Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = series-connected power devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7223 KiB  
Article
Smart Wildlife Monitoring: Real-Time Hybrid Tracking Using Kalman Filter and Local Binary Similarity Matching on Edge Network
by Md. Auhidur Rahman, Stefano Giordano and Michele Pagano
Computers 2025, 14(8), 307; https://doi.org/10.3390/computers14080307 - 30 Jul 2025
Viewed by 158
Abstract
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part [...] Read more.
Real-time wildlife monitoring on edge devices poses significant challenges due to limited power, constrained bandwidth, and unreliable connectivity, especially in remote natural habitats. Conventional object detection systems often transmit redundant data of the same animals detected across multiple consecutive frames as a part of a single event, resulting in increased power consumption and inefficient bandwidth usage. Furthermore, maintaining consistent animal identities in the wild is difficult due to occlusions, variable lighting, and complex environments. In this study, we propose a lightweight hybrid tracking framework built on the YOLOv8m deep neural network, combining motion-based Kalman filtering with Local Binary Pattern (LBP) similarity for appearance-based re-identification using texture and color features. To handle ambiguous cases, we further incorporate Hue-Saturation-Value (HSV) color space similarity. This approach enhances identity consistency across frames while reducing redundant transmissions. The framework is optimized for real-time deployment on edge platforms such as NVIDIA Jetson Orin Nano and Raspberry Pi 5. We evaluate our method against state-of-the-art trackers using event-based metrics such as MOTA, HOTA, and IDF1, with a focus on detected animals occlusion handling, trajectory analysis, and counting during both day and night. Our approach significantly enhances tracking robustness, reduces ID switches, and provides more accurate detection and counting compared to existing methods. When transmitting time-series data and detected frames, it achieves up to 99.87% bandwidth savings and 99.67% power reduction, making it highly suitable for edge-based wildlife monitoring in resource-constrained environments. Full article
(This article belongs to the Special Issue Intelligent Edge: When AI Meets Edge Computing)
Show Figures

Figure 1

16 pages, 3519 KiB  
Article
Flexible Moisture–Electric Generator Based on Vertically Graded GO–rGO/Ag Films
by Shujun Wang, Geng Li, Jiayue Wen, Jiayun Feng, He Zhang and Yanhong Tian
Materials 2025, 18(12), 2766; https://doi.org/10.3390/ma18122766 - 12 Jun 2025
Viewed by 670
Abstract
Moisture–electricity generators (MEGs) hold great promise for green energy conversion. However, existing devices focus on the need for complex gradient distribution treatments and the improvement in output voltage, overlooking the important role of the graphene oxide (GO) oxidation degree and the response time [...] Read more.
Moisture–electricity generators (MEGs) hold great promise for green energy conversion. However, existing devices focus on the need for complex gradient distribution treatments and the improvement in output voltage, overlooking the important role of the graphene oxide (GO) oxidation degree and the response time and recovery time in practical application. In this work, we develop printed MEGs by synthesizing reduced graphene oxide/silver nanoparticle (rGO/Ag) composites and controlling the GO oxidation degree. The rGO/Ag layer serves as a functional component that enhances cycling stability and shortens the recovery time. Additionally, compared to conventional rigid-structure devices, these flexible MEGs can be produced by inkjet printing and drop-casting techniques. A 1 cm2 MEG can generate a voltage of up to 60 mV within 2.4 s. Notably, higher output voltages can be easily achieved by connecting multiple MEG units in series, with 10 units producing 200 mV even under low relative humidity (RH). This work presents a low-cost, highly flexible, lightweight, and scalable power generator, paving the way for broader applications of GO and further advancement of MEG technology in wearable electronics, respiratory monitoring, and Internet of Things applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

