), isoprenoid, phenyl alkanoic, amongst others) and methyl esters (FAMEs) were identified as well. FA distribution, nC12nC20, was similar for both manures studied with nC16 and nC18 as major compounds. FAMEs (nC14nC28, with even carbon number dominance) in the slightly polar fraction of both samples were accompanied by considerable amounts of oleic (nC18:1) and linoleic (nC18:2) acids, and corresponding methyl esters. Hydrocarbons, i.e., n-alkenes/n-alkanes, were in the range of nC15nC34, with nC18 maximizing. Anaerobically digested manure has resulted in (i) an increase in the portion of longer homologues of hydrocarbons and FAMEs and (ii) the appearance of new FAs series of long chain members nC22:1nC26:1, ω-9. The comprehensive analysis of the biocrude oils obtained from the slow pyrolysis of swine manure indicates their potential for use as biodiesel additives or as feedstock to produce value-added materials. Full article
(This article belongs to the Special Issue Biomass Pyrolysis Characterization and Energy Utilization)
Show Figures

Figure 1

21 pages, 944 KB  
Review
Gut Microbiota-Derived Short-Chain Fatty Acids in Inflammatory Bowel Disease: Mechanistic Insights into Gut Inflammation, Barrier Function, and Therapeutic Potential
by Roberta Ottria, Susan Mirmajidi and Pierangela Ciuffreda
Int. J. Mol. Sci. 2026, 27(2), 1095; https://doi.org/10.3390/ijms27021095 (registering DOI) - 22 Jan 2026
Abstract
This review delves into the complex relationship between short-chain fatty acids (SCFAs) produced by the gut microbiota and inflammatory bowel disease (IBD). IBD, which includes Crohn’s disease and ulcerative colitis, is a group of chronic gastrointestinal disorders with an increasing global incidence. Despite [...] Read more.
This review delves into the complex relationship between short-chain fatty acids (SCFAs) produced by the gut microbiota and inflammatory bowel disease (IBD). IBD, which includes Crohn’s disease and ulcerative colitis, is a group of chronic gastrointestinal disorders with an increasing global incidence. Despite extensive research, the exact etiopathogenesis remains elusive, although a complex interplay involving genetic predisposition, environmental influences, and abnormal immune responses against commensal gut microbes is widely recognized. SCFAs, primarily acetate and butyrate, emerge as key microbial metabolites derived from the fermentation of dietary fiber. They exert profound effects on gut homeostasis, notably with butyrate serving as an essential energy source for colonocytes, strengthening epithelial integrity, actively modulating local and systemic immune functions, suppressing the expression of pro-inflammatory cytokines, and enhancing mucosal defense mechanisms. However, clinical trials exploring SCFA administration have frequently yielded variable and inconsistent results due to differences in study design and patient characteristics. This review thoroughly analyzes the diverse roles of SCFAs in the large intestine, focusing on the intestinal barrier, immune modulation, and microbiota. It critically examines the therapeutic potential of SCFAs, including acetate and propionate, in addition to the well-known butyrate, in IBD management. Full article
Show Figures

Figure 1

29 pages, 1240 KB  
Review
Antioxidant and Anti-Inflammatory Activities of Probiotic Strains
by Olga Adriana Caliman-Sturdza, Josiana A. Vaz, Ancuta Veronica Lupaescu, Andrei Lobiuc, Codruta Bran and Roxana Elena Gheorghita
Int. J. Mol. Sci. 2026, 27(2), 1079; https://doi.org/10.3390/ijms27021079 - 21 Jan 2026
Abstract
This review highlights the anti-inflammatory and antioxidant effects of probiotics and their complex health-related impacts. The main health areas targeted are gastrointestinal inflammation, neuroinflammation, systemic metabolic disorders, and liver conditions. Probiotics work mechanistically to regulate key inflammatory pathways by suppressing nuclear factor (NF-κb) [...] Read more.
This review highlights the anti-inflammatory and antioxidant effects of probiotics and their complex health-related impacts. The main health areas targeted are gastrointestinal inflammation, neuroinflammation, systemic metabolic disorders, and liver conditions. Probiotics work mechanistically to regulate key inflammatory pathways by suppressing nuclear factor (NF-κb) and mitogen-activated protein kinase (MAPK) pathways and activating antioxidant defenses through nuclear erythroid 2-related factor (Nrf2). They stimulate anti-inflammatory cytokines (including interleukin 10 (IL-10) and inhibit pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α), partly through the regulation of T cells. Probiotics also produce antioxidant metabolites (e.g., exopolysaccharides and short-chain fatty acids), which enhance the host’s resistance to oxidative stress. Supplementation with probiotics improves intestinal inflammation and oxidative injury in gut disorders. Clinical trials suggest that probiotic supplements may reduce neuroinflammation and oxidative stress, while improving cognitive or behavioral outcomes in neurodegenerative disorders. Overall, this review underscores that probiotics have potent anti-inflammatory and antioxidant effects within the gut–brain axis and across various organ systems, supporting their use as valuable adjunctive therapies for inflammatory and oxidative stress-related conditions. It further emphasizes that additional mechanistic research and controlled clinical trials are essential to translate these findings into the most effective therapeutic strategies. Full article
(This article belongs to the Special Issue Effects of Bioactive Compounds in Oxidative Stress and Inflammation)
Show Figures

