Sustainable Fe3C/Fe-Nx-C Cathode Catalyst from Biomass for an Oxygen Reduction Reaction in Alkaline Electrolytes and Zinc–Air Battery Application
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.R.; Vishnuram, P.; Alagarsamy, S.; Bajaj, M.; Blazek, V.; Damaj, I.; Rathore, R.S.; Al-Wesabi, F.N.; Othman, K.M. Electric vehicle charging technologies, infrastructure expansion, grid integration strategies, and their role in promoting sustainable e-mobility. Alex. Eng. J. 2024, 105, 300–330. [Google Scholar] [CrossRef]
- Gao, L.; Hu, H.; Zhang, C.; Cao, M. Gallium regulated MnO2 toward high performance Zn ion batteries. Vacuum 2024, 219, 112671. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y. Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery. Appl. Energy 2024, 365, 123280. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Y.; Zhou, M.; Huang, X.; Gao, Y.; Li, K.; Chen, Z.; Zhou, C.; Zhou, Z.; Zheng, C.; et al. Short process recovery of silver and purification mechanism of crystalline silicon deep etching from end-of-life photovoltaic cells. Chem. Eng. J. 2025, 510, 161651. [Google Scholar] [CrossRef]
- Ali, A.O.; Elgohr, A.T.; El-Mahdy, M.H.; Zohir, H.M.; Emam, A.Z.; Mostafa, M.G.; Al-Razgan, M.; Kasem, H.M.; Elhadidy, M.S. Advancements in photovoltaic technology: A comprehensive review of recent advances and future prospects. Energy Convers. Manag. X 2025, 26, 100952. [Google Scholar] [CrossRef]
- Liu, X.; Shang, J.; Li, J.; Liu, H.; Zhang, F.; Pan, Q.; Tang, Y. Insight into Robust Anion Coordination Behavior of Organic Cathode with Dual Elongated π-Conjugated Motifs. Angew. Chem. 2025, 137, e202420160. [Google Scholar] [CrossRef]
- Fu, L.; Wang, J.; Fu, X.; Zhao, G. Finite-time Pade-based adaptive FNN controller implementation for microbial fuel cell with delay and multi-disturbance. Int. J. Hydrogen Energy 2025, 98, 1034–1043. [Google Scholar] [CrossRef]
- Nazir, G.; Rehman, A.; Lee, J.-H.; Kim, C.-H.; Gautam, J.; Heo, K.; Hussain, S.; Ikram, M.; AlObaid, A.A.; Lee, S.-Y.; et al. A review of rechargeable zinc–air batteries: Recent progress and future perspectives. Nano-Micro Lett. 2024, 16, 138. [Google Scholar] [CrossRef]
- Pan, J.; Xu, Y.Y.; Yang, H.; Dong, Z.; Liu, H.; Xia, B.Y. Advanced architectures and relatives of air electrodes in Zn–air batteries. Adv. Sci. 2018, 5, 1700691. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Fu, H. Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc–air batteries. J. Mater. Chem. A 2023, 11, 4400–4427. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, W.; Chen, Y.; Xu, Z.; Cai, D.; Xu, M.; Tong, R. Cobalt-containing ZIF-derived catalysts for Zn–air batteries. Mater. Chem. Front. 2024, 8, 2394–2419. [Google Scholar] [CrossRef]
- Zhao, H. Recent Advances in Rechargeable Zn-Air Batteries. Molecules 2024, 29, 5313. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.; Tran, P.K.L.; Malhotra, D.; Nguyen, T.H.; Nguyen, T.T.A.; Duong, N.T.A.; Kim, N.H.; Lee, J.H. Current status of developed electrocatalysts for water splitting technologies: From experimental to industrial perspective. Nano Converg. 2025, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, Q.; Dong, S.; Wang, M.; Song, Y.; Diao, H.; Yuan, D. Building synergistic multiple active sites in branch-leaf nanostructured carbon nanofiber derived from MOF/COF hybrid for flexible wearable Zn-air battery. J. Colloid Interface Sci. 2024, 666, 35–46. [Google Scholar]
