Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = seismic resistance reinforcement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 28656 KiB  
Article
Experimental Study and FEM Analysis on the Strengthening of Masonry Brick Walls Using Expanded Steel Plates and Shotcrete with and Without Glass Fiber Reinforcement
by Zeynep Yaman, Alper Cumhur, Elif Ağcakoca, Muhammet Zeki Özyurt, Muhammed Maraşlı, Mohammad Saber Sadid, Abdulsalam Akrami and Azizullah Rasuly
Buildings 2025, 15(15), 2781; https://doi.org/10.3390/buildings15152781 - 6 Aug 2025
Abstract
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen [...] Read more.
In this study, an effective strengthening method was investigated to improve the seismic performance of masonry brick walls. The strengthening method comprised the use of shotcrete, which was applied in both glass fiber-reinforced and unreinforced forms for steel plates and tie rods. Thirteen wall specimens constructed with vertical perforated masonry block bricks were tested under diagonal compression in accordance with ASTM E519 (2010). Reinforcement plates with different thicknesses (1.5 mm, 2 mm, and 3 mm) were anchored using 6 mm diameter tie rods. A specially designed steel frame and an experimental loading program with controlled deformation increments were employed to simulate the effects of reinforced concrete beam frame system on walls under the effect of diagonal loads caused by seismic loads. In addition, numerical simulations were conducted using three-dimensional finite element models in Abaqus Explicit software to validate the experimental results. The findings demonstrated that increasing the number of tie rods enhanced the shear strength and overall behavior of the walls. Steel plates effectively absorbed tensile stresses and limited crack propagation, while the fiber reinforcement in the shotcrete further improved wall strength and ductility. Overall, the proposed strengthening techniques provided significant improvements in the seismic resistance and energy absorption capacity of masonry walls, offering practical and reliable solutions to enhance the safety and durability of existing masonry structures. Full article
(This article belongs to the Special Issue Advanced Research on Concrete Materials in Construction)
Show Figures

Figure 1

40 pages, 6580 KiB  
Review
Shear Behavior of Reinforced Concrete Two-Way Slabs with Openings
by Ahmed Ashteyat, Mousa Shhabat, Ahmad Al-Khreisat and Salem Aldawsari
Buildings 2025, 15(15), 2765; https://doi.org/10.3390/buildings15152765 - 5 Aug 2025
Abstract
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to [...] Read more.
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to resist punching shear, an effect that is especially critical when the openings are located near column–slab connections. This paper provides a detailed review of the existing research, examining how various opening parameters such as their size, shape, and position affect key structural performance metrics including their stiffness, ductility, and failure modes. The findings highlight that opening geometry is a major determinant of a slab’s overall behavior. Notably, the proximity of openings to column faces is identified as a critical factor that can substantially influence the extent of strength degradation and failure mechanisms. Furthermore, this review identifies a significant research gap concerning the behavior of slabs with openings under non-standard loading conditions, such as seismic activity, blasts, and impact loads. It also emphasizes the need for further investigation into the long-term performance of such slabs under adverse environmental influences, including elevated temperatures, corrosion, and material degradation. By consolidating the current knowledge and identifying unresolved challenges, this review aims to guide engineers and researchers in developing more robust design strategies and performance-based solutions for RC slabs with openings, ultimately contributing to safer and more resilient structural systems. Full article
Show Figures