Figure 1

18 pages, 2067 KB  
Article
Lithocholic Acid Restores Gut Microbiota and Bile Acid Homeostasis to Improve Type 2 Diabetes
by Han Ge, Mengxiao Guo, Xin Chen, Lu Chen, Xin Yang, Dingzuo Ge, Liqiang Guo, Yue Luo, Guangbo Ge, Lei Zhang and Ruirui Wang
Nutrients 2026, 18(2), 341; https://doi.org/10.3390/nu18020341 - 21 Jan 2026
Abstract
Background: Bile acids participate in several metabolic processes, and disturbances in their circulating profiles are commonly observed in type 2 diabetes. In a cohort of older adults, individuals with diabetes exhibited markedly lower concentrations of metabolites derived from lithocholic acid. These findings prompted [...] Read more.
Background: Bile acids participate in several metabolic processes, and disturbances in their circulating profiles are commonly observed in type 2 diabetes. In a cohort of older adults, individuals with diabetes exhibited markedly lower concentrations of metabolites derived from lithocholic acid. These findings prompted further evaluation of the metabolic effects of lithocholic acid. Methods: We assessed the actions of lithocholic acid in a mouse model of diabetes induced by a high-fat diet and streptozotocin. Fasting glucose, insulin levels, lipid parameters, and measures of insulin resistance were evaluated. Gut microbial composition, short-chain fatty acids, fecal enzyme activities, intestinal barrier markers, and bile acid patterns were analyzed. In vitro assays examined the direct effects of lithocholic acid on A. muciniphila and bile acid metabolism. Results: Lithocholic acid supplementation lowered fasting glucose and insulin levels and improved insulin resistance. It shifted the gut microbial community toward a healthier structure, increased the abundance of A. muciniphila, and raised short-chain fatty acid concentrations. Fecal bile salt hydrolase and β-glucuronidase activity declined, and intestinal barrier markers improved. Lithocholic acid enhanced TGR5 expression and reduced FXR signaling in the ileum. In vitro, physiologically relevant concentrations promoted A. muciniphila growth and altered microbial bile acid metabolism. Conclusions: Lithocholic acid influences the interactions among gut microbes, bile acid pathways, and host metabolic regulation. These findings suggest that this compound may have value as a dietary component that supports metabolic health in type 2 diabetes. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Figure 1