9 pages, 1467 KiB  
Proceeding Paper
Assessment of Lithium Ferrous Phosphate Battery Cells Under Series Balancing Mode—Performance and Health Behaviours
by Niveditha Balagopal Menon, Samridhi Mehta, Pranavya Punnakkattuparambil, Preetha Punnakkattuparambil, Vidhya Marimuthu, Nanthagopal Kasianantham, Tabbi Wilberforce and Jambulingam Ranjitha
Eng. Proc. 2025, 95(1), 10; https://doi.org/10.3390/engproc2025095010 - 6 Jun 2025
Viewed by 315
Abstract
Electric vehicles have recently gained greater attention across all countries for transportation purposes in on-road and off-road forms due to their supreme performance and clean eco-friendliness status. Lithium-ferrous phosphate batteries are the primary energy storage devices in electric vehicles due to their higher [...] Read more.
Electric vehicles have recently gained greater attention across all countries for transportation purposes in on-road and off-road forms due to their supreme performance and clean eco-friendliness status. Lithium-ferrous phosphate batteries are the primary energy storage devices in electric vehicles due to their higher energy density, longer lifespan, and lower self-discharge rate. They also possess several technical advantages, including a wider range of applications, economic affordability, an environmentally friendly nature, and, most importantly, superior electrochemical performance, which makes them a strong competitor to lead acid batteries. In the present study, a performance and health assessment of a lithium ferrous phosphate battery (LFP) pack consisting of 23 cells connected in series balancing mode with a 7360 Wh maximum energy storage capacity has been carried out at various current ranges of operation such as 3 A, 5 A, and 8 A in a typically developed battery management system to estimate their optimized performance and overall health conditions. Further study has been conducted to investigate the characteristics of LFP packs under various power-mode conditions, ranging from 20 W to 750 W. This experimental study revealed that the LFP battery pack exhibits a remarkable state-of-charge capability, achieving 58% charging in a 3.3-h runtime period. A similar decreasing trend was also observed during power-mode operations. Furthermore, the LFP battery pack was fully charged after achieving a 50% State of Charge (SOC) under every current-mode condition, providing reliable outputs under the loading conditions. It is also stated that the state of health of the lithium ferrous phosphate is significantly higher at 92% during the entire investigation, which reflects the good thermal stability of the LFP battery pack for temperature variations from 26 °C to 31 °C. Finally, it is concluded that the LFP could be one of the most favourable energy storage systems due to its longer lifespan and its great affordability in automotive applications. Full article
Show Figures

Figure 1

13 pages, 2706 KiB  
Article
In Situ Contact-Separation TENG for High-Speed Rail Wind Monitoring
by Guangzheng Wang, Depeng Fu, Yuankun Li and Xiaoxiong Wang
Nanomaterials 2025, 15(11), 839; https://doi.org/10.3390/nano15110839 - 30 May 2025
Viewed by 441
Abstract
Triboelectric nanogenerators have attracted extensive attention as they can complete sensing during energy conversion, triggering a series of self-powered designs. Traditional TENG bipolar independent fabrication technology requires secondary motion control, which limits its application scenarios. In this work, we propose a flag-type TENG [...] Read more.
Triboelectric nanogenerators have attracted extensive attention as they can complete sensing during energy conversion, triggering a series of self-powered designs. Traditional TENG bipolar independent fabrication technology requires secondary motion control, which limits its application scenarios. In this work, we propose a flag-type TENG prepared using in situ electrospinning technology, in which the connecting region is obtained by electrospinning deposition of PVDF on nylon as the receiving electrode. The active area is isolated with silicone oil paper. After electrospinning, the silicone oil paper was removed, and the distance between the nylon and PVDF is far beyond the van der Waals range. Thus, contact separation can be effectively carried out under the action of wind. The device has been proven to be able to be used for monitoring wind conditions at high-speed rail stations and enables completely self-powered monitoring of the wind level using self-powered LED coding. The device no longer relies on additional batteries or wires to work, providing additional ideas for future self-powered system design. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