- Zhang, Q.; Li, W.; Peng, J.; Xue, L.; He, G. Cold plasma activated Ni 0/Ni 2+ interface catalysts for efficient electrocatalytic methane oxidation to low-carbon alcohols. Green Chem. 2024, 26, 7091–7100. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, J.; Xiong, H.; Jiang, S.; Li, W.; Fu, X.; Shang, S.; Xu, J.; He, G. Cold plasma-activated Ni-Co tandem catalysts with CN vacancies for enhancing CH4 electrocatalytic to methyl formate. Appl. Catal. B Environ. Energy 2025, 362, 124759. [Google Scholar] [CrossRef]
- Sun, X.; Wei, P.; Gu, S.; Zhang, J.; Jiang, Z.; Wan, J.; Chen, Z.; Huang, L.; Xu, Y.; Fang, C.; et al. Atomic-level Fe-N-C coupled with Fe3C-Fe nanocomposites in carbon matrixes as high-efficiency bifunctional oxygen catalysts. Small 2020, 16, 1906057. [Google Scholar] [CrossRef]
- Han, J.; Bao, H.; Wang, J.-Q.; Zheng, L.; Sun, S.; Wang, Z.L.; Sun, C. 3D N-doped ordered mesoporous carbon supported single-atom Fe-NC catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B Environ. 2021, 280, 119411. [Google Scholar] [CrossRef]
- Lian, Y.; Xu, J.; Zhou, W.; Lin, Y.; Bai, J. Research Progress on Atomically Dispersed Fe-N-C Catalysts for the Oxygen Reduction Reaction. Molecules 2024, 29, 771. [Google Scholar] [CrossRef]
- Jiang, W.-J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.-J.; Wang, J.-Q.; Hu, J.-S.; Wei, Z.; Wan, L.-J. Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578. [Google Scholar]
- Yang, Q.; Liu, R.; Pan, Y.; Cao, Z.; Zuo, J.; Qiu, F.; Yu, J.; Song, H.; Ye, Z.; Zhang, S. Ultrahigh-Loaded Fe Single Atoms and Fe3C Nanoparticle Catalysts as Air Cathodes for High-Performance Zn–Air Batteries. ACS Appl. Mater. Interfaces 2023, 15, 5720–5731. [Google Scholar] [CrossRef] [PubMed]
- Peera, S.G.; Balamurugan, J.; Kim, N.H.; Lee, J.H. Sustainable synthesis of Co@ NC core shell nanostructures from metal organic frameworks via mechanochemical coordination self-assembly: An efficient electrocatalyst for oxygen reduction reaction. Small 2018, 14, 1800441. [Google Scholar] [CrossRef]
- Cui, X.; Gao, L.; Lei, S.; Liang, S.; Zhang, J.; Sewell, C.D.; Xue, W.; Liu, Q.; Lin, Z.; Yang, Y. Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2021, 31, 2009197. [Google Scholar] [CrossRef]
- Ye, Q.; Li, M.; Xiao, T.; Hou, S.; Deng, Y.; Luo, J.; Tian, X. Ultra-fine Fe3C nanoparticles decorated in the Fe–N co-doped carbon networks with hierarchical nanoarchitectonics towards efficient oxygen reduction electrocatalysis. Int. J. Hydrogen Energy 2024, 49, 1014–1021. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Xie, Y.; Tong, M.; Tian, C.; Fu, H. The Fe3C–N x Site Assists the Fe–N x Site to Promote Activity of the Fe–N–C Electrocatalyst for Oxygen Reduction Reaction. ACS Sustain. Chem. Eng. 2022, 10, 3346–3354. [Google Scholar] [CrossRef]