Figure 1

23 pages, 5436 KiB  
Article
Flexural Testing of Steel-, GFRP-, BFRP-, and Hybrid Reinforced Beams
by Yazeed Elbawab, Youssef Elbawab, Zeina El Zoughby, Omar ElKadi, Mohamed AbouZeid and Ezzeldin Sayed-Ahmed
Polymers 2025, 17(15), 2027; https://doi.org/10.3390/polym17152027 - 25 Jul 2025
Viewed by 409
Abstract
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates [...] Read more.
The construction industry is exploring alternatives to traditional steel reinforcement in concrete due to steel’s corrosion vulnerability. Glass Fiber Reinforced Polymer (GFRP) and Basalt Fiber Reinforced Polymer (BFRP), known for their high tensile strength and corrosion resistance, are viable options. This study evaluates the flexural performance of concrete beams reinforced with GFRP, BFRP, and hybrid systems combining these materials with steel, following ACI 440.1R-15 guidelines. Twelve beams were assessed under three-point bending to compare their flexural strength, ductility, and failure modes against steel reinforcement. The results indicate that GFRP and BFRP beams achieve 8% and 12% higher ultimate load capacities but 38% and 58% lower deflections at failure than steel, respectively. Hybrid reinforcements enhance both load capacity and deflection performance (7% to 17% higher load with 11% to 58% lower deflection). However, GFRP and BFRP beams show reduced energy absorption, suggesting that hybrid systems could better support critical applications like seismic and impact-prone structures by improving ductility and load handling. In addition, BFRP beams predominantly failed due to debonding and concrete crushing, while GFRP beams failed due to bar rupture, reflecting key differences in their flexural failure mechanisms. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Laminates: Structure and Properties)
Show Figures

Figure 1

22 pages, 7210 KiB  
Article
Polyethylene Storage Tanks Strengthened Externally with Fiber-Reinforced Polymer Laminates
by Ghassan Hachem, Wassim Raphael and Rafic Faddoul
Polymers 2025, 17(13), 1858; https://doi.org/10.3390/polym17131858 - 3 Jul 2025
Viewed by 535
Abstract
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this [...] Read more.
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this study, a method of external strengthening using fiber-reinforced polymer (FRP) laminates is proposed and explored. The research involves a combination of laboratory testing on carbon fiber-reinforced polymer (CFRP)-strengthened polyethylene strips and finite element simulations aimed at assessing bond strength, anchorage length, and structural behavior. Results from tensile tests indicate that slippage tends to occur unless the anchorage length exceeds approximately 450 mm. To evaluate surface preparation, grayscale image analysis was used, showing that mechanical sanding increased intensity variation by over 127%, pointing to better bonding potential. Simulation results show that unreinforced tanks under seismic loads display stress levels beyond their elastic limit, along with signs of elephant foot buckling—common in thin-walled cylindrical structures. Applying CFRPs in a full-wrap setup notably reduced these effects. This approach offers a viable alternative to full tank replacement, especially in regions where cost, access, or operational constraints make replacement impractical. The applicability is particularly valuable in seismically active and densely populated areas, where rapid, non-invasive retrofitting is essential. Based on the experimental findings, a simple formula is proposed to estimate the anchorage length required for effective crack repair. Overall, the study demonstrates that CFRP retrofitting, paired with proper surface treatment, can significantly enhance the seismic performance of polyethylene tanks while avoiding costly and disruptive replacement strategies. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

23 pages, 6396 KiB  
Article
Shear Performance of Reinforced Shear Pocket Joint in Light Steel—Recycled Concrete Composite Floor
by Jinliang Bian, Jingwei Zhang, Lidong Zhao, Wei Gan and Wanlin Cao
Buildings 2025, 15(13), 2267; https://doi.org/10.3390/buildings15132267 - 27 Jun 2025
Viewed by 297
Abstract
To address the challenges of slow construction and high self-weight in steel–concrete composite floors for rural light steel frame structures in China, a new prefabricated floor system was developed. This system features prefabricated slabs made from recycled concrete, connected via reinforced shear pocket [...] Read more.
To address the challenges of slow construction and high self-weight in steel–concrete composite floors for rural light steel frame structures in China, a new prefabricated floor system was developed. This system features prefabricated slabs made from recycled concrete, connected via reinforced shear pocket joints. In seismic environments, assembly floor joints often become vulnerable points, making their shear resistance particularly crucial. This study investigated the shear performance of this new type of floor joint, examining the effects of various parameters such as joint configuration, stud diameter, recycled concrete strength, and grout strength. A refined finite element model was established for an in-depth parameter analysis. The research revealed stud–shear failure as the mode of floor joint failure under different design parameters. The detailed design of the new joint structure ensures safety in the floor joint area. Increasing stud diameter, recycled concrete strength, and grout strength all contributed to enhancing the joint’s shear capacity and stiffness, with stud diameter having the most significant impact. Higher recycled concrete strength improved shear capacity, although its influence decreased beyond a certain threshold. Optimal reserved hole diameter proved beneficial for enhancing joint shear performance, with a diameter of 40 mm showing superior performance. Full article
Show Figures