20 pages, 4131 KB  
Article
Calcium Nitrate Supplementation Improves Meat Quality in Hu Sheep via Microbial and Transcriptomic Regulation
by Yuanshu Zheng, Chen Zheng, Kang Sun, Huihui Liu, Huiyu Fan, Yi Wang, Xuan Nan, Lijing An, Faming Pan, Xinji Wang, Guoyan Xu and Ting Liu
Animals 2026, 16(2), 325; https://doi.org/10.3390/ani16020325 - 21 Jan 2026
Abstract
Research has demonstrated that incorporating nitrate into animal feed can effectively decrease methane production in ruminants, though its impact on carcass characteristics and meat attributes in Hu sheep requires further investigation. This experiment examined how a dietary inclusion of 3% calcium nitrate (CN) [...] Read more.
Research has demonstrated that incorporating nitrate into animal feed can effectively decrease methane production in ruminants, though its impact on carcass characteristics and meat attributes in Hu sheep requires further investigation. This experiment examined how a dietary inclusion of 3% calcium nitrate (CN) influenced slaughter parameters, meat properties, gut microbial populations, and host gene regulation in Hu sheep. The study involved sixty healthy male Hu sheep aged 120 days with comparable body weights (31.11 ± 3.39 kg), randomly allocated into two groups: a control group receiving standard feed (CON) and a CN-supplemented group. The trial lasted 60 days, including a 15-day adaptation period and a 45-day formal trial period. They were housed individually and fed twice daily (at 8:00 and 18:00). The findings revealed that CN supplementation notably reduced the water loss rate in the longissimus dorsi muscle (LD), elevated meat color brightness, and enhanced the proportion of polyunsaturated fatty acids (PUFA), particularly n-6 PUFA, along with the n-3/n-6 PUFA ratio. Conversely, it reduced the levels of saturated fatty acids such as myristic acid (C14:0) and oleic acid (C18:1n9t). Additionally, the treatment boosted ruminal Ammoniacal nitrogen content and total short-chain fatty acid production, thereby contributing to energy metabolism in the animals. Microbiological examination demonstrated that CN supplementation led to a decrease in Fibrobacterota and Methanobrevibacter populations within the ruminal environment, while promoting the growth of Proteobacteria in the duodenal region. The gene expression profiling of digestive tract tissues showed an increased activity in nitrogen processing genes (including CA4) and oxidative phosphorylation pathways (such as ATP6), indicating an improved metabolic efficiency and acid–base homeostasis in the host animals. These findings demonstrate that CN-enriched diets enhance the carcass characteristics of Hu sheep by modifying intramuscular lipid profiles through gastrointestinal microbial community restructuring and metabolic pathway adjustments. Such modifications affect energy utilization and acid–base equilibrium, ultimately impacting muscle characteristics and adipose tissue distribution, presenting viable approaches for eco-friendly livestock farming practices. Full article
Show Figures

Graphical abstract

14 pages, 2510 KB  
Article
Effect of Garambullo (Myrtillocactus geometrizans) Consumption on the Intestinal Microbiota Profile in an Early-Phase Rat Model of Colon Cancer
by Edelmira Sánchez-Recillas, Enrique Almanza-Aguilera, David Bars-Cortina, Raúl Zamora-Ros, Rosa Iris Godínez-Santillán, Ana Alicia Sánchez-Tusié and Haydé Azeneth Vergara-Castañeda
Int. J. Mol. Sci. 2026, 27(2), 1014; https://doi.org/10.3390/ijms27021014 - 20 Jan 2026
Abstract
Bioactive compounds in food contribute to reducing the risk of developing colon cancer by modulating the gut microbiota. We have recently demonstrated that garambullo (Myrtillocactus geometrizans), an endemic fruit of Mexico rich in bioactive compounds, attenuates aberrant crypt foci in an [...] Read more.
Bioactive compounds in food contribute to reducing the risk of developing colon cancer by modulating the gut microbiota. We have recently demonstrated that garambullo (Myrtillocactus geometrizans), an endemic fruit of Mexico rich in bioactive compounds, attenuates aberrant crypt foci in an animal model. However, its potential to modulate the gut microbiota is unknown. The main objective of this study was to evaluate whether its consumption modulates colon carcinogenesis by altering the microbiota in an in vivo model induced by azoxymethane and dextran sulfate sodium (AOM/DSS). Fecal samples were collected from twelve male Sprague-Dawley rats and analyzed for microbiota composition after 0, 8, and 16 weeks of treatment with saline (control), AOM/DSS, garambullo (G), or residue of garambullo (RG) with AOM/DSS (G+AOM/DSS and RG+AOM/DSS, respectively). Characterization of the microbiome was based on the conserved region of the 16S rRNA V3-V4 gene, and analyzed by the ZymoBIOMICS’ Targeted Metagenomics Sequencing (Zymo Research) service. In an animal model induced with AOM/DSS for 8 weeks, consumption of G and its residue increased the bacterial genera Shuttleworthiia, Subdoligranulum, Lactobacillus, Faecalibacterium, and Alloprevotella (p < 0.05). Consumption of G and its residue allowed the proliferation of bacteria that produce short-chain fatty acids and are associated with protective mechanisms of the colon. Full article
Show Figures

