Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = senescence-repair

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1306 KiB  
Review
Targeting Dermal Fibroblast Senescence: From Cellular Plasticity to Anti-Aging Therapies
by Raluca Jipu, Ionela Lacramioara Serban, Ancuta Goriuc, Alexandru Gabriel Jipu, Ionut Luchian, Carmen Amititeloaie, Claudia Cristina Tarniceriu, Ion Hurjui, Oana Maria Butnaru and Loredana Liliana Hurjui
Biomedicines 2025, 13(8), 1927; https://doi.org/10.3390/biomedicines13081927 - 7 Aug 2025
Abstract
Dermal fibroblasts, the primary stromal cells of the dermis, exhibit remarkable plasticity in response to various stimuli, playing crucial roles in tissue homeostasis, wound healing, and ECM production. This study examines the molecular mechanisms underlying fibroblast plasticity, including key signaling pathways, epigenetic regulation, [...] Read more.
Dermal fibroblasts, the primary stromal cells of the dermis, exhibit remarkable plasticity in response to various stimuli, playing crucial roles in tissue homeostasis, wound healing, and ECM production. This study examines the molecular mechanisms underlying fibroblast plasticity, including key signaling pathways, epigenetic regulation, and microRNA-mediated control. The impact of aging on ECM synthesis and remodeling is discussed, and the diminished production of vital components such as collagen, elastin, and glycosaminoglycans are highlighted, alongside enhanced ECM degradation through upregulated matrix metalloproteinase activity and accumulation of advanced glycation end products. The process of cellular senescence in dermal fibroblasts is explored, with its role in skin aging and its effects on tissue homeostasis and repair capacity being highlighted. The senescence-associated secretory phenotype (SASP) is examined for its contribution to chronic inflammation and ECM disruption. This review also presents therapeutic perspectives, focusing on senolytics and geroprotectors as promising strategies to combat the negative effects of fibroblast senescence. Current challenges in translating preclinical findings to human therapies are addressed, along with future directions for research in this field. This comprehensive review explores the complex interplay between dermal fibroblast plasticity, cellular senescence, and extracellular matrix (ECM) remodeling in the context of skin aging. In conclusion, understanding the complex interplay between dermal fibroblast plasticity, cellular senescence, and extracellular matrix (ECM) remodeling is essential for developing effective anti-aging interventions, which highlights the need for further research into senolytic and geroprotective therapies to enhance skin health and longevity. This approach has shown promising results in preclinical studies, demonstrating improved skin elasticity and reduced signs of aging. Full article
Show Figures

Figure 1

24 pages, 30723 KiB  
Article
Camellia japonica Flower Extract and the Active Constituent Hyperoside Repair DNA Damage Through FUNDC1-Mediated Mitophagy Pathway for Skin Anti-Aging
by Hongqi Gao, Jiahui Shi, Guangtao Li, Zhifang Lai, Yan Liu, Chanling Yuan and Wenjie Mei
Antioxidants 2025, 14(8), 968; https://doi.org/10.3390/antiox14080968 - 6 Aug 2025
Abstract
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its [...] Read more.
Skin aging is closely related to mitochondrial dysfunction and cell cycle abnormalities, and developing intervention strategies targeting mitochondrial quality control is an important direction for anti-aging research. In this study, we investigated the anti-aging mechanism of Camellia japonica flower (CJF) extract and its active ingredient hyperoside based on a doxorubicin (DOX)-induced endogenous senescence model in human skin fibroblasts (HSFs). LC-MS proteomics analysis revealed that CJF extract and hyperoside specifically activated the FUNDC1-mediated mitochondrial autophagy pathway, significantly ameliorated the DOX-induced decrease in mitochondrial membrane potential and the accumulation of reactive oxygen species (ROS), and alleviated the cellular S-phase blockade and reversed the high expression of senescence-associated β-galactosidase (SA-β-gal). Further studies showed that the two cleared damaged mitochondria by enhancing mitochondrial autophagy and restoring cellular energy metabolism homeostasis while promoting type III collagen and elastin synthesis and repairing the expression of Claudin 1 related to skin barrier function. For the first time, the present study reveals the molecular mechanism of CJF extract in delaying skin aging by regulating the FUNDC1-dependent mitochondrial autophagy pathway, which provides a theoretical basis and a candidate strategy for developing novel anti-aging agents targeting mitochondrial quality control. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