Figure 1

22 pages, 16001 KiB  
Article
Effect of Additional Bonded Steel Plates on the Behavior of FRP-Retrofitted Resilient RC Columns Subjected to Seismic Loading
by Yunjian He, Gaochuang Cai, Amir Si Larbi, Prafulla Bahadur Malla and Cheng Xie
Buildings 2025, 15(13), 2189; https://doi.org/10.3390/buildings15132189 - 23 Jun 2025
Viewed by 278
Abstract
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that [...] Read more.
Traditional fiber-reinforced polymer (FRP) retrofit methods can restore the strength of reinforced concrete columns well, but stiffness is also partly restored. To increase the initial stiffness of retrofitted columns, this study investigated the seismic behavior of retrofitted resilient reinforced concrete (RRC) columns that were retrofitted by different methods, including high-strength mortar retrofit, carbon fiber-reinforced polymer (CFRP) retrofit, and CFRP and steel plate retrofit. In addition, the effect of the axial load was also considered. Quasi-static tests were conducted twice on five specimens, i.e., before and after repairing. The first test was used to create earthquake damage, and the second test was used to compare the seismic behavior of the retrofitted columns. The experimental results indicated that the CFRP retrofit method, whether with a steel plate or not, can restore the lateral resistance capacity well; furthermore, the drift-hardening behavior and self-centering performance were well maintained. The residual drift ratio of the CFRP-retrofitted column was less than 0.5%, even at a drift ratio of 3.5%, and less than 1% at the 6% drift ratio. However, the initial stiffness was only partly restored using the CFRP sheet. The introduction of steel plates was beneficial in restoring the initial stiffness, and the stiffness recovery rate remained above 90% when CFRP sheets and steel plates were used simultaneously. The strain distribution of the CFRP sheet showed that the steel plate did work at the initial loading stage, but the effect was limited. By using the steel plate, the CFRP hoop strain on the south side was reduced by 68% at the 6% drift ratio in the push direction and 38% in the pull direction. The axial strain of CFRP cannot be ignored due to the larger value than the hoop strain, which means that the biaxial stress condition should be considered when using an FRP sheet to retrofit RC columns. Full article
Show Figures

Figure 1

17 pages, 1589 KiB  
Article
Enhancement Analysis of Damaged Masonry Structures Strengthened with Ultra-High-Performance Concrete
by Rui Wang, Wei Wang, Yuecong Zhang, Quan Wen, Xiangguo Wu, Ya Lu, Daiyu Wang and Faqiang Qiu
Buildings 2025, 15(12), 2082; https://doi.org/10.3390/buildings15122082 - 17 Jun 2025
Viewed by 283
Abstract
In order to enhance the seismic performance of existing masonry structures and optimize the thickness of the strengthening layer, ultra-high-performance concrete (UHPC) can be used as an enhancement material. Based on current concrete strengthening methods, the bearing capacity and seismic behavior of existing [...] Read more.
In order to enhance the seismic performance of existing masonry structures and optimize the thickness of the strengthening layer, ultra-high-performance concrete (UHPC) can be used as an enhancement material. Based on current concrete strengthening methods, the bearing capacity and seismic behavior of existing masonry structures strengthened with UHPC were investigated numerically. The effects of the strengthening layer thickness and reinforcement ratio on the structural strengthening results were analyzed numerically. The structural behaviors before and after an earthquake, with various strengthening methods, were compared and discussed. The results show that the ratio of axial resistance to shear resistance increases linearly with the resistance ratio. The seismic performance of damaged masonry walls can be improved by about 150% and 250% when 20 mm thick double-sided plain UHPC layers and 30 mm thick double-sided plain UHPC layers are used for strengthening, respectively. The axial compression ratio of masonry walls can be reduced by about 60–70% when double-sided plain UHPC layers are used for strengthening. Full article
Show Figures