Figure 1

33 pages, 798 KB  
Review
Gut Microbiota and Short-Chain Fatty Acids in Cardiometabolic HFpEF: Mechanistic Pathways and Nutritional Therapeutic Perspectives
by Antonio Vacca, Gabriele Brosolo, Stefano Marcante, Sabrina Della Mora, Luca Bulfone, Andrea Da Porto, Claudio Pagano, Cristiana Catena and Leonardo A. Sechi
Nutrients 2026, 18(2), 321; https://doi.org/10.3390/nu18020321 - 20 Jan 2026
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than half of the cases of HF worldwide. Among the different phenotypes, cardiometabolic HFpEF has the highest prevalence. Cumulative insults related to cardiometabolic comorbidities—obesity, hypertension and type 2 diabetes—create a milieu of metabolic [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) accounts for more than half of the cases of HF worldwide. Among the different phenotypes, cardiometabolic HFpEF has the highest prevalence. Cumulative insults related to cardiometabolic comorbidities—obesity, hypertension and type 2 diabetes—create a milieu of metabolic derangements, low-grade systemic inflammation (i.e., metainflammation), endothelial dysfunction, and coronary microvascular disease. Emerging data indicate that the gut–heart axis is a potential amplifier of this process. Cardiometabolic comorbidities promote gut dysbiosis, loss of short-chain fatty acid (SCFA)-producing taxa, and disruption of the intestinal barrier, leading to endotoxemia and upregulation of pro-inflammatory pathways such as TLR4- and NLRP3-mediated signaling. Concomitantly, beneficial gut-derived metabolites (acetate, propionate, butyrate) decrease, while detrimental metabolites increase (e.g., TMAO), potentially fostering myocardial fibrosis, diastolic dysfunction, and adverse remodeling. SCFAs—acetate, propionate, and butyrate—may exert pleiotropic actions that directly target HFpEF pathophysiology: they may provide a CPT1-independent energy substrate to the failing myocardium, may improve lipid and glucose homeostasis via G protein-coupled receptors and AMPK activation, and may contribute to lower blood pressure and sympathetic tone, reinforce gut barrier integrity, and act as anti-inflammatory and epigenetic modulators through the inhibition of NF-κB, NLRP3, and histone deacetylases. This review summarizes current evidence linking gut microbiota dysfunction to cardiometabolic HFpEF, elucidates the mechanistic role of SCFAs, and discusses nutritional approaches aimed at enhancing their production and activity. Targeting gut–heart axis and SCFAs pathways may represent a biologically plausible and low-risk approach that could help attenuate inflammation and metabolic dysfunctions in patients with cardiometabolic HFpEF, offering novel potential therapeutic targets for their management. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

65 pages, 861 KB  
Review
Fermented Plant-Based Foods and Postbiotics for Glycemic Control—Microbial Biotransformation of Phytochemicals
by Emilia Cevallos-Fernández, Elena Beltrán-Sinchiguano, Belén Jácome, Tatiana Quintana and Nadya Rivera
Molecules 2026, 31(2), 360; https://doi.org/10.3390/molecules31020360 - 20 Jan 2026
Abstract
Plant-based fermented foods are increasingly promoted for glycemic control, yet their mechanisms and clinical impact remain incompletely defined. This narrative review synthesizes mechanistic, preclinical, and human data for key matrices—kimchi and other fermented vegetables, tempeh/miso/natto, and related legume ferments, kombucha and fermented teas, [...] Read more.
Plant-based fermented foods are increasingly promoted for glycemic control, yet their mechanisms and clinical impact remain incompletely defined. This narrative review synthesizes mechanistic, preclinical, and human data for key matrices—kimchi and other fermented vegetables, tempeh/miso/natto, and related legume ferments, kombucha and fermented teas, plant-based kefir, and cereal/pulse sourdoughs. Across these systems, microbial β-glucosidases, esterases, tannases, and phenolic-acid decarboxylases remodel polyphenols toward more bioaccessible aglycones and phenolic acids, while lactic and acetic fermentations generate organic acids, exopolysaccharides, bacterial cellulose, γ-polyglutamic acid, γ-aminobutyric acid, and bioactive peptides. We map these postbiotic signatures onto proximal mechanisms—α-amylase/α-glucosidase inhibition, viscosity-driven slowing of starch digestion, gastric emptying and incretin signaling, intestinal-barrier reinforcement, and microbiota-dependent short-chain–fatty-acid and bile-acid pathways—and their downstream effects on AMPK/Nrf2 signaling and the gut–liver axis. Animal models consistently show improved glucose tolerance, insulin sensitivity, and hepatic steatosis under fermented vs. non-fermented diets. In humans, however, glycemic effects are modest and highly context-dependent: The most robust signal is early postprandial attenuation with γ-PGA-rich natto, strongly acidified or low-glycemic sourdough breads, and selected kombucha formulations, particularly in individuals with impaired glucose regulation. We identify major sources of heterogeneity (starters, process parameters, substrates, background diet) and safety considerations (sodium, ethanol, gastrointestinal symptoms) and propose minimum reporting standards and trial designs integrating metabolomics, microbiome, and host-omics. Overall, plant-based ferments appear best positioned as adjuncts within cardiometabolic dietary patterns and as candidates for “purpose-built” postbiotic products targeting early glycemic excursions and broader metabolic risk. Full article
(This article belongs to the Special Issue Phytochemistry, Antioxidants, and Anti-Diabetes)
Show Figures