14 pages, 650 KiB  
Review
Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine
by Fábio Ramos Costa, Joseph Purita, Rubens Martins, Bruno Costa, Lucas Villasboas de Oliveira, Stephany Cares Huber, Gabriel Silva Santos, Luyddy Pires, Gabriel Azzini, André Kruel and José Fábio Lana
Cells 2025, 14(15), 1206; https://doi.org/10.3390/cells14151206 - 6 Aug 2025
Abstract
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked [...] Read more.
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked factor influencing therapeutic efficacy. Senescent platelets display reduced granule content, impaired responsiveness, and heightened pro-inflammatory behavior, all of which can compromise tissue repair and regeneration. This review explores the mechanisms underlying platelet aging, including oxidative stress, mitochondrial dysfunction, and systemic inflammation, and examines how these factors influence PRP performance across diverse clinical contexts. We discuss the functional consequences of platelet senescence, the impact of comorbidities and aging on PRP quality, and current tools to assess platelet functionality, such as HLA-I–based flow cytometry. In addition, we present strategies for pre-procedural optimization, advanced processing techniques, and adjunctive therapies aimed at enhancing platelet quality. Finally, we challenge the prevailing emphasis on high-volume blood collection, highlighting the limitations of quantity-focused protocols and advocating for a shift toward biologically precise, function-driven regenerative interventions. Recognizing and addressing platelet senescence is a key step toward unlocking the full therapeutic potential of PRP-based interventions. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

17 pages, 3286 KiB  
Article
Molecular Insights into the Superiority of Platelet Lysate over FBS for hASC Expansion and Wound Healing
by Sakurako Kunieda, Michika Fukui, Atsuyuki Kuro, Toshihito Mitsui, Huan Li, Zhongxin Sun, Takayuki Ueda, Shigeru Taketani, Koichiro Higasa and Natsuko Kakudo
Cells 2025, 14(15), 1154; https://doi.org/10.3390/cells14151154 - 25 Jul 2025
Viewed by 374
Abstract
Human adipose-derived stem cells (hASCs) are widely used in regenerative medicine due to their accessibility and high proliferative capacity. Platelet lysate (PL) has recently emerged as a promising alternative to fetal bovine serum (FBS), offering superior cell expansion potential; however, the molecular basis [...] Read more.
Human adipose-derived stem cells (hASCs) are widely used in regenerative medicine due to their accessibility and high proliferative capacity. Platelet lysate (PL) has recently emerged as a promising alternative to fetal bovine serum (FBS), offering superior cell expansion potential; however, the molecular basis for its efficacy remains insufficiently elucidated. In this study, we performed RNA sequencing to compare hASCs cultured with PL or FBS, revealing a significant upregulation of genes related to stress response and cell proliferation under PL conditions. These findings were validated by RT–qPCR and supported by functional assays demonstrating enhanced cellular resilience to oxidative and genotoxic stress, reduced doxorubicin-induced senescence, and improved antiapoptotic properties. In a murine wound model, PL-treated wounds showed accelerated healing, characterized by thicker dermis-like tissue formation and increased angiogenesis. Immunohistochemical analysis further revealed elevated expression of chk1, a DNA damage response kinase encoded by CHEK1, which plays a central role in maintaining genomic integrity during stress-induced repair. Collectively, these results highlight PL not only as a viable substitute for FBS in hASC expansion but also as a bioactive supplement that enhances regenerative efficacy by promoting proliferation, stress resistance, and antiaging functions. Full article
(This article belongs to the Section Cellular Aging)
Show Figures

