Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,808)

Search Parameters:
Keywords = short chain fatty acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4944 KiB  
Article
The Geochemical Characteristics of the Fatty Acids in the Core Sediments in the Northern South Yellow Sea
by Jinxian He, Xiaoli Zhang, Ruihua Ma, Zhengxin Huang, Juhao Li, Peilin Sun and Jiayao Song
J. Mar. Sci. Eng. 2025, 13(8), 1511; https://doi.org/10.3390/jmse13081511 - 5 Aug 2025
Abstract
The geochemistry of the fatty acids in the modern sediments in the Northern South Yellow Sea is still poorly studied, and studies on the geochemistry of the fatty acids in relatively long-core sediment samples are lacking. Thus, the fatty acids in the core [...] Read more.
The geochemistry of the fatty acids in the modern sediments in the Northern South Yellow Sea is still poorly studied, and studies on the geochemistry of the fatty acids in relatively long-core sediment samples are lacking. Thus, the fatty acids in the core sediments in the Northern South Yellow Sea were separated and identified to study their components and distribution characteristics, and the sources of organic matter and the early diagenetic evolution of the fatty acids in the sediments were discussed. The results show that saturated straight-chain fatty acids (methyl ester) have the highest content in the core sediments in the Northern South Yellow Sea, which account for 83.89% of the total fatty acids (methyl ester). nC16:0 is dominant, accounting for 30.48% of the n-saturated fatty acids (methyl ester). Unsaturated fatty acids (methyl ester) account for 7.59% of the total fatty acids (methyl ester). Binary unsaturated fatty acids (methyl ester) can only be detected in some samples, which are low in content and dominated by C18:2. Based on the components and distribution of the fatty acids (methyl ester) in the core sediments in the Northern South Yellow Sea, combined with the characteristics of other lipid biomarker compounds, the actual geological background, and previous research results, it is considered that the sources of organic matter in the core sediments are marine–terrestrial mixed materials, with terrestrial materials dominating. The fatty acids’ (methyl ester) CPI, the relative content of short-chain saturated fatty acids (methyl ester), and the unsaturated fatty acids (methyl ester) in the core sediments show non-obvious variation as the burial depth increases, reflecting that the fatty acids in the core sediments are strongly degraded at the early diagenetic stage, and this degradation is controlled by various complicated factors. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

18 pages, 5256 KiB  
Article
Impact of Alginate Oligosaccharides on Ovarian Performance and the Gut Microbial Community in Mice with D-Galactose-Induced Premature Ovarian Insufficiency
by Yan Zhang, Hongda Pan, Dao Xiang, Hexuan Qu and Shuang Liang
Antioxidants 2025, 14(8), 962; https://doi.org/10.3390/antiox14080962 (registering DOI) - 5 Aug 2025
Abstract
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of [...] Read more.
Premature ovarian insufficiency (POI) is an important factor in female infertility and is often associated with oxidative stress. Alginate oligosaccharides (AOSs), derived from the degradation of alginate, have been demonstrated to have protective effects against various oxidative stress-related diseases. However, the impact of AOSs on POI has not been previously explored. The current study explored the effects of AOSs on ovarian dysfunction in a mouse model of POI induced by D-galactose (D-gal). Female C57BL/6 mice were randomly divided into five groups: the control (CON), POI model (D-gal), and low-, medium-, and high-dose AOS groups (AOS-L, 100 mg/kg/day; AOS-M, 150 mg/kg/day; AOS-H, 200 mg/kg/day). For 42 consecutive days, mice in the D-gal, AOS-L, AOS-M, and AOS-H groups received daily intraperitoneal injections of D-gal (200 mg/kg/day), whereas those in the CON group received equivalent volumes of sterile saline. Following D-gal injection, AOSs were administered via gavage at the specified doses; mice in the CON and D-gal groups received sterile saline instead. AOS treatment markedly improved estrous cycle irregularities, normalized serum hormone levels, reduced granulosa cell apoptosis, and increased follicle counts in POI mice. Moreover, AOSs significantly reduced ovarian oxidative stress and senescence in POI mice, as indicated by lower levels of malondialdehyde (MDA), higher activities of catalase (CAT) and superoxide dismutase (SOD), and decreased protein expression of 4-hydroxynonenal (4-HNE), nitrotyrosine (NTY), 8-hydroxydeoxyguanosine (8-OHdG), and p16 in ovarian tissue. Analysis of the gut microbiota through 16S rRNA gene sequencing and short-chain fatty acid (SCFA) analysis revealed significant differences in gut microbiota composition and SCFA levels (acetic acid and total SCFAs) between control and D-gal-induced POI mice. These differences were largely alleviated by AOS treatment. AOSs changed the gut microbiota by increasing the abundance of Ligilactobacillus and decreasing the abundance of Clostridiales, Clostridiaceae, Marinifilaceae, and Clostridium_T. Additionally, AOSs mitigated the decline in acetic acid and total SCFA levels observed in POI mice. Notably, the total SCFA level was significantly correlated with the abundance of Ligilactobacillus, Marinifilaceae, and Clostridium_T. In conclusion, AOS intervention effectively mitigates ovarian oxidative stress, restores gut microbiota homeostasis, and regulates the microbiota–SCFA axis, collectively improving D-gal-induced POI. Therefore, AOSs represent a promising therapeutic strategy for POI management. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