- Li, G.; Liu, J.; Xu, C.; Chen, H.; Hu, H.; Jin, R.; Sun, L.; Chen, H.; Guo, C.; Li, H.; et al. Regulating the Fe-spin state by Fe/Fe3C neighbored single Fe-N4 sites in defective carbon promotes the oxygen reduction activity. Energy Storage Mater. 2023, 56, 394–402. [Google Scholar] [CrossRef]
- Zong, L.; Chen, X.; Liu, S.; Fan, K.; Dou, S.; Xu, J.; Zhao, X.; Zhang, W.; Zhang, Y.; Wu, W.; et al. Ultrafine Fe/Fe3C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries. J. Energy Chem. 2021, 56, 72–79. [Google Scholar] [CrossRef]
- Tong, M.; Yu, P.; Xie, Y.; Wang, L.; Wang, Y.; Fu, H. Atomically dispersed fe–n3c sites induce asymmetric electron structures to afford superior oxygen reduction activity. Small 2022, 18, 2201255. [Google Scholar] [CrossRef]
- Xu, C.; Guo, C.; Liu, J.; Hu, B.; Dai, J.; Wang, M.; Jin, R.; Luo, Z.; Li, H.; Chen, C. Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy Storage Mater. 2022, 51, 149–158. [Google Scholar] [CrossRef]
- Murugesan, R.; Yesupatham, M.S.; Agamendran, N.; Sekar, K.; Neethinathan, C.S.S.; Maruthapillai, A. Recent Advances in Biomass-Derived Carbon-Based Nanostructures for Electrocatalytic Reduction Reactions: Properties–Performance Correlations. Energy Technol. 2024, 12, 2400882. [Google Scholar]
- Nguyen, V.-T.; Cho, K.; Choi, Y.; Hwang, B.; Park, Y.-K.; Nam, H.; Lee, D. Biomass-derived materials for energy storage and electrocatalysis: Recent advances and future perspectives. Biochar 2024, 6, 96. [Google Scholar] [CrossRef]
- Liu, T.; Yabu, H. Biomass-Derived Electrocatalysts: Low-Cost, Robust Materials for Sustainable Electrochemical Energy Conversion. Adv. Energy Sustain. Res. 2024, 5, 2300168. [Google Scholar] [CrossRef]
- Pagett, M.; Teng, K.S.; Sullivan, G.; Zhang, W. Reusing waste coffee grounds as electrode materials: Recent advances and future opportunities. Glob. Chall. 2023, 7, 2200093. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Guo, C.; Xiang, J.; Qi, Y.; Yu, J.; Li, K.; Tao, Z.; Wu, J.; Lv, Y. Synthesis and applications of biomass-derived electrocatalysts in water electrolysis. Int. J. Hydrogen Energy 2024, 60, 845–866. [Google Scholar] [CrossRef]
- Alemu, M.A.; Assegie, A.A.; Ilbas, M.; Al Afif, R.; Getie, M.Z. Biomass-Derived Metal-Free Nanostructured Carbon Electrocatalysts for High-Performance Rechargeable Zinc–Air Batteries. Adv. Energy Sustain. Res. 2025, 2400414. [Google Scholar] [CrossRef]
- Zhu, K.; Liang, X.; Chen, Y.; Huang, Z.; Tang, Y.; Qiu, R.; Yan, K. Recent progress in biomass-derived single-atom catalysts for environmental remediation. Coord. Chem. Rev. 2024, 519, 216110. [Google Scholar] [CrossRef]
- Ashmath, S.; Rajeshkhanna, G.; Koyyada, G.; Pandiaraj, S.; Liu, C.; Peera, S.G.; Lee, T.-G. Biomass derived Fe3C/Fe-Nx-C as cathode catalyst for oxygen reduction reaction in dual chamber microbial fuel cells. Int. J. Hydrogen Energy 2024, in press. [Google Scholar] [CrossRef]
- Xu, H.-M.; Zhu, H.-R.; Huang, C.-J.; Zhang, Z.-J.; Shuai, T.-Y.; Zhan, Q.-N.; Li, G.-R. Recent advances in Fe-NC-and Co-NC-based materials as bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Sci. China Chem. 2024, 67, 1137–1160. [Google Scholar] [CrossRef]