Figure 1

14 pages, 594 KiB  
Review
The Aging Lung: Exploring Multimorbidity Patterns and Their Clinical Implications: A Narrative Review
by Ali Albarrati and Nichola S. Gale
Curr. Issues Mol. Biol. 2025, 47(7), 561; https://doi.org/10.3390/cimb47070561 - 18 Jul 2025
Viewed by 398
Abstract
Aging is a multifaceted biological process characterized by a progressive decline in cellular function and physiological resilience, increasing the risk of multiple chronic conditions. Chronic lung diseases frequently manifest within the aging population and are closely intertwined with systemic dysfunctions across cardiovascular, musculoskeletal, [...] Read more.
Aging is a multifaceted biological process characterized by a progressive decline in cellular function and physiological resilience, increasing the risk of multiple chronic conditions. Chronic lung diseases frequently manifest within the aging population and are closely intertwined with systemic dysfunctions across cardiovascular, musculoskeletal, and neurological systems. In this review, we explore the biological mechanisms linking aging, multiple chronic conditions patterns, and chronic lung disease, with a particular focus on inflammaging and cellular aging. We also highlight shared pathological pathways such as oxidative stress, mitochondrial dysfunction, and the dysregulation of repair processes that underlie both natural aging and the accelerated aging seen in chronic lung disease. Additionally, we discuss the systemic impact of multiple chronic conditions on patient outcomes, including increased frailty, diminished physical capacity, cognitive impairment, and elevated mortality risk. This review advocates for a comprehensive, patient-centered approach that combines early detection, personalized pharmacological therapies targeting inflammatory and senescent pathways, and non-pharmacological interventions such as pulmonary rehabilitation, exercise, and dietary optimization. Emerging therapeutics, including senolytics and anti-inflammatory agents, present promising avenues for mitigating age-related lung decline and managing multiple chronic conditions. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2025)
Show Figures

Figure 1

40 pages, 2429 KiB  
Review
Hepatocytes as Model for Investigating Natural Senotherapeutic Compounds and Their Effects on Cell Cycle Dynamics and Genome Stability
by Anastasia Fizikova, Anna Prokhorova, Daria Churikova, Zahar Konstantinov, Roman Ivanov, Alexander Karabelsky and Stanislav Rybtsov
Int. J. Mol. Sci. 2025, 26(14), 6794; https://doi.org/10.3390/ijms26146794 - 16 Jul 2025
Viewed by 707
Abstract
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA [...] Read more.
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA replication and transcription processes. Accumulated DNA damage influences apoptosis and cell cycle checkpoints, serving as one of the key triggers for the manifestation of the senescent phenotype. Both aging and cancer are associated with the accumulation of mutations in somatic cells. Disruption of cell cycle control and uncontrolled proliferation are fundamental characteristics of any cancer cell, with the majority of anticancer drugs acting as inhibitors of cyclin-dependent kinases, thereby inducing a transition of cells into a senescent state. Consequently, disturbances in the dynamics and regulation of inflammatory responses, oxidative stress, cell proliferation, DNA damage repair, and epigenetic anomalies, along with the influence of retroviruses and transposons, lead to the accumulation of senescent cells within the human body, characterized by blocked replication and cell cycle, as well as a distinct secretory phenotype. The age-related or disease-associated accumulation of these senescent cells significantly alters the physiology of tissues and the organism as a whole. Many secondary metabolites of higher plants exhibit senolytic and senomorphic activities, although most of them are not fully characterized. In this review, we will explore the principal signaling pathways in mammalian cells that govern the cell cycle and cellular senescence, with a particular emphasis on how their dynamics, expression, and regulation have been modified through the application of senotherapeutic compounds. The second section of the review will identify key target genes for the metabolic engineering, primarily aimed at enhancing the accumulation of plant secondary metabolites with potential therapeutic benefits. Lastly, we will discuss the rationale for utilizing liver cells as a model system to investigate the effects of senolytic compounds on human physiology and health, as well as how senotherapeutic substances can be leveraged to improve gene therapy approaches based on CRISPR/Cas9 and prime-editing technologies. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