17 pages, 2486 KiB  
Article
Sustainable Fe3C/Fe-Nx-C Cathode Catalyst from Biomass for an Oxygen Reduction Reaction in Alkaline Electrolytes and Zinc–Air Battery Application
by Shaik Gouse Peera, Seung-Won Kim, Shaik Ashmath and Tae-Gwan Lee
Inorganics 2025, 13(5), 143; https://doi.org/10.3390/inorganics13050143 - 30 Apr 2025
Viewed by 586
Abstract
Realistic applications of zinc–air batteries are hindered by the high cost of Pt/C cathode catalysts, necessitating the search for alternative, sustainable electrocatalysts. In this work, we developed a sustainable Fe3C/Fe-Nx-C cathode catalyst from waste coffee biomass for an oxygen [...] Read more.
Realistic applications of zinc–air batteries are hindered by the high cost of Pt/C cathode catalysts, necessitating the search for alternative, sustainable electrocatalysts. In this work, we developed a sustainable Fe3C/Fe-Nx-C cathode catalyst from waste coffee biomass for an oxygen reduction reaction (ORR) in alkaline electrolytes and zinc–air battery applications. The Fe3C/Fe-Nx-C cathode catalyst was synthesized via a mechanochemical synthesis strategy by using melamine and an EDTA–Fe chelate complex, followed by pyrolysis at 900 °C. The obtained Fe3C/Fe-Nx-C catalyst was evaluated for detailed ORR activity and stability. The ORR results show that Fe3C/Fe-Nx-C displayed excellent ORR activity with an E1/2 of 0.93 V vs. RHE, a Tafel slope of 68 mV dec−1, 3.95 e transfer for the O2 molecule, and high ECSA values. In addition, the Fe3C/Fe-Nx-C catalyst exhibited excellent stability with a loss of 75 mV for 10,000 potential cycles, and a loss of ~14% of relative currents in the chronoamperometric test. When applied as a cathode catalyst in zinc–air battery, the Fe3C/Fe-Nx-C catalyst delivered a power density of 81 mW cm−2 and admirable electrochemical stability under galvanostatic discharge conditions. Furthermore, the practical application of the Fe3C/Fe-Nx-C catalyst was demonstrated by a panel of LEDs illuminated with a dual-cell zinc–air battery connected in a series, clearly validating the practically developed catalysts for use in various energy storage and electronic devices. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Advanced Technology, 2nd Edition)
Show Figures

Figure 1

16 pages, 6429 KiB  
Article
Rotational Triboelectric Nanogenerator with Machine Learning for Monitoring Speed
by Chun Zhang, Junjie Liu, Yilin Shao, Xingyi Ni, Jiaheng Xie, Hongchun Luo and Tao Yang
Sensors 2025, 25(8), 2533; https://doi.org/10.3390/s25082533 - 17 Apr 2025
Cited by 2 | Viewed by 779
Abstract
The triboelectric nanogenerator (TENG) is an efficient mechanical energy harvesting device that exhibits excellent performance in the fields of micro-nano energy harvesting and self-powered sensing. In practical application scenarios, it is very important to monitor the speed of rotational machinery in real time. [...] Read more.
The triboelectric nanogenerator (TENG) is an efficient mechanical energy harvesting device that exhibits excellent performance in the fields of micro-nano energy harvesting and self-powered sensing. In practical application scenarios, it is very important to monitor the speed of rotational machinery in real time. In order to monitor a wider range of rotational speeds, the TENG based on a machine learning algorithm is designed in this paper. The peak power of the TENG reaches a maximum of 6.6 mW and can instantly light up 65 LEDs connected in series. The results show that machine learning can detect speed, greatly improving the speed detection range. The neural network is trained and tested based on the collected electrical signals at different speeds so as to monitor the health of the machine. For the analysis of the collected experimental data, normalization data and a more practical label assignment method of Gaussian soft coding were considered. The study found that after data normalization, the classification prediction accuracy for different speeds is above 0.9, and the prediction results are stable and efficient. Therefore, the machine learning prediction model for speed monitoring proposed by us can be applied to the early warning and monitoring of rotating machinery speed in actual engineering projects. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

19 pages, 8736 KiB  
Article
Preparation of Asymmetric Micro-Supercapacitors Based on Laser-Induced Graphene with Regulated Hydrophobicity and Hydrophilicity
by Qing Liu, Wenpeng Wu, Pingping Luo, Hao Yu, Jiaqi Wang, Rui Chen and Yang Zhao
Nanomaterials 2025, 15(8), 584; https://doi.org/10.3390/nano15080584 - 11 Apr 2025
Viewed by 769
Abstract
Asymmetric micro-supercapacitors (AMSCs) with a small size and high energy density can be compatible with portable and wearable electronic devices and are capable of providing stable, long-term power supply, attracting great research interest in recent years. Here, we present a simple and rapid [...] Read more.
Asymmetric micro-supercapacitors (AMSCs) with a small size and high energy density can be compatible with portable and wearable electronic devices and are capable of providing stable, long-term power supply, attracting great research interest in recent years. Here, we present a simple and rapid preparation method for AMSCs’ fabrication. By regulating the hydrophilicity and hydrophobicity of coplanar laser-induced graphene (LIG) through the adjustment of the laser parameters, two electrode materials with distinct hydrophilic–hydrophobic properties were selectively deposited by sequentially dip-coating. The LIGs serve as current collectors, with activated carbon and poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) as active materials. After coating the electrolytes and folding the two electrodes, a high-performance AMSC was achieved. The device exhibits a high areal capacitance of 85.88 mF cm−2 at a current density of 0.4 mA cm−2, along with an impressive energy density of 11.93 µWh cm−2 and a good rate performance. Moreover, it is demonstrated to be highly stable in 500,000 cycles. Two AMSCs in series can supply power to an electronic clock and birthday card. The method of preparing asymmetric electrodes in the same plane greatly facilitates the large-area preparation of AMSCs and series–parallel connection, providing an excellent idea for developing high-performance miniature energy storage devices. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