- Chu, Y.; Cheng, Y.; Wang, P.; Bai, J.; Guan, X.; Wang, S.; Lan, C.; Wu, H.; Shi, Z.; Zhu, S.; et al. Unraveling the potential-dependent degradation mechanism in Fe-NC catalysts for oxygen reduction reaction. Sci. China Chem. 2025, 68, 1541–1549. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, Y.; Jiang, Z.; Jiang, D.; Wei, W.; Hu, Z. Nitrogen-Doped Bimetallic Carbide-Graphite Composite as Highly Active and Extremely Stable Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. Adv. Funct. Mater. 2022, 32, 2204031. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.-X.; Liu, J.-N.; Ren, D.; Li, B.-Q.; Huang, J.-Q.; Zhang, Q. Quantitative kinetic analysis on oxygen reduction reaction: A perspective. Nano Mater. Sci. 2021, 3, 313–318. [Google Scholar] [CrossRef]
- Holewinski, A.; Linic, S. Elementary mechanisms in electrocatalysis: Revisiting the ORR Tafel slope. J. Electrochem. Soc. 2012, 159, H864. [Google Scholar] [CrossRef]
- Zhou, R.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. Determination of the electron transfer number for the oxygen reduction reaction: From theory to experiment. ACS Catal. 2016, 6, 4720–4728. [Google Scholar] [CrossRef]
- Liu, M.; Ke, S.; Sun, C.; Zhang, C.; Liao, S. Hf Doping Boosts the Excellent Activity and Durability of Fe-N-C Catalysts for Oxygen Reduction Reaction and Li-O2 Batteries. Nanomaterials 2024, 14, 2003. [Google Scholar] [CrossRef]
- Peera, S.G.; Koutavarapu, R.; Reddy, P.S.P.; Koyyada, G.; Alodhayb, A.N.; Pandiaraj, S.; Kim, S.W.; Tamtam, M.R. Effect of N-Doped Carbon on the Morphology and Oxygen Reduction Reaction (ORR) Activity of a Xerogel-Derived Mn(II)O Electrocatalyst. Catalysts 2024, 14, 792. [Google Scholar] [CrossRef]
- Peera, S.G.; Koutavarapu, R.; Akula, S.; Asokan, A.; Moni, P.; Selvaraj, M.; Balamurugan, J.; Kim, S.O.; Liu, C.; Sahu, A.K. Carbon nanofibers as potential catalyst support for fuel cell cathodes: A review. Energy Fuels 2021, 35, 11761–11799. [Google Scholar] [CrossRef]
- Chang, J.; Zhang, Q.; Yu, J.; Jing, W.; Wang, S.; Yin, G.; Waterhouse, G.I.N.; Lu, S. A Fe Single Atom Seed-Mediated Strategy Toward Fe3C/Fe-N-C Catalysts with Outstanding Bifunctional ORR/OER Activities. Adv. Sci. 2023, 10, 2301656. [Google Scholar] [CrossRef]
- Wang, Z.; Ren, J.; Ling, G.; Guo, J.; Lv, Y.; Ren, R.-P. Prussian Blue-Derived Atomic Fe/Fe3C@ N-Doped C Catalysts Supported by Carbon Cloth as Integrated Air Cathode for Flexible Zn-Air Batteries. Adv. Sci. 2025, 12, 2407631. [Google Scholar] [CrossRef]
- Tang, S.; Liu, Q.; Zhang, L. Bio-assisted atomically dispersed Fe–N–C electrocatalyst with ultra-low Fe loading toward ph-universal oxygen reduction reaction and neutral Zn-air battery. ACS Sustain. Chem. Eng. 2023, 11, 8131–8139. [Google Scholar] [CrossRef]
- Lin, K.; Chen, M.; Zhou, Z.; Huang, H.; Zhang, J.; Peng, S.; Sun, M.; Yu, L. Biomass-Derived Carbon-Coated FeCo Alloys as Highly Efficient Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. ACS Appl. Energy Mater. 2024, 7, 11172–11183. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, B.; Zhou, Y. Atomically dispersed iron catalyst supported on nitrogen doped biomass aerogels for high-performance rechargeable zinc-air batteries. Fuel 2024, 371, 132119. [Google Scholar] [CrossRef]