26 pages, 927 KiB  
Review
Targeting Cellular Senescence: Pathophysiology in Multisystem Age-Related Diseases
by Jinxue Liu, Hongliang Yu and Yuanyuan Xu
Biomedicines 2025, 13(7), 1727; https://doi.org/10.3390/biomedicines13071727 - 15 Jul 2025
Viewed by 550
Abstract
With the intensification of global aging, the incidence of age-related diseases (including cardiovascular, neurodegenerative, and musculoskeletal disorders) has been on the rise, and cellular senescence is identified as the core driving mechanism. Cellular senescence is characterized by irreversible cell cycle arrest, which is [...] Read more.
With the intensification of global aging, the incidence of age-related diseases (including cardiovascular, neurodegenerative, and musculoskeletal disorders) has been on the rise, and cellular senescence is identified as the core driving mechanism. Cellular senescence is characterized by irreversible cell cycle arrest, which is caused by telomere shortening, imbalance in DNA damage repair, and mitochondrial dysfunction, accompanied by the activation of the senescence-associated secretory phenotype (SASP). In this situation, proinflammatory factors and matrix-degrading enzymes can be released, thereby disrupting tissue homeostasis. This disruption of tissue homeostasis induced by cellular senescence manifests as characteristic pathogenic mechanisms in distinct disease contexts. In cardiovascular diseases, senescence of cardiomyocytes and endothelial cells can exacerbate cardiac remodeling. In neurodegenerative diseases, senescence of glial cells can lead to neuroinflammation, while in musculoskeletal diseases, it can result in the degradation of cartilage matrix and imbalance of bone homeostasis. This senescence-mediated dysregulation across diverse organ systems has spurred the development of intervention strategies. Interventional strategies include regular exercise, caloric restriction, senolytic drugs (such as the combination of dasatinib and quercetin), and senomorph therapies. However, the tissue-specific regulatory mechanisms of cellular senescence, in vivo monitoring, and safety-related clinical translational research still require in-depth investigation. This review summarizes the progress in pathological mechanisms and interventions, providing theoretical support for precision medicine targeting senescence, which is of great significance for addressing health challenges associated with aging. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

18 pages, 1424 KiB  
Article
Effectiveness of PROTAC BET Degraders in Combating Cisplatin Resistance in Head and Neck Cancer Cells
by Natalie Luffman, Fereshteh Ahmadinejad, Ryan M. Finnegan, Marissa Raymond, David A. Gewirtz and Hisashi Harada
Int. J. Mol. Sci. 2025, 26(13), 6185; https://doi.org/10.3390/ijms26136185 - 26 Jun 2025
Viewed by 713
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains challenging to treat despite multimodal therapeutic approaches. Cisplatin treatment is effective and cost-efficient, although chemoresistance and disease recurrence limit its efficacy. Understanding the mechanisms of cisplatin resistance and the identification of compounds to target resistant [...] Read more.
Head and neck squamous cell carcinoma (HNSCC) remains challenging to treat despite multimodal therapeutic approaches. Cisplatin treatment is effective and cost-efficient, although chemoresistance and disease recurrence limit its efficacy. Understanding the mechanisms of cisplatin resistance and the identification of compounds to target resistant tumor cells are critical for improving patient outcomes. We have demonstrated that cisplatin-induced senescent HN30 HNSCC cells can be eliminated by ABT-263 (navitoclax), a BCL-2/BCL-XL inhibitor that has senolytic properties. Here, we report the development of a cisplatin-resistant cell line (HN30R) for the testing of ABT-263 and the PROTAC BET degraders ARV-825 and ARV-771. ABT-263 was ineffective in sensitizing HN30R cells to cisplatin, largely due to a lack of senescence induction. However, the BET degraders in combination with cisplatin promoted apoptotic cell death in both HN30 and HN30R cells. The effectiveness of ARV-825 did not appear to depend on the cells entering into senescence, indicating that it was not acting as a conventional senolytic. ARV-825 treatment downregulated BRD4 and its downstream targets, c-Myc and Survivin, as well as decreased the expression of RAD51, a DNA repair marker. These results suggest that the BET degraders ARV-825 and ARV-771 may be effective in improving the response of chemoresistant head and neck cancer to cisplatin treatment. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