14 pages, 1181 KiB  
Article
Effects of Ultrafine Bubble Water on Gut Microbiota Composition and Health Markers in Rats
by John Nicholas Jackowetz, Carly S. Hanson, Minto Michael, Kiriako Tsoukalas, Cassandra Villanueva and Peter A. Kozak
Nanomaterials 2025, 15(15), 1193; https://doi.org/10.3390/nano15151193 - 5 Aug 2025
Abstract
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase [...] Read more.
Ultrafine bubbles (UFBs) represent an emerging technology with unique physicochemical properties. This study investigated the effects of air-filled UFBs infused in drinking water on gut microbiota composition and the associated health markers in Sprague Dawley rats over a 12-week period. Using a two-phase design, UFB concentration was increased from 1.7 × 106 to 6.5 × 109 UFBs/mL at week 7 to assess dose-dependent effects. Administration of UFBs in drinking water induced significant shifts in gut microbiome populations, characterized by increased Bacteroidetes (+122% weeks 8–12) and decreased Firmicutes (−43% weeks 8–12) compared to controls. These microbial shifts coincided with enhanced short-chain fatty acid production (butyrate +56.0%, p ≤ 0.001; valerate +63.1%, p ≤ 0.01) and reduced inflammatory markers (TNF-α −84.0%, p ≤ 0.05; IL-1β −41.0%, p ≤ 0.05; IL-10 −69.8%, p ≤ 0.05). UFB effects demonstrated systematic concentration-dependent threshold responses, with 85.7% of parameters exhibiting directional reversals between low (1.7 × 106 UFBs/mL) and high (6.5 × 109 UFBs/mL) concentration phases rather than linear dose–response relationships. The systematic nature of these threshold effects, with 71.4% of parameters achieving statistical significance (p ≤ 0.05), indicates concentration-dependent biological mechanisms rather than random effects on gut biology. Despite current metagenomic techniques identifying only 25% of the total gut microbiome, the observed changes in characterized species and metabolites demonstrate UFB technology’s therapeutic potential for conditions requiring microbiome modulation, providing new insights into UFB influence on complex biological systems. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

30 pages, 1428 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 - 1 Aug 2025
Viewed by 147
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Figure 1

18 pages, 3360 KiB  
Article
Hydrogen Sulfide Has a Minor Impact on Human Gut Microbiota Across Age Groups
by Linshu Liu, Johanna M. S. Lemons, Jenni Firrman, Karley K. Mahalak, Venkateswari J. Chetty, Adrienne B. Narrowe, Stephanie Higgins, Ahmed M. Moustafa, Aurélien Baudot, Stef Deyaert and Pieter Van den Abbeele
Sci 2025, 7(3), 102; https://doi.org/10.3390/sci7030102 - 1 Aug 2025
Viewed by 99
Abstract
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health [...] Read more.
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health conditions, it may also contribute to inflammatory responses and gut barrier dysfunction. Controlling H2S production in the GIT is important for maintaining a healthy gut microbiome. However, research on this subject is limited due to the gaseous nature of the chemical and the difficulty of accessing the GIT in situ. In the present ex vivo experiment, we used a single-dose sodium sulfide preparation (SSP) as a H2S precursor to test the effect of H2S on the human gut microbiome across different age groups, including breastfed infants, toddlers, adults, and older adults. Metagenomic sequencing and metabolite measurements revealed that the development of the gut microbial community and the production of short-chain fatty-acids (SCFAs) were age-dependent; that the infant and the older adult groups were more sensitive to SSP exposure; that exogeneous SSP suppressed SCFA production across all age groups, except for butyrate in the older adult group, suggesting that H2S selectively favors specific gut microbial processes. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