16 pages, 5952 KiB  
Article
Hardware Design for Cascade-Structure, Dual-Stage, Current-Limiting, Solid-State DC Circuit Breaker
by Can Ding, Yinbo Ji and Zhao Yuan
Appl. Sci. 2025, 15(1), 341; https://doi.org/10.3390/app15010341 - 1 Jan 2025
Viewed by 918
Abstract
Solid-state DC circuit breakers provide crucial support for the safe and reliable operation of low-voltage DC distribution networks. A hardware topology based on a cascaded structure with dual-stage, current-limiting, small-capacity, solid-state DC circuit breakers has been proposed. The hardware topology uses a series–parallel [...] Read more.
Solid-state DC circuit breakers provide crucial support for the safe and reliable operation of low-voltage DC distribution networks. A hardware topology based on a cascaded structure with dual-stage, current-limiting, small-capacity, solid-state DC circuit breakers has been proposed. The hardware topology uses a series–parallel configuration of cascaded SCR (thyristors) and MOSFETs (metal oxide semiconductor field-effect transistors) in the transfer branch, which enhances the breaking capacity of the transfer branch. Additionally, a secondary current-limiting circuit composed of an inductor and resistor in parallel is integrated at the front end of the transfer branch to effectively improve the current-limiting performance of the circuit breaker. Meanwhile, a dissipation branch is introduced on the fault side to reduce the energy consumption burden on surge arresters. For the power supply system of the hardware part, a capacitor-powered method is adopted for safety and efficiency, with a capacitor switch serially connected to the capacitor power supply for high-precision control of the power supply. Current detection branches are introduced into each branch to provide conditions for the on–off control of semiconductor switching devices and experimental data analysis. The high-frequency control of semiconductor devices is achieved using optocoupler signal isolation chips and high-speed drive chips through a microcontroller STM32. Simulation verification based on MATLAB/SIMULINK software and experimental prototype testing have been conducted, and the results show that the hardware topology is correct and effective. Full article
Show Figures

Figure 1

16 pages, 12178 KiB  
Article
SOC Equalization Control Method Considering SOH in DC–DC Converter Cascaded Energy Storage Systems
by Shixian Bai, Xiangqian Tong, Xin Ma and Jie Zhou
Energies 2024, 17(24), 6385; https://doi.org/10.3390/en17246385 - 19 Dec 2024
Cited by 1 | Viewed by 1002
Abstract
In large-scale industrial and commercial energy storage systems, as well as ground power station energy storage systems, the trend is to adopt large-capacity battery cells to reduce system construction costs. It is essential to screen the consistency of battery cells during the initial [...] Read more.
In large-scale industrial and commercial energy storage systems, as well as ground power station energy storage systems, the trend is to adopt large-capacity battery cells to reduce system construction costs. It is essential to screen the consistency of battery cells during the initial design phase. In conventional energy storage systems, battery clusters utilize multiple batteries connected in series, which can lead to differential attenuation over time and inconsistent state of charge (SOC) among the batteries. The “barrel effect” diminishes the effective capacity of the energy storage system. To mitigate this issue, a DC–DC converter cascaded energy storage system has been developed, incorporating precise charge and discharge management for each battery module within a cluster. By implementing SOC equalization control at the module level, it mitigates the barrel effect and enables full utilization of each battery module’s charging and discharging capabilities, thereby enhancing the overall charge–discharge capacity of the energy storage system. However, when considering only the SOC equalizing factor, its effectiveness may be limited by constraints such as DC–DC converter power limitations and device voltage stress levels. Therefore, a novel SOC equalization control method that considers both SOH and SOC variations across battery modules is proposed here. Through a droop control methodology combined with closed-loop control implementation on eight DC–DC converter cascaded energy storage systems, we validate the improved effectiveness achieved by incorporating SOH-aware SOC equalization control. The energy storage system has the capability to enhance both charging and discharging capacities, achieving a remarkable increase of 1.85% every 10 min, thereby yielding significant economic advantages. Full article
(This article belongs to the Special Issue Energy Storage Technologies and Applications for Smart Grids)
Show Figures