18 pages, 1711 KiB  
Article
Exosomes Derived from Induced and Wharton’s Jelly-Derived Mesenchymal Stem Cells Promote Senescence-like Features and Migration in Cancer Cells
by Nidaa A. Ababneh, Razan AlDiqs, Sura Nashwan, Mohammad A. Ismail, Raghda Barham, Renata M. Alatoom, Fairouz Nairat, Mohammad H. Gharandouq, Talal Al-Qaisi, Abdalla Awidi and Tareq Saleh
Int. J. Mol. Sci. 2025, 26(13), 6178; https://doi.org/10.3390/ijms26136178 - 26 Jun 2025
Viewed by 707
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) play a key role in tissue repair, immune regulation, and cancer biology. Due to limitations in MSC expansion and source variability, interest has shifted to induced pluripotent stem cell-derived MSCs (iMSCs) as a promising alternative. This study compares [...] Read more.
Mesenchymal stem cell-derived exosomes (MSC-Exos) play a key role in tissue repair, immune regulation, and cancer biology. Due to limitations in MSC expansion and source variability, interest has shifted to induced pluripotent stem cell-derived MSCs (iMSCs) as a promising alternative. This study compares effects of exosomes derived from iMSCs (iMSC-Exos) and Wharton’s jelly MSCs (WJMSC-Exos) on MCF7 and A549 cancer cells. Both types of exosomes reduced MCF7 proliferation and induced a senescence-like state, rather than apoptosis, although the antiproliferative effect was transient in A549 cells. Notably, WJMSC-Exos promoted migration in both MCF7 and A549, whereas iMSC-Exos did not exhibit this effect. Overall, WJMSC-Exos had a more robust impact on cancer cell proliferation and migration. These findings highlight the diverse effects of exosomes on cancer and the development of a senescence-like state as an important response to Exos exposure. Moreover, these findings invite for more careful evaluation of the therapeutic role of iMSC-derived Exos. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 2142 KiB  
Article
DNA Damage Response Regulation Alleviates Neuroinflammation in a Mouse Model of α-Synucleinopathy
by Sazzad Khan, Himanshi Singh, Jianfeng Xiao and Mohammad Moshahid Khan
Biomolecules 2025, 15(7), 907; https://doi.org/10.3390/biom15070907 - 20 Jun 2025
Cited by 1 | Viewed by 626
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by the degeneration of dopaminergic neurons in the substantia nigra, leading to decreased dopamine levels in the striatum and causing a range of motor and non-motor impairments. Although the molecular mechanisms driving PD progression [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by the degeneration of dopaminergic neurons in the substantia nigra, leading to decreased dopamine levels in the striatum and causing a range of motor and non-motor impairments. Although the molecular mechanisms driving PD progression remain incompletely understood, emerging evidence suggests that the buildup of nuclear DNA damage, especially DNA double-strand breaks (DDSBs), plays a key role in contributing neurodegeneration, promoting senescence and neuroinflammation. Despite the pathogenic role for DDSB in neurodegenerative disease, targeting DNA repair mechanisms in PD is largely unexplored as a therapeutic approach. Ataxia telangiectasia mutated (ATM), a key kinase in the DNA damage response (DDR), plays a crucial role in neurodegeneration. In this study, we evaluated the therapeutic potential of AZD1390, a highly selective and brain-penetrant ATM inhibitor, in reducing neuroinflammation and improving behavioral outcomes in a mouse model of α-synucleinopathy. Four-month-old C57BL/6J mice were unilaterally injected with either an empty AAV1/2 vector (control) or AAV1/2 expressing human A53T α-synuclein to the substantia nigra, followed by daily AZD1390 treatment for six weeks. In AZD1390-treated α-synuclein mice, we observed a significant reduction in the protein level of γ-H2AX, a DDSB marker, along with downregulation of senescence-associated markers, such as p53, Cdkn1a, and NF-κB, suggesting improved genomic integrity and attenuation of cellular senescence, indicating enhanced genomic stability and reduced cellular aging. AZD1390 also significantly dampened neuroinflammatory responses, evidenced by decreased expression of key pro-inflammatory cytokines and chemokines. Interestingly, mice treated with AZD1390 showed significant improvements in behavioral asymmetry and motor deficits, indicating functional recovery. Overall, these results suggest that targeting the DDR via ATM inhibition reduces genotoxic stress, suppresses neuroinflammation, and improves behavioral outcomes in a mouse model of α-synucleinopathy. These findings underscore the therapeutic potential of DDR modulation in PD and related synucleinopathy. Full article
Show Figures