Figure 1

21 pages, 4039 KB  
Article
16S rRNA Metagenomic Profiling Reveals Diet-Induced Shifts in Gut Microbial Diversity and Taxonomic Structure in Guinea Pigs
by José Cantaro Segura, Héctor Cántaro-Segura and Raul Blas
Appl. Microbiol. 2026, 6(1), 18; https://doi.org/10.3390/applmicrobiol6010018 - 20 Jan 2026
Abstract
Diet plays a pivotal role in shaping the gut microbiota, influencing host physiology, immune function, and nutrient metabolism. In this study, we evaluated the impact of three distinct feeding systems—Forage only, Balanced feed only, and Mixed system—on the cecal microbiota of guinea pigs [...] Read more.
Diet plays a pivotal role in shaping the gut microbiota, influencing host physiology, immune function, and nutrient metabolism. In this study, we evaluated the impact of three distinct feeding systems—Forage only, Balanced feed only, and Mixed system—on the cecal microbiota of guinea pigs (Cavia porcellus) using 16S rRNA gene amplicon sequencing in a randomized allocation of 18 males across the three diets (n = 6 per group) over 7 weeks. A total of 2,135,852 high-quality reads were obtained, with rarefaction curves and Good’s coverage confirming sufficient sequencing depth. Alpha diversity indices revealed significantly higher microbial richness and evenness in the mixed group, while beta diversity analyses demonstrated distinct microbial community structures across diets. Taxonomic profiling showed that forage-based diets enriched fiber-degrading genera such as Fibrobacter and Treponema, whereas the Balanced feed group favored mucin- and protein-degrading bacteria like Akkermansia and Bacteroides. LEfSe and t-test analyses identified several biomarkers and diet-specific genera, suggesting functional divergence in microbial metabolism. Forage-fed animals showed microbiota associated with short-chain fatty acid production and enhanced fiber utilization, while the Balanced feed group showed microbial traits linked to mucin degradation and potential gut barrier disruption. These findings highlight the strong influence of dietary composition on gut microbial ecology and suggest that fiber-rich diets promote a more diverse and functionally beneficial cecal microbiome in guinea pigs. Full article
Show Figures

Figure 1

19 pages, 4111 KB  
Article
The Effects of Chinese Dwarf Cherry (Cerasus humilis) Kernel Oil on Defecation and the Gut Microbiota in Constipated Mice
by Jingyu Gao, Yumin Dai, Zhe Liang, Nan Chen, Xilong Li, Xin Wen, Yuanying Ni and Mo Li
Nutrients 2026, 18(2), 319; https://doi.org/10.3390/nu18020319 - 19 Jan 2026
Abstract
Background: The Chinese dwarf cherry (CDC) has been valued for over 2000 years for its medicinal and nutritional properties, particularly its kernels. Despite its recognition as a rich source of oil, the potential health benefits of CDC kernel oil remain unclear. Method: Initially, [...] Read more.
Background: The Chinese dwarf cherry (CDC) has been valued for over 2000 years for its medicinal and nutritional properties, particularly its kernels. Despite its recognition as a rich source of oil, the potential health benefits of CDC kernel oil remain unclear. Method: Initially, we evaluated the preventive effectiveness of CDC in a mouse model of constipation induced by loperamide. Results: The findings indicated that CDC kernel oil alleviated constipation by reducing the first black fecal defecation time and increasing the fecal number, wet weight, water content and gastrointestinal transit rate in model mice. Additionally, CDC kernel oil reduced inhibitory neurotransmitters and increased excitability neurotransmitters, two anti-oxidases’ activity and fecal short-chain fatty acid (SCFA) content. Histological analysis revealed an improved mucus cell morphology in the intestinal tract. Furthermore, CDC kernel oil increased the abundance of some beneficial bacteria. It was identified that the gut microbiota was associated with neurotransmitters, mediators of inflammation and SCFAs. Conclusion: The findings offer a scientific foundation for considering CDC kernel oil as a potential functional food for the alleviation of constipation. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