- Hao, R.; Gu, S.; Chen, J.; Wang, Z.; Gan, Q.; Wang, Z.; Huang, Y.; Liu, P.; Zhang, K.; Liu, K.; et al. Microporous Fe–N4 cataysts derived from biomass aerogel for a high-performance Zn–air battery. Mater. Today Energy 2021, 21, 100826. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, Y.; Wang, H.; Li, X.; Wang, Q.; Si, W.; Lan, W.; Wang, F.; Han, N. Fundamental understanding of nitrogen in biomass electrocatalysts for oxygen reduction and zinc-air batteries. iScience 2024, 27, 108913. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Jiang, C.; Zheng, M.; Peng, X.; Liu, T.; Xi, S.; Chi, X.; Zhang, Q.; Gu, L.; Zhang, S.; et al. Wood carbon based single-atom catalyst for rechargeable Zn–air batteries. ACS Energy Lett. 2021, 6, 3624–3633. [Google Scholar] [CrossRef]
- Jiao, C.; Xu, Z.; Shao, J.; Xia, Y.; Tseng, J.; Ren, G.; Zhang, N.; Liu, P.; Liu, C.; Li, G.; et al. High-density atomic Fe–N4/C in tubular, biomass-derived, nitrogen-rich porous carbon as air-electrodes for flexible Zn–air batteries. Adv. Funct. Mater. 2023, 33, 2213897. [Google Scholar] [CrossRef]
- Cui, X.; Liu, Y.; Han, G.; Cao, M.; Han, L.; Zhou, B.; Mehdi, S.; Wu, X.; Li, B.; Jiang, J. Wood-Derived Integral Air Electrode for Enhanced Interfacial Electrocatalysis in Rechargeable Zinc–Air Battery. Small 2021, 17, 2101607. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Kong, Z.; Zhang, L.; Xin, Z.; She, X.; Sun, J.; Yang, D.; Li, D. Electrostatic interaction in amino protonated chitosan–metal complex anion hydrogels: A simple approach to porous metal carbides/N-doped carbon aerogels for energy conversion. ACS Appl. Mater. Interfaces 2022, 14, 22151–22160. [Google Scholar] [CrossRef]
- Han, S.; Peng, S.; Gao, Z.; Sun, M.; Cheng, G.; Zhang, H.; Su, X.; Chen, M.; Yu, L. Green bridge between waste and energy: Conversion the rotten wood into cathode for functional Zn-air battery. Electrochim. Acta 2022, 424, 140667. [Google Scholar] [CrossRef]
- Shi, K.; Li, Y.; Zhang, Y.; Li, X.; Zhu, Z.; Xu, H.; Zheng, L.; Gao, J. N-doped 3D hierarchical carbon from water hyacinth for high-performance Zn-air batteries. Diam. Relat. Mater. 2023, 135, 109841. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, K.; Cui, X.; Li, B.; Jiang, J. Defect-rich, graphenelike carbon sheets derived from biomass as efficient electrocatalysts for rechargeable zinc–air batteries. ACS Sustain. Chem. Eng. 2020, 8, 2981–2989. [Google Scholar] [CrossRef]
- He, X.; Zhang, Y.; Wang, J.; Li, J.; Yu, L.; Zhou, F.; Li, J.; Shen, X.; Wang, X.; Wang, S.; et al. Biomass-derived Fe2N@ NCNTs from bioaccumulation as an efficient electrocatalyst for oxygen reduction and Zn–Air battery. ACS Sustain. Chem. Eng. 2022, 10, 9105–9112. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Wang, S.; Zhou, L.; Liu, T.; Sun, K.; Cao, H.; Jiang, J.; Wu, X.; Li, B. Wood-Derived Monolithic Catalysts With the Ability of Activating Water Molecules for Oxygen Electrocatalysis. Small 2022, 18, 2202725. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Liu, Y.; Sun, K.; Li, H.; Lin, X.; Zhang, P.; Zhou, L.; Wang, A.; Mehdi, S.; Wu, X.; et al. Coupling Fe3C Nanoparticles and N-Doping on Wood-Derived Carbon to Construct Reversible Cathode for Zn–Air Batteries. Small 2022, 18, 2202014. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Eredox Potentials (V vs. RHE) | E1/2 (V vs. RHE) | ‘n’ | ESCA (cm−2) | Loss in E1/2 Potential (10,000 Cycles mV vs. RHE) | Loss of Relative Current (%) | Zn–Air Battery Performance | |