Figure 1

31 pages, 4733 KiB  
Article
Evaluation of Seismic Design Factors in Reinforced Concrete Shear Wall Buildings Located on Sloping Terrain Using FEMA P695 Methodology
by Juan C. Vielma, Juan C. Vielma-Quintero and Edgar Giovanny Diaz-Segura
Appl. Sci. 2025, 15(11), 6209; https://doi.org/10.3390/app15116209 - 31 May 2025
Viewed by 691
Abstract
Currently, seismic-resistant design is carried out by applying codes that are periodically updated based on research findings and lessons learned from major seismic events. In the case of buildings located on sloping terrains and those composed of reinforced concrete shear walls, there is [...] Read more.
Currently, seismic-resistant design is carried out by applying codes that are periodically updated based on research findings and lessons learned from major seismic events. In the case of buildings located on sloping terrains and those composed of reinforced concrete shear walls, there is a notable lack of specific design provisions in existing standards. For this reason, the methodology outlined in FEMA P695 was applied in the present study, with the aim of validating the response reduction factor used for designing this type of structure in Chile. Additionally, other parameters that allow for the evaluation of design performance or serve as complementary indicators—such as ductility, the overstrength factor, and the displacement amplification factor—were determined. To conduct this study, a series of archetype buildings were designed, varying the slope inclination from 0° to 45°. The results show that, although the current design approach ensures safety, it is necessary to specify different design parameters for the directions parallel and orthogonal to the slope in order to optimize the seismic performance of the buildings. Full article
Show Figures

Figure 1

16 pages, 8562 KiB  
Article
Analysis of Dynamic Response of Composite Reinforcement Concrete Square Piles Under Multi-Directional Seismic Excitation
by Chenxi Fu, Gang Gan, Kepeng Chen and Kai Fan
Buildings 2025, 15(11), 1874; https://doi.org/10.3390/buildings15111874 - 29 May 2025
Viewed by 434
Abstract
Composite reinforcement concrete square piles exhibit excellent bending resistance and deformation capacity, along with construction advantages such as ease of transportation. In recent years, they have been widely adopted in building pile foundation applications. However, their seismic behavior, particularly under multi-directional excitation, remains [...] Read more.
Composite reinforcement concrete square piles exhibit excellent bending resistance and deformation capacity, along with construction advantages such as ease of transportation. In recent years, they have been widely adopted in building pile foundation applications. However, their seismic behavior, particularly under multi-directional excitation, remains inadequately explored. This study employs large-scale shaking table tests to evaluate the seismic response of a single composite reinforcement square pile embedded in a soft clay foundation under different horizontal excitations (0° and 45°) and two distinct ground motions (Wenchuan Songpan and Chi-Chi) to assess directional anisotropy and resonance effects, with explicit consideration of soil–structure interaction (SSI). The key findings include the following: the dynamic earth pressure along the pile exhibits a distribution pattern of “large at the top, small at the middle and bottom”. And SSI reduced pile–soil compression by 20–30% under 45° excitation compared to 0°. The dynamic strain in outer longitudinal reinforcement in pile corners increased by 30–60% under 45° excitation compared to 0°. Under seismic excitation considering SSI, the bending moment along the pile exhibited an “upper-middle maximum” pattern, peaking at depths of 3–5 times the pile diameter. Axial forces peaked at the pile head and decreased with depth. While bending moment responses were consistent between 0° and 45° excitations, axial forces under 45° loading were marginally greater than those under 0°. The Chi-Chi motion induced a bending moment about four times greater than the Songpan motion, highlighting the resonance risks when the ground motion frequencies align with the pile–soil system’s fundamental frequency. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 7212 KiB  
Article
The Case Study of the Characteristic Analysis and Reinforcement Measures of RC Diaojiaolou Structures Under Different Seismic Intensities
by Wenwu Zhong, Zhile Shu, Wenkai Feng, Xin Zhang, Xueye Ma and Zheng Fei
Buildings 2025, 15(11), 1795; https://doi.org/10.3390/buildings15111795 - 23 May 2025
Viewed by 366
Abstract
China is strengthening the construction of the disaster resistance capacity of its mountain buildings, which increases the demand for RC Diaojiaolou reinforcement technology. In this paper, the performance of RC Diaojiaolou structures (unreinforced and carbon-fiber cloth-reinforced) in an earthquake is studied by a [...] Read more.
China is strengthening the construction of the disaster resistance capacity of its mountain buildings, which increases the demand for RC Diaojiaolou reinforcement technology. In this paper, the performance of RC Diaojiaolou structures (unreinforced and carbon-fiber cloth-reinforced) in an earthquake is studied by a physical model test. The results show that carbon-fiber cloth can effectively improve the seismic capacity. The natural vibration period and acceleration- and displacement-increment coefficients of DF and CDF conformed to the exponential law. The damage process can be divided into three stages: DS, YS, and PS. After reinforcement, the development law of the average value of the acceleration-increment coefficient changed from the N type to the V type, and the development law of the average value of the displacement-increment coefficient changed from the concave type to the V type. The Diaojiaolou was the least affected by the acceleration at I. The displacement deformation of DF was the least affected by the seismic waves at DZ1. The displacement deformation of CDF was the least affected by the seismic waves at I. These findings provide a theoretical basis for the seismic design of mountain Diaojiaolous. Full article
Show Figures