26 pages, 1496 KB  
Article
Novel Double-Layer Microencapsulated Phytosynbiotic Derived from Probiotics and Tiliacora triandra Extract for Application in Broiler Production
by Manatsanun Nopparatmaitree, Noraphat Hwanhlem, Watchrapong Mitsuwan, Atichat Thongnum, Payungsuk Intawicha, Juan J. Loor and Tossaporn Incharoen
Fermentation 2026, 12(1), 59; https://doi.org/10.3390/fermentation12010059 - 19 Jan 2026
Viewed by 21
Abstract
The global shift toward antibiotic-free poultry production has created an urgent need for sustainable feed additives that promote gut health and productivity. This study aimed to develop and evaluate a novel double-layered microencapsulated phytosynbiotic (DMP) comprising Tiliacora triandra extract, probiotics, and cereal by-products [...] Read more.
The global shift toward antibiotic-free poultry production has created an urgent need for sustainable feed additives that promote gut health and productivity. This study aimed to develop and evaluate a novel double-layered microencapsulated phytosynbiotic (DMP) comprising Tiliacora triandra extract, probiotics, and cereal by-products using lyophilization. In Experiment 1, we investigated the effects of cell wall materials (corn, defatted rice bran, and wheat bran) and different particle sizes (0.6 and 1.0 mm) on the physicochemical characteristics and probiotic encapsulation efficiency. Results revealed that wheat bran, particularly at the smaller particle size of 0.6 mm, enhanced probiotic viability, probiotic stability under simulated gastrointestinal and thermal conditions, and nutrient retention. Compared with other materials, wheat bran also provided superior powder flowability, lower density, and favorable color attributes. In Experiment 2, we assessed the influence of probiotic strains (P. acidilactici, Lactiplantibacillus plantarum TISTR 926, and Streptococcus thermophilus TISTR 894) on functional properties of the DMP. All strains exhibited high encapsulation efficiency and stability during gastrointestinal simulation, thermal exposure, and storage. However, P. acidilactici had superior fermentation kinetics and produced greater levels of beneficial short-chain fatty acids, especially acetic and butyric acids. Antibacterial activity was strain-dependent, with notable inhibitory effects against Gram-positive pathogens, primarily through bacteriostatic mechanisms. Overall, these findings confirm that the developed DMP formulations effectively stabilize probiotics and bioactive phytochemicals, offering a promising strategy for enhancing gut health and performance in antibiotic-free broiler production systems. Full article
Show Figures