---|---|---|---|---|---|---|---|---|
OCV (V) | Power Density (mW cm−2) | |||||||
C–N–C | 0.68 | 0.72 | 3.65 | 0.00777 | - | - | - | |
Fe3C/Fe-Nx-C-2 | 0.70 | 0.77 | 3.75 | 0.01016 | - | - | - | |
Fe3C/Fe-Nx-C-5 | 0.75 | 0.79 | 3.82 | 0.01797 | - | - | - | |
Fe3C/Fe-Nx-C-8 | 0.78 | 0.87 | 3.91 | 0.03406 | - | - | - | |
Fe3C/Fe-Nx-C-10 | 0.83 | 0.93 | 3.95 | 0.07861 | 75 | 13 | 1.41 | 81 |
Fe3C/Fe-Nx-C-15 | 0.82 | 0.90 | 3.95 | 0.07614 | ||||
Pt/C | - | 0.93 | 4.0 | - | 60 | 14 | 1.46 | 98 |
Biomass Source | Catalysts | E1/2 (V vs. RHE) | Tafel Slope (mV dec−1) | Number of Electrons (n) | Zn–Air Battery Performance (Aqueous) | Ref. | |
---|---|---|---|---|---|---|---|
OCV (V) | Power Density (mW cm−2) | ||||||
Garlic biomass | Fe@G-800/100 | 0.91 | 69 | 3.89 | 1.48 | 20 | [49] |
Loofah Sponge | FeCo@NC-900 | 0.81 | 71 | 3.44–3.64 | 1.49 | 103 | [50] |
Eucalyptus pulp | Fe-N-C-1000 | 0.84 | NR | ~4 | 1.49 | 125 | [51] |
Sodium alginate | FeNC-900-8 | 0.88 | 63 | 3.87 | 1.67 | 125 | [52] |
Soybeans | Fe-NC-800 | 0.91 | 74 | 3.99 | 1.53 | 220 | [53] |
Natural wood | SAC-FeN-WPC | 0.85 | 83 | ~4 | 1.53 | 152 | [54] |
Corn silk | Fe SA/NCZ | 0.80 | 70 | 3.9 | 1.44 | 101 | [55] |
Wood | Co/CoO@NWC | 0.85 | 96 | 3.90–3.95 | 1.38 | 28 | [56] |
Chitosan | Fe3C/NCA-1000 | 0.83 | 79 | 3.6 | NR | 253 | [57] |
Rotten wood | NRW-1000 | 0.87 | 70 | 3.8 | 1.53 | 118 | [58] |
Water hyacinths | WHNC-A | 0.84 | 92 | 2.89 | 1.43 | 80 | [59] |
fruits of glossy privet | GPNCS | 0.92 | NR | 3.8–3.9 | 1.43 | 68 | [60] |
Eichhornia crassipes | Fe2N@NCNTs | 0.86 | 67 | 3.87–3.9 | 1.53 | 135 | [61] |
Wood | FeP-NWC | 0.86 | 74 | 3.77–3.90 | 1.50 | 144 | [62] |
Wood | Fe3C@NPW | 0.87 | 98 | 3.78–3.89 | 1.48 | 125 | [63] |
Waste coffee grounds | Fe3C/Fe-Nx-C-10 | 0.93 | 3.95 | 1.41 | 81 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peera, S.G.; Kim, S.-W.; Ashmath, S.; Lee, T.-G. Sustainable Fe3C/Fe-Nx-C Cathode Catalyst from Biomass for an Oxygen Reduction Reaction in Alkaline Electrolytes and Zinc–Air Battery Application. Inorganics 2025, 13, 143. https://doi.org/10.3390/inorganics13050143
Peera SG, Kim S-W, Ashmath S, Lee T-G. Sustainable Fe3C/Fe-Nx-C Cathode Catalyst from Biomass for an Oxygen Reduction Reaction in Alkaline Electrolytes and Zinc–Air Battery Application. Inorganics. 2025; 13(5):143. https://doi.org/10.3390/inorganics13050143
Chicago/Turabian StylePeera, Shaik Gouse, Seung-Won Kim, Shaik Ashmath, and Tae-Gwan Lee. 2025. "Sustainable Fe3C/Fe-Nx-C Cathode Catalyst from Biomass for an Oxygen Reduction Reaction in Alkaline Electrolytes and Zinc–Air Battery Application" Inorganics 13, no. 5: 143. https://doi.org/10.3390/inorganics13050143
APA StylePeera, S. G., Kim, S.-W., Ashmath, S., & Lee, T.-G. (2025). Sustainable Fe3C/Fe-Nx-C Cathode Catalyst from Biomass for an Oxygen Reduction Reaction in Alkaline Electrolytes and Zinc–Air Battery Application. Inorganics, 13(5), 143. https://doi.org/10.3390/inorganics13050143