Figure 1

16 pages, 3131 KiB  
Article
Mesothelin-Associated Anti-Senescence Through P53 in Pancreatic Ductal Adenocarcinoma
by Dongliang Liu, Jianming Lu, Changyi Chen and Qizhi Yao
Cancers 2025, 17(12), 2058; https://doi.org/10.3390/cancers17122058 - 19 Jun 2025
Viewed by 746
Abstract
Objectives: Mesothelin (MSLN) is overexpressed in pancreatic ductal adenocarcinoma (PDAC), promoting cell proliferation, migration, and inhibiting apoptosis. While its oncogenic properties have been documented, the role of MSLN in regulating cellular senescence—a tumor-suppressive mechanism—has remained unexplored. This study is the first to [...] Read more.
Objectives: Mesothelin (MSLN) is overexpressed in pancreatic ductal adenocarcinoma (PDAC), promoting cell proliferation, migration, and inhibiting apoptosis. While its oncogenic properties have been documented, the role of MSLN in regulating cellular senescence—a tumor-suppressive mechanism—has remained unexplored. This study is the first to identify and characterize a novel mesothelin-associated anti-senescence (MAAS) effect in PDAC. Methods: A proteogenomic analysis of PDAC tissue samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) was performed to evaluate MSLN-associated senescence pathways using WebGestalt. Human and murine PDAC cell lines with modified MSLN expression were analyzed for senescence phenotypes via SA-β-gal staining, Western blotting of key regulators (P53, P21waf1, and P16ink4a), γH2AX immunoblotting, and IL-8 quantification using ELISA. Results: The CPTAC analysis revealed an inverse correlation between MSLN expression and DNA damage/repair pathways. MSLN-deficient cells exhibited classic senescence features—growth arrest, an enlarged morphology, and elevated SA-β-gal activity. The expression of P53, P21waf1, and P16ink4a was upregulated, alongside increased γH2AX levels, indicating the activation of the DNA damage response. IL-8 secretion was significantly higher in the MSLN knockdown cells and reduced in the MSLN-overexpressing cells, consistent with the modulation of the SASP. Notably, MSLN deficiency impaired cell viability without inducing overt cytotoxicity, supporting a shift toward senescence. Conclusions: Our findings uncover a previously unrecognized mechanism through which MSLN promotes tumor progression by suppressing senescence via P53-associated pathways. Targeting the MAAS pathway may offer a novel therapeutic strategy to restore tumor-suppressive senescence and enhance treatment efficacy in PDAC. Full article
Show Figures