Figure 1

22 pages, 10784 KiB  
Article
Structural Reliability Assessment of Dual RC Buildings for Different Shear Wall Configuration
by Fernando Velarde, Juan Bojórquez, Edén Bojórquez, Henry Reyes, Alfredo Reyes-Salazar, Robespierre Chávez, Mario D. Llanes-Tizoc, Federico Valenzuela-Beltrán, José I. Torres, Daniel Yee and Victor Baca
Buildings 2025, 15(11), 1783; https://doi.org/10.3390/buildings15111783 - 23 May 2025
Viewed by 522
Abstract
Shear walls, integrated into conventional reinforced concrete (RC) moment-resisting frame systems (RC frame–shear wall building), have proven to be effective in improving the structural performance and reliability of buildings; however, the seismic behavior of the building depends directly on the location of these [...] Read more.
Shear walls, integrated into conventional reinforced concrete (RC) moment-resisting frame systems (RC frame–shear wall building), have proven to be effective in improving the structural performance and reliability of buildings; however, the seismic behavior of the building depends directly on the location of these elements. For this reason, this paper evaluates the structural reliability of ten medium-rise RC buildings designed based on the Mexico City Building Code, considering different shear wall configurations. With the aim to estimate and compare the seismic reliability, the buildings are modeled as complex 3D structures via the OpenSees 3.5 software, which are subjected to different ground motion records representative of the soft soil of Mexico City scaled at different intensity values in order to compute incremental dynamic analysis (IDA). Furthermore, the parameter used to estimate the reliability is the maximum interstory drift (MID), which is obtained from the incremental dynamic analysis in order to assess the structural fragility curves. Finally, the structural reliability estimation is computed via probabilistic models by combining the fragility and seismic hazard curves. It is concluded from the results that the structural reliability is maximized when shear walls are symmetrically distributed. On the other hand, the configuration with walls concentrated in the center of the building tends to oversize the frames to reach a reliability level comparable to that of symmetrical arrangements. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 6273 KiB  
Article
Evaluating the Seismic Fragility and Code Compliance of Turkish Reinforced Concrete Buildings After the 6 February 2023 Kahramanmaraş Earthquake
by Ibrahim Oz and Mizbah Omur
Appl. Sci. 2025, 15(10), 5554; https://doi.org/10.3390/app15105554 - 15 May 2025
Cited by 3 | Viewed by 864
Abstract
This study evaluates the seismic fragility and code compliance of reinforced concrete buildings in Turkey following the 6 February 2023 Kahramanmaraş earthquake. Sixty representative buildings were modeled in SAP2000, consisting of thirty structures designed according to TEC-1975 and thirty according to TEC-1998. These [...] Read more.
This study evaluates the seismic fragility and code compliance of reinforced concrete buildings in Turkey following the 6 February 2023 Kahramanmaraş earthquake. Sixty representative buildings were modeled in SAP2000, consisting of thirty structures designed according to TEC-1975 and thirty according to TEC-1998. These models were subjected to three-dimensional nonlinear time history analyses using ground motions scaled to match the seismic characteristics of the earthquake. Structural performance was assessed by comparing calculated displacement demands with capacity thresholds defined by modern code provisions. The results show that buildings designed under TEC-1998 generally performed better than those constructed according to TEC-1975, particularly in terms of deformation capacity and collapse resistance. Fragility curves and exceedance probabilities were developed to quantify damage likelihoods across different performance levels. When compared with post-earthquake field observations, the analytical models produced lower collapse rates, which may suggest the presence of widespread code noncompliance in the actual building stock. These findings highlight the critical importance of ensuring adherence to seismic design regulations to improve the resilience of existing structures. Full article
(This article belongs to the Special Issue Structural Analysis and Seismic Resilience in Civil Engineering)
Show Figures