Figure 1

14 pages, 2101 KiB  
Article
Fabrication of Porous MXene/Cellulose Nanofibers Composite Membrane for Maximum Osmotic Energy Harvesting
by Sha Wang, Zhe Sun, Mehraj Ahmad and Mengyu Miao
Int. J. Mol. Sci. 2024, 25(23), 13226; https://doi.org/10.3390/ijms252313226 - 9 Dec 2024
Cited by 1 | Viewed by 1497
Abstract
Two-dimensional (2D) nanofluidic channels are emerging as potential candidates for harnessing osmotic energy from salinity gradients. However, conventional 2D nanofluidic membranes suffer from high transport resistance and low ion selectivity, leading to inefficient transport dynamics and limiting energy conversion performance. In this study, [...] Read more.
Two-dimensional (2D) nanofluidic channels are emerging as potential candidates for harnessing osmotic energy from salinity gradients. However, conventional 2D nanofluidic membranes suffer from high transport resistance and low ion selectivity, leading to inefficient transport dynamics and limiting energy conversion performance. In this study, we present a novel composite membrane consisting of porous MXene (PMXene) nanosheets featuring etched nanopores, in conjunction with cellulose nanofibers (CNF), yielding enhancement in ion flux and ion selectivity. A mild H2O2 oxidant is employed to etch and perforate the MXene sheets to create a robust network of cation transportation nanochannels that effectively reduces the energy barrier for cation transport. Additionally, CNF with a unique nanosize and high charge density further enhances the charge density and mechanical stability of the nanofluidic system. Under neutral pH and room temperature, the PMXene/CNF membrane demonstrates a maximum output power density of 0.95 W·m−2 at a 50-fold KCl gradient. Notably, this represents a 43% improvement over the performance of the pristine MXene/CNF membrane. Moreover, 36 nanofluidic devices connected in series are demonstrated to achieve a stable voltage output of 5.27 V and power a calculator successfully. This work holds great promise for achieving sustainable energy harvesting with efficient osmotic energy conversion utilization. Full article
Show Figures

Figure 1

21 pages, 6506 KiB  
Article
Performance and Reliability of Thermoelectric Conversion Using a Crooked Thermosyphon to Enhance Heat Transfer from Coal Fires
by Qingfeng Bao, Xiuting Guo, Bo Li, Wuyi Chen, Zhenping Wang and Yang Xiao
Processes 2024, 12(12), 2692; https://doi.org/10.3390/pr12122692 - 29 Nov 2024
Cited by 1 | Viewed by 902
Abstract
A large amount of energy can accumulate and be stored during underground coal fires. As thermal energy cannot be easily removed using the traditional technologies of fire prevention and extinguishment, there is a potential benefit to collecting and utilizing thermal energy from coal [...] Read more.
A large amount of energy can accumulate and be stored during underground coal fires. As thermal energy cannot be easily removed using the traditional technologies of fire prevention and extinguishment, there is a potential benefit to collecting and utilizing thermal energy from coal fires and converting it to electrical energy. Thus, this work proposes a thermoelectric generator as a solution to convert thermal energy from coal fires to electrical energy. To improve the thermal energy conversion efficiency, an experimental test system was established using a thermosyphon, an electric heating module, a cooling circulation module, a thermoelectric module, and a data acquisition module. Under the condition of ensuring the same input heat and cooling boundary conditions, the influence of three factors, namely the cooling method, the connection method, and the coverage rate of thermoelectric devices, on the performance of the coal fire waste heat conversion system was studied. The results show that, compared with air cooling, water cooling provides a greater temperature difference for the thermoelectric module, and the maximum temperature difference can reach 65.90 °C. Series connection between thermoelectric devices will generate a higher open-circuit voltage and output voltage. The maximum horizontal open-circuit voltage value can reach 3.34 V, and the maximum output voltage is 2.61 V. Compared with the coverage rates of thermoelectric devices of 15.0% and 30.0%, the output power under the coverage rate of 22.5% is the largest at 0.35 W, and its thermoelectric conversion efficiency is also the largest at 0.35%. The optimal combination of thermoelectric modules obtained from the research results can provide ideas for the application of in situ coal fire prevention and control. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