Figure 1

18 pages, 9828 KiB  
Article
Mechanism of Core Browning in Different Maturity Stages of ‘Yali’ Pears During Slow-Cooling Storage and PbRAV-Mediated Regulation
by Bing Deng, Qingxiu Li, Liya Liang, Hongyan Zhang and Xiaoyu Zhang
Foods 2025, 14(12), 2132; https://doi.org/10.3390/foods14122132 - 18 Jun 2025
Viewed by 401
Abstract
This study investigated the impact of slow cooling on browning and fruit quality at three maturity stages (early, mid and late). Slow cooling reduced core browning in early/mid-harvest pears, as the browning indexes of early-, middle- and late-harvested ‘Yali’ pears at 60 d [...] Read more.
This study investigated the impact of slow cooling on browning and fruit quality at three maturity stages (early, mid and late). Slow cooling reduced core browning in early/mid-harvest pears, as the browning indexes of early-, middle- and late-harvested ‘Yali’ pears at 60 d were 0.13, 0 and 0.1, respectively, preserving firmness and soluble solids. Transcriptomic analysis revealed that upregulated genes in ‘Yali’ pears facilitated stress adaptation via enhanced catalytic activity and phosphorylation. Mid-harvested pears exhibited activation of phosphorus metabolism and DNA repair mechanisms to maintain cellular homeostasis, whereas the late-harvested counterparts showed significant suppression of photosynthesis-related pathways and pyrimidine metabolism, which collectively accelerated senescence progression. Universal downregulation of hormone-response pathways such as ethylene and auxin revealed systemic stress adaptation decline. Then, the PbRAV transcription factors’ role was also studied. EMSA confirmed that GST-PbRAV2 binds to the PbLAC15 promoter, linking RAV2 to laccase regulation. Overripe pears showed PbRAV2 dysregulation, impairing LAC15 suppression and accelerating browning. Findings provide a theoretical basis for using slow cooling to mitigate browning in pear storage. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

16 pages, 2250 KiB  
Article
Oxamate, an LDHA Inhibitor, Inhibits Stemness, Including EMT and High DNA Repair Ability, Induces Senescence, and Exhibits Radiosensitizing Effects in Glioblastoma Cells
by Takuma Hashimoto, Go Ushikubo, Naoya Arao, Khaled Hatabi, Kazuki Tsubota and Yoshio Hosoi
Int. J. Mol. Sci. 2025, 26(12), 5710; https://doi.org/10.3390/ijms26125710 - 14 Jun 2025
Viewed by 576
Abstract
Enhancement of glycolysis has been reported in tumor cells, and it is believed that this enhancement is important for maintaining the stemness of tumor cells and contributes to malignant phenotypes. Here, we investigated the effects of Oxamate, which inhibits glycolysis by blocking the [...] Read more.
Enhancement of glycolysis has been reported in tumor cells, and it is believed that this enhancement is important for maintaining the stemness of tumor cells and contributes to malignant phenotypes. Here, we investigated the effects of Oxamate, which inhibits glycolysis by blocking the conversion of pyruvate to lactate, on radiosensitivity and its molecular mechanisms in T98G glioblastoma cells. Oxamate significantly enhanced radiosensitivity by delaying DNA repair, as indicated by the persistence of γ-H2AX foci up to four days post-irradiation. Mechanistically, Oxamate suppressed the expression and phosphorylation of key DNA repair factors. Furthermore, Oxamate induced apoptosis and promoted cellular senescence, as evidenced by the accumulation of SA-β-gal and the upregulation of pS15-p53 and p21. In addition, Oxamate downregulated EGFR expression, reduced the levels of stem cell markers, and modulated epithelial–mesenchymal transition (EMT) markers, suggesting a potential suppression of EMT-related pathways. Together, these results demonstrate that Oxamate enhances radiosensitivity in glioblastoma cells through multiple mechanisms, including the inhibition of DNA repair, induction of apoptosis and senescence, and suppression of cancer stem cell properties and EMT. Our findings provide new insights into the potential use of Oxamate as a radiosensitizer and warrant further investigation of its clinical application in glioblastoma therapy. Full article
Show Figures