Figure 1

32 pages, 1557 KB  
Review
Probiotic and Bioactive Compounds in Foods: From Antioxidant Properties to Gut Microbiota Modulation
by Berta Gonçalves, Alice Vilela, Alfredo Aires, Ivo Oliveira, Carla Gonçalves, Teresa Pinto and Fernanda Cosme
Molecules 2026, 31(2), 345; https://doi.org/10.3390/molecules31020345 - 19 Jan 2026
Viewed by 37
Abstract
Dietary bioactive compounds derived from plant-based and fermented foods act as plei-otropic modulators of human health, exerting antioxidant, anti-inflammatory, cardiopro-tective, neuroprotective, and metabolic effects beyond basic nutrition. Whole foods (fruits, vegetables, grains, nuts) provide synergistic mixtures of bioactives, whereas fermented foods generate a [...] Read more.
Dietary bioactive compounds derived from plant-based and fermented foods act as plei-otropic modulators of human health, exerting antioxidant, anti-inflammatory, cardiopro-tective, neuroprotective, and metabolic effects beyond basic nutrition. Whole foods (fruits, vegetables, grains, nuts) provide synergistic mixtures of bioactives, whereas fermented foods generate a wide range of microbial-derived metabolites (peptides, organic acids) as well as probiotics that enhance nutrient bioavailability and support gut health. The gut microbiota plays a central mediating role in the biological effects of dietary bioactives through a dynamic, bidirectional interaction: dietary compounds shape microbial composition by promoting beneficial taxa and suppressing pathogens, while microbial metabolism converts these compounds into bioactive metabolites, including short-chain fatty acids, that profoundly influence host health. Despite their demonstrated health potential, the clinical translation of many dietary bioactives is limited by low bioavailability, which is influenced by digestion processes, food matrix and processing conditions, host genetics, and individual microbiota profile. Overcoming these limitations requires a deeper understanding of the synergistic interactions among dietary bioactives, probiotics, microbial metabolites, and host signaling pathways. This review provides an integrated perspective of the sources, mechanisms of action, and health effects of food-derived bioactive compounds and probiotic mediated effects, while highlighting current translational challenges and future directions for the development of effective functional foods and personalized nutrition strategies. Full article
(This article belongs to the Special Issue Exploring Bioactive Compounds in Foods and Nutrients for Human Health)
Show Figures

Figure 1

12 pages, 1403 KB  
Article
Bacterial Metabolites in the Plasma of Type 1 Diabetes Patients: Acetate Levels Are Elevated and Correlate with Glycated Haemoglobin and Para-Cresol Is Associated with Liver Disturbances and Hypertension
by Jiménez-Varas Inés, Cuesta-Hernández Martín, Domínguez-Mozo María Inmaculada, Pérez-Gutiérrez Iván, Ruberto Stefano, Palacios Esther, Moreno-Blanco Ana, Del Campo Rosa, García-Martínez María Ángel and Álvarez-Lafuente Roberto
Int. J. Mol. Sci. 2026, 27(2), 989; https://doi.org/10.3390/ijms27020989 - 19 Jan 2026
Viewed by 47
Abstract
Type 1 Diabetes (T1D) is thought to result from the interaction of genetic and environmental factors, with different studies highlighting a potential role for the gut microbiota and its metabolites in modulating immune responses and disease development. We hypothesized that patients with T1D [...] Read more.
Type 1 Diabetes (T1D) is thought to result from the interaction of genetic and environmental factors, with different studies highlighting a potential role for the gut microbiota and its metabolites in modulating immune responses and disease development. We hypothesized that patients with T1D exhibited altered levels of circulating bacterial metabolites compared with healthy controls (HC), and that these metabolite profiles were associated with key demographic, clinical, and analytical features of the disease. A total of 91 T1D patients and 58 HC were recruited. Plasma samples were collected and analyzed with gas chromatography coupled to mass spectrometry for the detection of the metabolites: short-chain fatty acids (SCFAs: acetate [AA], propionate [PA], isobutyrate [IBA], butyrate [BA], isovalerate [IVA], valerate [VA], and methyl valerate [MVA]), medium-chain fatty acids (MCFAs: hexanoate [HxA] and heptanoate [HpA]) and para-cresol (p-cresol). We also calculated the ratios between the different SCFAs with AA. T1D patients showed significantly higher circulating AA levels than HC, along with reduced PA/AA and IBA/AA ratios, indicating an altered SCFA profile. SCFA diversity was lower in T1D patients, with reduced detection of BA, and total SCFA levels were increased mainly due to elevated AA. AA levels were higher and SCFA ratios lower in women with T1D compared with healthy women, while p-cresol levels were higher in men with T1D than in healthy men. In T1D patients, AA levels positively correlated with HbA1c, whereas PA/AA, IBA/AA, and BA/AA ratios showed negative correlations, particularly in women. MV/AA and non-AA/AA ratios were inversely associated with glucose levels, again, mainly in women. p-cresol levels correlated positively with age and ferritin and were higher in T1D patients with liver dysfunction or hypertension. Therefore, we can conclude that T1D is associated with a marked alteration in circulating gut-derived metabolites, characterized by increased AA levels, particularly in women, and an imbalance in SCFA ratios that correlates with glycemic control. These findings, together with the associations observed for p-cresol and metabolic comorbidities, support a role for the gut microbiota–host metabolic axis in T1D. Full article
(This article belongs to the Special Issue Type 1 Diabetes: Molecular Mechanisms and Therapeutic Approach)
Show Figures