24 pages, 6345 KiB  
Review
Review of Voltage Balancing Techniques for Series-Connected SiC Metal–Oxide–Semiconductor Field-Effect Transistors
by Lucheng Sun, Mingzhong Qiao, Yihui Xia, Bo Wu and Fulin Chen
Energies 2024, 17(23), 5846; https://doi.org/10.3390/en17235846 - 22 Nov 2024
Cited by 1 | Viewed by 1381
Abstract
Power devices in series are low-voltage power devices used in medium- and high-voltage applications in a more direct program. However, when power devices in series are used, because of their electrical performance parameters or external circuit conditions, there are unique short-circuit voltage imbalances, [...] Read more.
Power devices in series are low-voltage power devices used in medium- and high-voltage applications in a more direct program. However, when power devices in series are used, because of their electrical performance parameters or external circuit conditions, there are unique short-circuit voltage imbalances, a serious threat to the safety of the device. The article first summarizes the research status and characteristics of the four models of SiC MOSFETs based on the domestic and international research on the models of SiC MOSFETs in recent years; second, the voltage balancing technology of series-connected SiC MOSFETs is sorted out and summarized, and then the driving circuits of SiC MOSFETs are sorted out and summarized. Again, several voltage balancing techniques reviewed are compared in six different aspects: cost, modularity, complexity, speed of voltage balancing, losses, and effectiveness of voltage balancing. Finally, an outlook of voltage balancing techniques for series SiC MOSFETs is provided. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 8124 KiB  
Article
Dual-Port Six-Band Rectenna with Enhanced Power Conversion Efficiency at Ultra-Low Input Power
by Shihao Sun, Yuchao Wang, Bingyang Li, Hanyu Xue, Cheng Zhang, Feng Xu and Chaoyun Song
Sensors 2024, 24(23), 7433; https://doi.org/10.3390/s24237433 - 21 Nov 2024
Cited by 2 | Viewed by 1065
Abstract
In this paper, a novel topology and method for designing a multi-band rectenna is proposed to improve its RF-DC efficiency. The rectifier achieves simultaneous rectification using both series and parallel configurations by connecting two branches to the respective terminals of the diode, directing [...] Read more.
In this paper, a novel topology and method for designing a multi-band rectenna is proposed to improve its RF-DC efficiency. The rectifier achieves simultaneous rectification using both series and parallel configurations by connecting two branches to the respective terminals of the diode, directing the energy input from two ports to the anode and cathode of the diode. Six desired operating frequency bands are evenly distributed across these two branches, each of which is connected to antennas corresponding to their specific operating frequencies, serving as the receiving end of the system. To optimize the design process, a low-pass filter is incorporated into the rectifier design. This filter works in conjunction with a matching network that includes filtering capabilities to isolate the two ports of the rectifier. The addition of the filter ensures that each structure within the rectifier can be designed independently without adversely affecting the performance of the already completed structures. Based on the proposed design methodology, a dual-port rectenna operating at six frequency bands—1.85 GHz, 2.25 GHz, 2.6 GHz, 3.52 GHz, 5.01 GHz, and 5.89 GHz—was designed, covering the 4G, 5G, and Wi-Fi/WLAN frequency bands. The measured results indicate that high-power conversion efficiency was achieved at an input power of −10 dBm: 43.01% @ 1.85 GHz, 41.00% @ 2.25 GHz, 41.33% @ 2.6 GHz, 35.88% @ 3.52 GHz, 22.36% @ 5.01 GHz, and 19.27% @ 5.89 GHz. When the input power is −20 dBm, the conversion efficiency of the rectenna can be improved from 5.2% for single-tone input to 27.7% for six-tone input, representing a 22.5 percentage point improvement. The proposed rectenna demonstrates significant potential for applications in powering low-power sensors and other devices within the Internet of Everything context. Full article
Show Figures