Figure 1

19 pages, 1191 KiB  
Review
Targeting Senescence: A Review of Senolytics and Senomorphics in Anti-Aging Interventions
by Timur Saliev and Prim B. Singh
Biomolecules 2025, 15(6), 860; https://doi.org/10.3390/biom15060860 - 13 Jun 2025
Cited by 1 | Viewed by 3107
Abstract
Cellular senescence is a fundamental mechanism in aging, marked by irreversible growth arrest and diverse functional changes, including, but not limited to, the development of a senescence-associated secretory phenotype (SASP). While transient senescence contributes to beneficial processes such as tissue repair and tumor [...] Read more.
Cellular senescence is a fundamental mechanism in aging, marked by irreversible growth arrest and diverse functional changes, including, but not limited to, the development of a senescence-associated secretory phenotype (SASP). While transient senescence contributes to beneficial processes such as tissue repair and tumor suppression, the persistent accumulation of senescent cells is implicated in tissue dysfunction, chronic inflammation, and age-related diseases. Notably, the SASP can exert both pro-inflammatory and immunosuppressive effects, depending on cell type, tissue context, and temporal dynamics, particularly in early stages where it may be profibrotic and immunomodulatory. Recent advances in senotherapeutics have led to two principal strategies for targeting senescent cells: senolytics, which selectively induce their apoptosis, and senomorphics, which modulate deleterious aspects of the senescence phenotype, including the SASP, without removing the cells. This review critically examines the molecular mechanisms, therapeutic agents, and clinical potential of both approaches in the context of anti-aging interventions. We discuss major classes of senolytics, such as tyrosine kinase inhibitors, BCL-2 family inhibitors, and natural polyphenols, alongside senomorphics including mTOR and JAK inhibitors, rapalogs, and epigenetic modulators. Additionally, we explore the biological heterogeneity of senescent cells, challenges in developing specific biomarkers, and the dualistic role of senescence in physiological versus pathological states. The review also highlights emerging tools, such as targeted delivery systems, multi-omics integration, and AI-assisted drug discovery, which are advancing precision geroscience and shaping future anti-aging strategies. Full article
(This article belongs to the Special Issue Molecular Advances in Mechanism and Regulation of Lifespan and Aging)
Show Figures

Figure 1

29 pages, 1456 KiB  
Review
Beyond Bone Loss: A Biology Perspective on Osteoporosis Pathogenesis, Multi-Omics Approaches, and Interconnected Mechanisms
by Yixin Zhao, Jihan Wang, Lijuan Xu, Haofeng Xu, Yu Yan, Heping Zhao and Yuzhu Yan
Biomedicines 2025, 13(6), 1443; https://doi.org/10.3390/biomedicines13061443 - 12 Jun 2025
Viewed by 1149
Abstract
Osteoporosis is a systemic bone disorder characterized by decreased bone mass and deteriorated microarchitecture, leading to an increased risk of fractures. Recent studies have revealed that its pathogenesis involves complex biological processes beyond bone remodeling, including oxidative stress, chronic inflammation, cellular senescence, osteoimmunology, [...] Read more.
Osteoporosis is a systemic bone disorder characterized by decreased bone mass and deteriorated microarchitecture, leading to an increased risk of fractures. Recent studies have revealed that its pathogenesis involves complex biological processes beyond bone remodeling, including oxidative stress, chronic inflammation, cellular senescence, osteoimmunology, gut microbiota alterations, and epigenetic modifications. Oxidative stress disrupts bone homeostasis by promoting excessive free radical production and osteoclast activity. Chronic inflammation and the accumulation of senescent cells impair skeletal repair mechanisms. Advances in osteoimmunology have highlighted the critical role of immune–bone crosstalk in regulating bone resorption and formation. Moreover, the gut–bone axis, mediated by microbial metabolites, influences bone metabolism through immune and endocrine pathways. Epigenetic changes, such as DNA methylation and histone modification, contribute to gene–environment interactions, affecting disease progression. Multi-omics approaches (genomics, proteomics, and metabolomics) systematically identify molecular networks and comorbid links with diabetes/cardiovascular diseases, revealing pathological feedback loops that exacerbate bone loss. In conclusion, osteoporosis pathogenesis extends beyond bone remodeling to encompass systemic inflammation, immunometabolic dysregulation, and gut microbiota–host interactions. Future research should focus on integrating multi-omics biomarkers with targeted therapies to advance precision medicine strategies for osteoporosis prevention and treatment. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

Back to TopTop