Figure 1

19 pages, 4353 KB  
Article
Menthol–Fatty Acid HDES Boosts In Vitro Oral Bioavailability of Oleanolic Acid via Synergistic Digestive Release and Cellular Absorption
by Qin Zhang, Chenjia Li, Jie Yu, Benyang Li and Chaoxi Zeng
Foods 2026, 15(2), 343; https://doi.org/10.3390/foods15020343 - 17 Jan 2026
Viewed by 120
Abstract
To improve the oral bioavailability of oleanolic acid (OA), this study developed a menthol–fatty acid-based hydrophobic deep eutectic solvent (HDES) system. Through a comprehensive evaluation using in vitro simulated digestion and Caco-2 cell transport models, the short-chain HDES was found to increase the [...] Read more.
To improve the oral bioavailability of oleanolic acid (OA), this study developed a menthol–fatty acid-based hydrophobic deep eutectic solvent (HDES) system. Through a comprehensive evaluation using in vitro simulated digestion and Caco-2 cell transport models, the short-chain HDES was found to increase the apparent in vitro bioavailability index of OA by 9.3-fold compared to conventional ethanol systems, with efficacy showing clear fatty acid chain-length dependence. The mechanism was systematically investigated through spectral characterization and cellular studies, revealing a two-stage enhancement process: during the digestion phase, HDES significantly improved OA bioaccessibility to 14.30% compared to 4.90% with ethanol; during the absorption phase, it markedly increased cellular uptake to 25.79% versus 4.71% with ethanol. Molecular analysis indicated that the optimal hydrophobicity and diffusion properties of HDES contributed to this enhancement. This study reveals a fatty acid chain-length-dependent mechanism in HDES-facilitated OA delivery, providing a tunable strategy for enhancing the absorption of hydrophobic bioactive compounds. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

22 pages, 1294 KB  
Review
Early-Life Gut Microbiota: Education of the Immune System and Links to Autoimmune Diseases
by Pleun de Groen, Samantha C. Gouw, Nordin M. J. Hanssen, Max Nieuwdorp and Elena Rampanelli
Microorganisms 2026, 14(1), 210; https://doi.org/10.3390/microorganisms14010210 - 16 Jan 2026
Viewed by 150
Abstract
Early life is a critical window for immune system development, during which the gut microbiome shapes innate immunity, antigen presentation, and adaptive immune maturation. Disruptions in microbial colonization—driven by factors such as cesarean delivery, antibiotic exposure, and formula feeding—deplete beneficial early-life taxa (e.g., [...] Read more.
Early life is a critical window for immune system development, during which the gut microbiome shapes innate immunity, antigen presentation, and adaptive immune maturation. Disruptions in microbial colonization—driven by factors such as cesarean delivery, antibiotic exposure, and formula feeding—deplete beneficial early-life taxa (e.g., Bifidobacterium, Bacteroides, and Enterococcus) and impair key microbial functions, including short-chain fatty acid (SCFA) production by these keystone species, alongside regulatory T cell induction. These dysbiosis patterns are associated with an increased risk of pediatric autoimmune diseases, notably type 1 diabetes, inflammatory bowel disease, celiac disease, and juvenile idiopathic arthritis. This review synthesizes current evidence on how the early-life microbiota influences immune maturation, with potential effects on the development of autoimmune diseases later in life. We specifically focus on human observational and intervention studies, where treatments with probiotics, synbiotics, vaginal microbial transfer, or maternal fecal microbiota transplantations have been shown to partially restore a disrupted microbiome. While restoration of the gut microbiome composition and function is the main reported outcome of these studies, to date, no reports have disclosed direct prevention of autoimmune disease development by targeting the early-life gut microbiome. In this regard, a better understanding of the early-life microbiome–immune axis is essential for developing targeted preventive strategies. Future research must prioritize longitudinal evaluation of autoimmune outcomes after microbiome modulation to reduce the burden of chronic immune-mediated diseases. Full article
(This article belongs to the Special Issue Microbiomes in Human Health and Diseases)
Show Figures

Figure 1

Back to TopTop