11 pages, 827 KiB  
Study Protocol
The Effect of Faecal Microbiota Transplantation on Cognitive Function in Cognitively Healthy Adults with Irritable Bowel Syndrome: Protocol for a Randomised, Placebo-Controlled, Double-Blinded Pilot Study
by Sara Alaeddin, Yanna Ko, Genevieve Z. Steiner-Lim, Slade O. Jensen, Tara L. Roberts and Vincent Ho
Methods Protoc. 2025, 8(4), 83; https://doi.org/10.3390/mps8040083 (registering DOI) - 1 Aug 2025
Viewed by 198
Abstract
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates [...] Read more.
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates whether FMT is feasible and improves cognition in adults with irritable bowel syndrome (IBS). Participants receive a single dose of FMT or placebo via rectal retention enema. Cognitive performance is the primary outcome, assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Secondary outcomes include IBS symptom severity and mood. Tertiary outcomes include microbiome composition and plasma biomarkers related to inflammation, short-chain fatty acids, and tryptophan metabolism. Outcomes are assessed at baseline and at one, three, six, and twelve months following treatment. We hypothesise that FMT will lead to greater improvements in cognitive performance than placebo, with benefits extending beyond practice effects, emerging at one month and persisting in the long term. The findings will contribute to evaluating the safety and efficacy of FMT and enhance our understanding of gut–brain interactions. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

23 pages, 766 KiB  
Review
Pathophysiological Links Between Inflammatory Bowel Disease and Cardiovascular Disease: The Role of Dysbiosis and Emerging Biomarkers
by Roko Šantić, Nikola Pavlović, Marko Kumrić, Marino Vilović and Joško Božić
Biomedicines 2025, 13(8), 1864; https://doi.org/10.3390/biomedicines13081864 - 31 Jul 2025
Viewed by 124
Abstract
This review introduces a novel integrative framework linking gut dysbiosis, systemic inflammation, and cardiovascular risk in patients with inflammatory bowel disease (IBD). We highlight emerging biomarkers, including short-chain fatty acids (SCFAs), calprotectin, and zonulin, that reflect alterations in the gut microbiome and increased [...] Read more.
This review introduces a novel integrative framework linking gut dysbiosis, systemic inflammation, and cardiovascular risk in patients with inflammatory bowel disease (IBD). We highlight emerging biomarkers, including short-chain fatty acids (SCFAs), calprotectin, and zonulin, that reflect alterations in the gut microbiome and increased intestinal permeability, which contribute to cardiovascular pathology. Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, and recent evidence identifies IBD, encompassing ulcerative colitis (UC) and Crohn’s disease (CD), as a significant non-traditional risk factor for CVD. This review synthesizes current knowledge on how dysbiosis-driven inflammation in IBD patients exacerbates endothelial dysfunction, hypercoagulability, and atherosclerosis, even in the absence of traditional risk factors. Additionally, we discuss how commonly used IBD therapies may modulate cardiovascular risk. Understanding these multifactorial mechanisms and validating reliable biomarkers are essential for improving cardiovascular risk stratification and guiding targeted prevention strategies in this vulnerable population. Full article
Show Figures

Figure 1

15 pages, 1360 KiB  
Systematic Review
Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis
by Abdulwhab Shremo Msdi, Elisabeth M. Wang and Kevin W. Garey
Nutrients 2025, 17(15), 2502; https://doi.org/10.3390/nu17152502 - 30 Jul 2025
Viewed by 364
Abstract
Background: Ingestion of dietary fibers (DFs) is a safe and accessible intervention associated with reductions in blood pressure (BP) and cardiovascular mortality. However, the mechanisms underlying the antihypertensive effects of DFs remain poorly defined. This systematic review and meta-analysis evaluates how DFs influence [...] Read more.
Background: Ingestion of dietary fibers (DFs) is a safe and accessible intervention associated with reductions in blood pressure (BP) and cardiovascular mortality. However, the mechanisms underlying the antihypertensive effects of DFs remain poorly defined. This systematic review and meta-analysis evaluates how DFs influence BP regulation by modulating gut microbial composition and enhancing short-chain fatty acid (SCFA) production. Methods: MEDLINE and EMBASE were systematically searched for interventional studies published between January 2014 and December 2024. Eligible studies assessed the effects of DFs or other prebiotics on systolic BP (SBP) and diastolic BP (DBP) in addition to changes in gut microbial or SCFA composition. Results: Of the 3010 records screened, nineteen studies met the inclusion criteria (seven human, twelve animal). A random-effects meta-analysis was conducted on six human trials reporting post-intervention BP values. Prebiotics were the primary intervention. In hypertensive cohorts, prebiotics significantly reduced SBP (−8.5 mmHg; 95% CI: −13.9, −3.1) and DBP (−5.2 mmHg; 95% CI: −8.5, −2.0). A pooled analysis of hypertensive and non-hypertensive patients showed non-significant reductions in SBP (−4.5 mmHg; 95% CI: −9.3, 0.3) and DBP (−2.5 mmHg; 95% CI: −5.4, 0.4). Animal studies consistently showed BP-lowering effects across diverse etiologies. Prebiotic interventions restored bacterial genera known to metabolize DFs to SCFAs (e.g., Bifidobacteria, Akkermansia, and Coprococcus) and increased SCFA levels. Mechanistically, SCFAs act along gut–organ axes to modulate immune, vascular, and neurohormonal pathways involved in BP regulation. Conclusions: Prebiotic supplementation is a promising strategy to reestablish BP homeostasis in hypertensive patients. Benefits are likely mediated through modulation of the gut microbiota and enhanced SCFA production. Full article
(This article belongs to the Special Issue Probiotics and Prebiotics: Past, Present and Future)
Show Figures

Graphical abstract

25 pages, 1199 KiB  
Review
Gut-Microbiota-Derived Metabolites and Probiotic Strategies in Colorectal Cancer: Implications for Disease Modulation and Precision Therapy
by Yi-Chu Yang, Shih-Chang Chang, Chih-Sheng Hung, Ming-Hung Shen, Ching-Long Lai and Chi-Jung Huang
Nutrients 2025, 17(15), 2501; https://doi.org/10.3390/nu17152501 - 30 Jul 2025
Viewed by 480
Abstract
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis [...] Read more.
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis is increasingly linked to diverse conditions such as gastrointestinal, metabolic, and neuropsychiatric disorders, cardiovascular diseases, and colorectal cancer (CRC). Probiotics offer therapeutic potential by restoring microbial balance, enhancing epithelial defenses, and modulating immune responses. This review highlights the physiological functions of gut microbiota and SCFAs, with a particular focus on butyrate’s anti-inflammatory and anti-cancer effects in CRC. It also examines emerging microbial therapies like probiotics, synbiotics, postbiotics, and engineered microbes. Emphasis is placed on the need for precision microbiome medicine, tailored to individual host–microbiome interactions and metabolomic profiles. These insights underscore the promising role of gut microbiota modulation in advancing preventive and personalized healthcare. Full article
(This article belongs to the Special Issue Diet, Gut Microbiota, and Gastrointestinal Disease)
Show Figures