Figure 1

21 pages, 12021 KiB  
Article
Seismic Performance of Beam–Column Joints in Seawater Sand Concrete Reinforced with Steel-FRP Composite Bars
by Ruiqing Liang, Botao Zhang, Zhensheng Liang, Xiemi Li and Shuhua Xiao
Materials 2025, 18(10), 2282; https://doi.org/10.3390/ma18102282 - 14 May 2025
Viewed by 401
Abstract
Steel fiber-reinforced polymer (FRP) composite bars (SFCBs) combine the ductility of steel reinforcement with the corrosion resistance and high strength of FRP, providing stable secondary stiffness that enhances the seismic resistance and safety of seawater sea–sand concrete structures. However, the seismic performance of [...] Read more.
Steel fiber-reinforced polymer (FRP) composite bars (SFCBs) combine the ductility of steel reinforcement with the corrosion resistance and high strength of FRP, providing stable secondary stiffness that enhances the seismic resistance and safety of seawater sea–sand concrete structures. However, the seismic performance of SFCB-reinforced seawater sea–sand concrete beam–column joints remains underexplored. This study presents pseudo-static tests on SFCB-reinforced beam–column joints with varying column SFCB longitudinal reinforcement fiber volume ratios (64%, 75%, and 84%), beam reinforcement fiber volume ratios (60.9%, 75%, and 86%), and axial compression ratios (0.1 and 0.2). The results indicate that increasing the axial compression ratio enhances nodal shear capacity and bond strength, limits slip, and reduces crack propagation, but also accelerates bearing capacity degradation. Higher column reinforcement fiber volumes improve crack distribution and ductility, while beam reinforcement volume significantly affects energy dissipation and crack distribution, with moderate volumes (e.g., 75%) yielding optimal seismic performance. These findings provide insights for the seismic design of SFCB-composite-reinforced concrete structures in marine environments. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete)
Show Figures