Figure 1

16 pages, 7221 KiB  
Article
ISOS-SAB DC/DC Converter for Large-Capacity Offshore Wind Turbine
by Xipeng Cai, Yixin Liu, Yihua Zhu, Yanbing Zhou, Chao Luo and Qihui Liu
Energies 2024, 17(20), 5071; https://doi.org/10.3390/en17205071 - 12 Oct 2024
Viewed by 1177
Abstract
This study offers a modular isolated grid-connected DC/DC medium-voltage DC aggregation converter to support offshore full DC wind farms’ need for lightweight and highly efficient power aggregation and transmission. The converter can simultaneously have a smaller transformer size and lower switching frequency during [...] Read more.
This study offers a modular isolated grid-connected DC/DC medium-voltage DC aggregation converter to support offshore full DC wind farms’ need for lightweight and highly efficient power aggregation and transmission. The converter can simultaneously have a smaller transformer size and lower switching frequency during operation through the dual-voltage stabilization three-loop control strategy and phase-shift modulation strategy, which greatly reduces the space occupied by the converter and lowers the switching loss, Additionally, the use of a two-level structure at a lower switching frequency has lower loss, which effectively reduces the cost of the power device compared with the commonly used three-level converter. The input series output series connection between the converter sub-modules effectively lowers the voltage stress on each power switching device and facilitates expansion into a multi-module structure, expanding its application in high-voltage and large-capacity environments. This study analyzes the two working modes of the DC/DC converter and its control approach, in addition to providing a detailed introduction to the application scenarios of this converter. Ultimately, the efficacy and practicability of the suggested topology and control scheme are confirmed by simulations and experiments. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

11 pages, 3439 KiB  
Article
Binary Biomass-Based Electrolyte Films for High-Performance All-Solid-State Supercapacitor
by Rui Lou, Guocheng Zhang, Taoyuan Niu, Long He, Ying Su and Guodong Wei
Polymers 2024, 16(19), 2772; https://doi.org/10.3390/polym16192772 - 30 Sep 2024
Cited by 1 | Viewed by 1237
Abstract
Solid-state electrolytes have received widespread attention for solving the problem of the leakage of liquid electrolytes and effectively improving the overall performance of supercapacitors. However, the electrochemical performance and environmental friendliness of solid-state electrolytes still need to be further improved. Here, a binary [...] Read more.
Solid-state electrolytes have received widespread attention for solving the problem of the leakage of liquid electrolytes and effectively improving the overall performance of supercapacitors. However, the electrochemical performance and environmental friendliness of solid-state electrolytes still need to be further improved. Here, a binary biomass-based solid electrolyte film (LSE) was successfully synthesized through the incorporation of lignin nanoparticles (LNPs) with sodium alginate (SA). The impact of the mass ratio of SA to LNPs on the microstructure, porosity, electrolyte absorption capacity, ionic conductivity, and electrochemical properties of the LSE was thoroughly investigated. The results indicated that as the proportion of SA increased from 5% to 15% of LNPs, the pore structure of the LSE became increasingly uniform and abundant. Consequently, enhancements were observed in porosity, liquid absorption capacity, ionic conductivity, and overall electrochemical performance. Notably, at an SA amount of 15% of LNPs, the ionic conductivity of the resultant LSE-15 was recorded at 14.10 mS cm−1, with the porosity and liquid absorption capacity reaching 58.4% and 308%, respectively. LSE-15 was employed as a solid electrolyte, while LNP-based carbon aerogel (LCA) served as the two electrodes in the construction of a symmetric all-solid-state supercapacitor (SSC). The SSC device demonstrated exceptional electrochemical storage capacity, achieving a specific capacitance of 197 F g−1 at 0.5 A g−1, along with a maximum energy and power density of 27.33 W h kg−1 and 4998 W kg−1, respectively. Furthermore, the SSC device exhibited highly stable electrochemical performance under extreme conditions, including compression, bending, and both series and parallel connections. Therefore, the development and application of binary biomass-based solid electrolyte films in supercapacitors represent a promising strategy for harnessing high-value biomass resources in the field of energy storage. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

Back to TopTop