Graphical abstract

28 pages, 1184 KiB  
Review
Immune Modulation by Microbiota and Its Possible Impact on Polyomavirus Infection
by Giorgia Cianci, Gloria Maini, Matteo Ferraresi, Giulia Pezzi, Daria Bortolotti, Sabrina Rizzo, Silvia Beltrami and Giovanna Schiuma
Pathogens 2025, 14(8), 747; https://doi.org/10.3390/pathogens14080747 - 30 Jul 2025
Viewed by 364
Abstract
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as [...] Read more.
Polyomaviruses are a family of small DNA viruses capable of establishing persistent infections, and they can pose significant pathogenic risks in immunocompromised hosts. While traditionally studied in the context of viral reactivation and immune suppression, recent evidence has highlighted the gut microbiota as a critical regulator of host immunity and viral pathogenesis. This review examines the complex interactions between polyomaviruses, the immune system, and intestinal microbiota, emphasizing the role of short-chain fatty acids (SCFAs) in modulating antiviral responses. We explore how dysbiosis may facilitate viral replication, reactivation, and immune escape and also consider how polyomavirus infection can, in turn, alter microbial composition. Particular attention is given to the Firmicutes/Bacteroidetes ratio as a potential biomarker of infection risk and immune status. Therapeutic strategies targeting the microbiota, including prebiotics, probiotics, and fecal microbiota transplantation (FMT), are discussed as innovative adjuncts to immune-based therapies. Understanding these tri-directional interactions may offer new avenues for mitigating disease severity and improving patient outcomes during viral reactivation. Full article
Show Figures

Figure 1

17 pages, 1482 KiB  
Review
Dietary Fiber as Prebiotics: A Mitigation Strategy for Metabolic Diseases
by Xinrui Gao, Sumei Hu, Ying Liu, S. A. Sanduni Samudika De Alwis, Ying Yu, Zhaofeng Li, Ziyuan Wang and Jie Liu
Foods 2025, 14(15), 2670; https://doi.org/10.3390/foods14152670 - 29 Jul 2025
Viewed by 383
Abstract
Dietary fiber (DF) is one type of carbohydrate that cannot be digested by the gastrointestinal tract. It is widely recognized as an essential ingredient for health due to its remarkable prebiotic properties. Studies have shown that DF is important in the management of [...] Read more.
Dietary fiber (DF) is one type of carbohydrate that cannot be digested by the gastrointestinal tract. It is widely recognized as an essential ingredient for health due to its remarkable prebiotic properties. Studies have shown that DF is important in the management of metabolic diseases, such as obesity and diabetes, by regulating the balance of gut microbiota and slowing down the absorption of glucose. It is worth noting that patients with metabolic diseases might suffer from intestinal dysfunction (such as constipation), which is triggered by factors such as the disease itself or medication. This increases the complexity of chronic disease treatment. Although medications are the most common treatment for chronic disease, long-term use might increase the financial and psychological burden. DF as a prebiotic has received significant attention not only in the therapy for constipation but also as an adjunctive treatment in metabolic disease. This review focuses on the application of DF in modulating metabolic diseases with special attention on the effect of DF on intestinal dysfunction. Furthermore, the molecular mechanisms through which DF alleviates intestinal disorders are discussed, including modulating the secretion of gastrointestinal neurotransmitters and hormones, the expression of aquaporins, and the production of short-chain fatty acids. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

22 pages, 4967 KiB  
Article
Therapeutic Potential of Kelp Fucoidan in Rebiosis of Gut Microflora and Immune Homeostasis in Cyclophosphamide-Induced Immunosuppressed Mice
by Yaqing Liu, Ruining Kang, Yanfei Zhao, Heng Zhang, Qingfeng Rong, Shaoxuan Yu, Yaoguang Chang, Zhengpeng Wei and Lanlan Zhu
Foods 2025, 14(15), 2662; https://doi.org/10.3390/foods14152662 - 29 Jul 2025
Viewed by 237
Abstract
Recent studies indicate that fucoidan may play a crucial role in the metabolism and biological function of the intestinal flora. This study investigates the therapeutic potential of kelp fucoidan on the gut microbiota and immune homeostasis of cyclophosphamide-induced immunosuppressed mice. An immunosuppressive mouse [...] Read more.
Recent studies indicate that fucoidan may play a crucial role in the metabolism and biological function of the intestinal flora. This study investigates the therapeutic potential of kelp fucoidan on the gut microbiota and immune homeostasis of cyclophosphamide-induced immunosuppressed mice. An immunosuppressive mouse model was established using cyclophosphamide, followed by administration of various kelp fucoidan doses (low-dose fucoidan: 50 mg/(kg·bw)/d, medium-dose fucoidan: 100 mg/(kg·bw)/d, and high-dose fucoidan: 150 mg/(kg·bw)/d) to the experimental groups. Changes in the gut microbiota structure were analyzed using 16S rRNA high-throughput sequencing, alongside simultaneous measurement of serum immune indicators and levels of short-chain fatty acids (SCFAs). Results indicate that kelp fucoidan significantly improved the thymus and spleen indices in immunosuppressed mice (p < 0.05) and elevated serum levels of IgM, IgG and IL-4. Post-kelp fucoidan intervention, there was significant alteration in microbiota ecosystem restructuring, such as proliferation in probiotics, including Lactobacillus and Bifidobacterium, while opportunistic pathogens, such as Enterococcus and Escherichia coli, decreased. Furthermore, the levels of acetic, propionic, and butyric acids in the colonic contents of the kelp fucoidan group significantly improved (p < 0.01). This research demonstrates that kelp fucoidan enhances immune function in immunosuppressed mice by modulating gut microbiota balance and promoting short-chain fatty acid production. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

20 pages, 2441 KiB  
Article
Dysfunction and Metabolic Reprogramming of Gut Regulatory T Cells in HIV-Infected Immunological Non-Responders
by Minrui Yu, Mengmeng Qu, Zerui Wang, Cheng Zhen, Baopeng Yang, Yi Zhang, Huihuang Huang, Chao Zhang, Jinwen Song, Xing Fan, Ruonan Xu, Yan-Mei Jiao and Fu-Sheng Wang
Cells 2025, 14(15), 1164; https://doi.org/10.3390/cells14151164 - 29 Jul 2025
Viewed by 332
Abstract
Disruption of the gut microenvironment is a hallmark of HIV infection, where regulatory T cells (Tregs) play a critical role in maintaining gut homeostasis. However, the mechanisms by which gut Tregs contribute to immune reconstitution failure in HIV-infected individuals remain poorly understood. In [...] Read more.
Disruption of the gut microenvironment is a hallmark of HIV infection, where regulatory T cells (Tregs) play a critical role in maintaining gut homeostasis. However, the mechanisms by which gut Tregs contribute to immune reconstitution failure in HIV-infected individuals remain poorly understood. In this study, we employed single-cell RNA sequencing (scRNA-seq) to analyze gut Treg populations across three cohorts: eight immunological responders (IRs), three immunological non-responders (INRs), and four HIV-negative controls (NCs). Our findings revealed that INRs exhibit an increased proportion of gut Tregs but with significant functional impairments, including reduced suppressive capacity and heightened apoptotic activity. Notably, these Tregs underwent metabolic reprogramming in INRs, marked by an upregulation of glycolysis-related genes and a downregulation of the oxidative phosphorylation (OXPHOS) pathway. Additionally, both the abundance of short-chain fatty acid (SCFA)-producing bacteria and SCFA concentrations were reduced in INRs. In vitro SCFA supplementation restored Treg function by enhancing suppressive capacity, reducing early apoptosis, and rebalancing cellular energy metabolism from glycolysis to OXPHOS. These findings provide a comprehensive characterization of gut Treg dysfunction in INRs and underscore the therapeutic potential of targeting gut Tregs through microbiota and metabolite supplementation to improve immune reconstitution in HIV-infected individuals. Full article
(This article belongs to the Special Issue Immune Response in HIV Infection, Pathogenesis and Persistence)
Show Figures

Graphical abstract

17 pages, 2387 KiB  
Article
Application of Lactobacillus helveticus KLDS 1.1105 Postbiotics for Resisting Pathogenic Bacteria Infection in the Intestine
by Peng Du, Jiaying Liu, Chengwen Hu, Jianing Zhang, Miao Li, Yu Xin, Libo Liu, Aili Li and Chun Li
Foods 2025, 14(15), 2659; https://doi.org/10.3390/foods14152659 - 29 Jul 2025
Viewed by 291
Abstract
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total [...] Read more.
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total antioxidant capacity of Lactobacillus helveticus postbiotics (LHPs) and their impact on intestinal flora using the Simulator for Human Intestinal Microecology Simulation (SHIME). The results indicate that the primary components of postbiotics include polysaccharides, proteins, and organic acids. Furthermore, LHPs have a strong ability to inhibit the growth of harmful bacteria while promoting the growth of probiotics. Additionally, LHPs significantly increased the total antioxidant capacity in the intestine and regulated the balance of intestinal microbiota. Notably, there was also a significant increase in the content of short-chain fatty acids (SCFAs) in the intestine. Overall, LHPs have the potential to aid in the prevention and treatment of diseases by enhancing gut microbiology. Full article
Show Figures

Graphical abstract

21 pages, 2030 KiB  
Article
Restoring Balance: Probiotic Modulation of Microbiota, Metabolism, and Inflammation in SSRI-Induced Dysbiosis Using the SHIME® Model
by Marina Toscano de Oliveira, Fellipe Lopes de Oliveira, Mateus Kawata Salgaço, Victoria Mesa, Adilson Sartoratto, Kalil Duailibi, Breno Vilas Boas Raimundo, Williams Santos Ramos and Katia Sivieri
Pharmaceuticals 2025, 18(8), 1132; https://doi.org/10.3390/ph18081132 - 29 Jul 2025
Viewed by 492
Abstract
Background/Objectives: Selective serotonin reuptake inhibitors (SSRIs), widely prescribed for anxiety disorders, may negatively impact the gut microbiota, contributing to dysbiosis. Considering the gut–brain axis’s importance in mental health, probiotics could represent an effective adjunctive strategy. This study evaluated the effects of Lactobacillus helveticus [...] Read more.
Background/Objectives: Selective serotonin reuptake inhibitors (SSRIs), widely prescribed for anxiety disorders, may negatively impact the gut microbiota, contributing to dysbiosis. Considering the gut–brain axis’s importance in mental health, probiotics could represent an effective adjunctive strategy. This study evaluated the effects of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on microbiota composition, metabolic activity, and immune markers in fecal samples from patients with anxiety on SSRIs, using the SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) model. Methods: The fecal microbiotas of four patients using sertraline or escitalopram were inoculated in SHIME® reactors simulating the ascending colon. After stabilization, a 14-day probiotic intervention was performed. Microbial composition was assessed by 16S rRNA sequencing. Short-chain fatty acids (SCFAs), ammonia, and GABA were measured, along with the prebiotic index (PI). Intestinal barrier integrity was evaluated via transepithelial electrical resistance (TEER), and cytokine levels (IL-6, IL-8, IL-10, TNF-α) were analyzed using a Caco-2/THP-1 co-culture system. The statistical design employed in this study for the analysis of prebiotic index, metabolites, intestinal barrier integrity and cytokines levels was a repeated measures ANOVA, complemented by post hoc Tukey’s tests to assess differences across treatment groups. For the 16S rRNA sequencing data, alpha diversity was assessed using multiple metrics, including the Shannon, Simpson, and Fisher indices to evaluate species diversity, and the Chao1 and ACE indices to estimate species richness. Beta diversity, which measures microbiota similarity across groups, was analyzed using weighted and unweighted UniFrac distances. To assess significant differences in beta diversity between groups, a permutational multivariate analysis of variance (PERMANOVA) was performed using the Adonis test. Results: Probiotic supplementation increased Bifidobacterium and Lactobacillus, and decreased Klebsiella and Bacteroides. Beta diversity was significantly altered, while alpha diversity remained unchanged. SCFA levels increased after 7 days. Ammonia levels dropped, and PI values rose. TEER values indicated enhanced barrier integrity. IL-8 and TNF-α decreased, while IL-6 increased. GABA levels remained unchanged. Conclusions: The probiotic combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 modulated gut microbiota composition, metabolic activity, and inflammatory responses in samples from individuals with anxiety on SSRIs, supporting its potential as an adjunctive strategy to mitigate antidepressant-associated dysbiosis. However, limitations—including the small pooled-donor sample, the absence of a healthy control group, and a lack of significant GABA modulation—should be considered when interpreting the findings. Although the SHIME® model is considered a gold standard for microbiota studies, further clinical trials are necessary to confirm these promising results. Full article
Show Figures

Graphical abstract

Back to TopTop