Figure 1

21 pages, 8633 KiB  
Article
Experimental Study on Seismic Performance of Vertical Connection Nodes of Prefabricated Concrete Channel
by Guangyao Zhang, Zhiqi Wang, Wenliang Ma, Zhihao Wang, Luming Li, Yanping Zhou, Yibo Li and Yuxia Suo
Buildings 2025, 15(10), 1581; https://doi.org/10.3390/buildings15101581 - 8 May 2025
Viewed by 452
Abstract
The prefabricated concrete channel, constructed by integrating factory-based prefabrication with on-site assembly, offers enhanced quality, reduced construction time, and minimized environmental impact. To promote its application in water conservancy projects, an innovative concrete joint combining semi-grouting sleeves and shear-resistant steel plates was proposed. [...] Read more.
The prefabricated concrete channel, constructed by integrating factory-based prefabrication with on-site assembly, offers enhanced quality, reduced construction time, and minimized environmental impact. To promote its application in water conservancy projects, an innovative concrete joint combining semi-grouting sleeves and shear-resistant steel plates was proposed. Its seismic performance was assessed through a 1:3 scale low-cycle reversed loading test, focusing on failure mode, hysteretic behavior, skeleton curves, stiffness degradation, ductility, and energy dissipation. Results show that the joint primarily exhibits bending–shear failure, with cracks initiating at the sidewall–base slab interface. Also, the sidewall and base slab are interconnected through semi-grouting sleeves, while the concrete bonding is achieved via grouting and surface chiseling at the joint interface. The results indicated that the innovative concrete joint connection exhibits satisfied seismic performance. The shear-resistant steel plate significantly improves shear strength and enhances water sealing. Compared with cast-in-place specimens, the prefabricated joint shows a 16.04% lower equivalent viscous damping coefficient during failure due to reinforcement slippage, while achieving 16.34% greater cumulative energy dissipation and 52.00% higher ductility. These findings provide theoretical and experimental support for the broader adoption of prefabricated channels in water conservancy engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

28 pages, 9362 KiB  
Article
Seismic Performance of Prestressed Prefabricated Concrete Frames with Mechanical Connection Steel Bars
by Yi Wang, Chennan Liu, Chuanzhi Sun, Ashraf Ashour, Shan Yao, Laiyong Luo and Wenjie Ge
Buildings 2025, 15(9), 1432; https://doi.org/10.3390/buildings15091432 - 24 Apr 2025
Viewed by 457
Abstract
Seismic resilience is a critical concern in the development of prefabricated concrete structures. This study investigates the seismic performance of prestressed prefabricated concrete frames with mechanically connected steel bars through both experiment and finite element simulations using ABAQUS. The research aimed to evaluate [...] Read more.
Seismic resilience is a critical concern in the development of prefabricated concrete structures. This study investigates the seismic performance of prestressed prefabricated concrete frames with mechanically connected steel bars through both experiment and finite element simulations using ABAQUS. The research aimed to evaluate the influence of prestressed and mechanical connections on structural stiffness, energy dissipation and failure mechanisms, and a restoring force model was developed based on the experimental and numerical results to provide a theoretical basis for seismic design. The parametric analysis based on the verified numerical model shows that the pretension can significantly enhance the bearing capacity, stiffness and deformation recovery ability of the prefabricated concrete frames. The peak load increased by 30.8%, the initial stiffness improved by 17.4%, the ductility coefficient reached 2.82, the residual deformation rate reduced by 40.7%, the emergence and development of cracks delayed, and the crack width reduced. Improving the effective prestress in a certain range can improve the bearing capacity and initial stiffness of the frame. Increasing the strength of concrete and the ratio of the longitudinal reinforcement of beam and column can effectively enhance the bearing capacity of the frame. With the increase of axial compression ratio in a certain range, the bearing capacity and initial stiffness of the frame increase significantly, but the ductility decreases. Based on the hysteresis curve and skeleton curve tested, the skeleton curve model and stiffness degradation law of the prestressed prefabricated concrete frames reinforced with mechanical connection steel bars were fitted, and the restoring force model was established. The predicted value was in good agreement with the experimental value, illustrating the validity of the model developed. These results offer valuable insights for optimizing the seismic design of prefabricated concrete frames, ensuring a balance between strength, stiffness, and ductility in earthquake-resistant structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop