Structural Reliability Assessment of Dual RC Buildings for Different Shear Wall Configuration
Abstract
1. Introduction
2. Methodology
3. Structural Models
3.1. Geometric Characteristics of the Buildings
3.2. Building Models and Structural Design
4. Pushover and Nonlinear Modelling
4.1. Pushover Analysis
4.2. Nonlinear Modeling to Incremental Dinamic Analysis
5. Seismic Hazard Characterization
6. Incremental Dynamic Analysis and Structural Fragility
6.1. Results of Nonlinear Dynamic Analysis
6.2. Structural Fragility and Seismic Hazard Curves
- Operational State (O): Generally, an inter-story drift of less than 0.2% of the story height is allowed.
- Moderate Damage State (DM): Allows an inter-story drift in the range of 0.5%.
- Extensive Damage State (DE): Allows an inter-story drift in the range of 1%.
- Collapse State (C): Allows an inter-story drift greater than 2%.
7. Numerical Results
7.1. Incremental Dynamic Nonlinear Analysis
7.2. Structural Fragility
7.3. Structural Reliability
8. Conclusions
- Balanced Distribution: Placing the shear walls in a perimeter or symmetrical arrangement helps to better control deformations; therefore, it reduces the probability of severe damage.
- Probabilistic Approach: Incorporating fragility and seismic hazard evaluations from the outset of the design process enables an estimation of safety throughout the building’s service life.
- New Research Directions: The results presented in this study are based on the evaluation of the structural behavior of ten regular buildings both in plan and elevation. Therefore, future work is encouraged to expand the number of buildings studied, varying the architecture and number of levels to gain a better understanding of the behavior of these types of structures. Additionally, future studies could focus on analyzing the economic impact and architectural feasibility of the different configurations, as well as further exploring the relationship between costs and structural reliability, especially by using advanced ground motion intensity measures.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boulaouad, A.; Belagraa, L.; Berra, I. Effect of shear walls on the behavior of non-linear structures in seismic zones. Min. Sci. 2022, 29, 7–17. [Google Scholar]
- Rahman, M.A.; Teguh, M.; Saleh, F. Comparative study of structural response on multi-story buildings with shear wall and bracing systems. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Vijaya, G.S.; Vinodhini, S. Analysis of High Rise Building with Dual Systems. ADBU J. Eng. Technol. 2021, 10, 1–7. [Google Scholar]
- Phadnis, P.P. Fragility Analysis for Frame with RC and Steel-Composite Shear Wall. In Resilient Infrastructure; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Huain, M.; Eisa, A.S.; Hegazy, M.M. Strengthening of reinforced concrete shear walls with openings using carbon fiber-reinforced polymers. Int. J. Adv. Struct. Eng. 2019, 11, 129–150. [Google Scholar]
- Rodriguez, M.E. Seismic-resistant Design Regulations for Structures, Earthquake and Experimental Results Lessons. J. Build. Technol. 2024, 6, 2717–5103. [Google Scholar] [CrossRef]
- Mibang, D.; Choudhury, S. Performance-Based Design of Dual System. In Recent Developments in Sustainable Infrastructure; Springer: Singapore, 2021. [Google Scholar]
- Mahmoud, S.; Salman, A. Impact of shear wall design on performance and cost of RC buildings in moderate seismic regions. Earthq. Struct. 2021, 21, 489–503. [Google Scholar]
- Ahkam, D.N.I.; Teguh, M.; Saleh, F. Seismic behavior of structural models of dual system building and flat slab-drop panel strengthened with shear-wall. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022. [Google Scholar]
- Khelaifia, A.; Zine, A.; Guettala, S.; Chebili, R. Assessment of the position and quantity of shear walls their correlation with building height on the seismic nonlinear performance. Asian J. Civ. Eng. 2024, 25, 5925–5937. [Google Scholar] [CrossRef]
- Suwal, R.; Khawas, A. Performance of Reinforced Concrete Shear Wall in Dual Structural System: A Review. Nepal J. Sci. Technol. 2022, 21, 91–100. [Google Scholar] [CrossRef]
- Anwar, N.; Aung, T.H.; Norachan, P.; Badar, A.M. Case Study: Performance-Based Seismic Design of Reinforced Concrete Dual System Building. In Proceedings of the 6th Asia Conference on Earthquake Engineering, Marco Polo Plaza Cebu, Cebu City, Philippines, 22–24 September 2016. [Google Scholar]
- Segura, C.L.; Wallace, J.W.; Arteta, C.A.; Moehle, J.P. Deformation capacity of thin reinforced concrete shear walls. In Proceedings of the 2016 New Zealand Society of Earthquake Engineering Technical Conference, Christchurch, New Zealand, 1–3 April 2016. [Google Scholar]
- Váquez Martínez, A.; Gallardo Amaya, R.J. Respuesta no lineal de estructuras con muros de concreto reforzado. Inge Cuc 2018, 14, 55–61. [Google Scholar] [CrossRef]
- Applied Technology Council. Quantification of Building Seismic Performance Factors; US Department of Homeland Security, FEMA: Washington, DC, USA, 2009. [Google Scholar]
- Der Kiureghian, A. Structural reliability methods for seismic safety assessment: A review. Eng. Struct. 1996, 18, 421–424. [Google Scholar] [CrossRef]
- Jalayer, F.; Cornell, C.A. Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthq. Eng. Struct. Dyn. 2009, 38, 951–972. [Google Scholar] [CrossRef]
- Jafari, A.; Dehcheshmeh, E.M.; Varaee, H.; Zhou, Y. Developing a framework for reliability-based seismic objective performance assessment: Implementation and application. Eng. Struct. 2025, 329, 119821. [Google Scholar] [CrossRef]
- Rahgozar, N.; Pouraminian, M.; Rahgozar, N. Reliability-based seismic assessment of controlled rocking steel cores. J. Build. Eng. 2021, 44, 102623. [Google Scholar] [CrossRef]
- Esteva, M.L. Bases para la Formulación de Decisiones de Diseño Sísmico. Ph.D. Thesis, Facultad de Ingeniería, UNAM, Mexico, 1968. [Google Scholar]
- NTC-DCEC-23. Normas Técnicas Complementarias para el Diseño y Construcción de Estructuras de Concreto. Gaceta Oficial de la Ciudad de México. 2023. Available online: https://www.smie.org.mx/publicaciones-reglamento (accessed on 13 May 2024).
- NTC-DS-23. Normas Técnicas Complementarias sobre Diseño por Sismo. Gaceta Oficial de la Ciudad de México. 2023. Available online: https://www.smie.org.mx/publicaciones-reglamento (accessed on 13 May 2024).
- Mckenna, F.; Fenves, G.L.; Scott, M.H. Open System for Earthquake Engineering Simulation (3.5.0); University of California: Berkeley, CA, USA, 2000. [Google Scholar]
- Bommer, J.J.; Scherbaum, F. The use and misuse of logic trees in probabilistic seismic hazard analysis. Earthq. Spectra. 2008, 24, 997–1009. [Google Scholar] [CrossRef]
- Calvi, G.M.; Pinho, R.; Magenes, G.; Bommer, J.J.; Restrepo-Vélez, L.F.; Crowley, H. Development of seismic vulnerability assessment methodologies over the past 30 years. ISET J. Earthq. Technol. 2006, 43, 75–104. [Google Scholar]
- Bojorquez, E.; Iervolino, I. Spectral shape proxies and nonlinear structural response. Soil Dyn. Earthq. Eng. 2011, 31, 996–1008. [Google Scholar] [CrossRef]
- Bojórquez, E.; Leyva, H.; Bojórquez, J.; Reyes-Salazar, A.; Mollaioli, F.; Barraza, M.; Torres, I. Optimal Acceleration and Energy-Based Record Selection Using Artificial Intelligence Approaches and NP. J. Earthq. Eng. 2023, 28, 582–601. [Google Scholar] [CrossRef]
- Shome, N. Probabilistic Seismic Demand Analysis of Nonlinear Structures. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 1999. [Google Scholar]
- Bojórquez, E.; Terán-Gilmore, A.; Ruiz, S.E.; Reyes-Salazar, A. Evaluation of Structural Reliability of Steel Frames: Interstory Drift versus Plastic Hysteretic Energy. Earthq. Spectra 2011, 27, 661–682. [Google Scholar] [CrossRef]
- Shinozuka, M.; Feng, M.Q.; Lee, J.; Naganuma, T. Statistical Analysis of Fragility Curves. J. Eng. Mech. 2000, 126, 1224–1231. [Google Scholar] [CrossRef]
- NTC-CADEE-23. Normas Técnicas Complementarias sobre Criterios y Acciones para el Diseño Estructural de las Edificaciones. Gaceta Oficial de la Ciudad de México. 2023. Available online: https://www.smie.org.mx/publicaciones-reglamento (accessed on 13 May 2024).
- Sistema de Información de la Amenaza Sísmica de la Ciudad de México (SASID), [Online]. Available online: https://sasid.unam.mx/webNormasCDMX/Default.aspx (accessed on 20 May 2024).
- Comité ACI 318; Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute: Farmington Hills, MI, USA, 2019.
- Rodríguez, M.E. Interpretación de los daños y colapsos en edificaciones observados en la Ciudad de México en el terremoto del 19 de septiembre 2017. Ing. Sísmica 2019, 101, 1–18. [Google Scholar] [CrossRef]
- Kostic, S.M.; Filippou, F.C.; Lee, C.L. An efficient beam-column element for nonlinear 3D frame analysis. In Proceedings of the ECCOMAS Thematic Conference-COMPDYN, Corfu, Greece, 25–28 May 2011. [Google Scholar]
- Mander, J.B.; Priestley, M.J.N.; Park, R. Observed Stress-Strain Behavior of Confined Concrete. J. Struct. Eng. 1988, 114, 1827–1849. [Google Scholar] [CrossRef]
- Yassin, M.H.M. Nonlinear Analysis of Prestressed Concrete Structures Under Monotonic and Cyclic Loads. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1994. [Google Scholar]
- Filippou, F.C.; Popov, E.P.; Bertero, V.V. Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints; University of California: Berkeley, CA, USA, 1983. [Google Scholar]
- Kostic, S.M.; Filippou, F.C. Section Discretization of Fiber Beam-Column Elements for Cyclic Inelastic Response. J. Struct. Eng. 2012, 138, 592–601. [Google Scholar] [CrossRef]
- Kolozvari, K.; Kalbasi, K.; Orakcal, K.; Wallace, J. Three-dimensional shear-flexure interaction model for analysis of non-planar reinforced concrete walls. J. Build. Eng. 2021, 44, 102946. [Google Scholar] [CrossRef]
- Kolozvari, K.; Orakcal, K.; Wallace, J.W. Modeling of cyclic shear-flexure interaction in reinforced concrete structural walls. I: Theory. J. Struct. Eng. 2015, 141, 04014135. [Google Scholar] [CrossRef]
- Vamvatsikos, D.; Cornell, C.A. Incremental dynamic analysis. Earthq. Eng. Struct. Dyn. 2001, 10, 491–514. [Google Scholar]
- Prestandard, F.E.M.A. Commentary for the Seismic Rehabilitation of Buildings; Federal Emergency Management Agency: Washington, DC, USA, 2000. [Google Scholar]
Models | M-12_1/M-8_1 | M-12_2/M-8_2 | M-12_3/M-8_3 | M-12_4/M-8_4 | M-12_5/M-8_5 |
---|---|---|---|---|---|
Twelve-story buildings | 1.08 s | 1.08 s | 0.94 s | 0.94 s | 1.20 s |
Eight-story buildings | 0.75 s | 0.75 s | 0.69 s | 0.69 s | 0.91 s |
Seismic | Date | Epicenter Coordinates | Magnitude | Station |
---|---|---|---|---|
S1 | 11 January 1997 | 17.910 N; 103.04 W | 6.9 | Valle Gómez |
S2 | 14 September 1995 | 16.31 N; 98.88 W | 7.4 | Tlatelolco |
S3 | 9 October 1995 | 18.74 N; 104.67 W | 7.3 | Garibaldi |
S4 | 25 April 1989 | 16.603 N; 99.4 W | 6.9 | Alameda |
S5 | 9 October 1995 | 18.74 N; 104.67 W | 7.3 | Liverpool |
S6 | 11 January 1997 | 17.9 N; 103 W | 6.9 | Cordoba |
S7 | 25 April 1989 | 16.603 N; 99.4 W | 6.9 | C.U. Juarez |
S8 | 14 September 1995 | 16.31 N; 98.88 W | 7.2 | Cujp |
S9 | 19 September 1985 | 18.08 N; 102.942 W | 8.1 | SCT B-1 |
S10 | 9 October 1995 | 18.74 N; 104.67 W | 7.3 | sector popular |
S11 | 19 September 2017 | 19.394 N; 99.148 W | 7.1 | SCT B-2 |
S12 | 19 September 2017 | 19.449 N; 99.137 W | 7.1 | Tlatelolco |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velarde, F.; Bojórquez, J.; Bojórquez, E.; Reyes, H.; Reyes-Salazar, A.; Chávez, R.; Llanes-Tizoc, M.D.; Valenzuela-Beltrán, F.; Torres, J.I.; Yee, D.; et al. Structural Reliability Assessment of Dual RC Buildings for Different Shear Wall Configuration. Buildings 2025, 15, 1783. https://doi.org/10.3390/buildings15111783
Velarde F, Bojórquez J, Bojórquez E, Reyes H, Reyes-Salazar A, Chávez R, Llanes-Tizoc MD, Valenzuela-Beltrán F, Torres JI, Yee D, et al. Structural Reliability Assessment of Dual RC Buildings for Different Shear Wall Configuration. Buildings. 2025; 15(11):1783. https://doi.org/10.3390/buildings15111783
Chicago/Turabian StyleVelarde, Fernando, Juan Bojórquez, Edén Bojórquez, Henry Reyes, Alfredo Reyes-Salazar, Robespierre Chávez, Mario D. Llanes-Tizoc, Federico Valenzuela-Beltrán, José I. Torres, Daniel Yee, and et al. 2025. "Structural Reliability Assessment of Dual RC Buildings for Different Shear Wall Configuration" Buildings 15, no. 11: 1783. https://doi.org/10.3390/buildings15111783
APA StyleVelarde, F., Bojórquez, J., Bojórquez, E., Reyes, H., Reyes-Salazar, A., Chávez, R., Llanes-Tizoc, M. D., Valenzuela-Beltrán, F., Torres, J. I., Yee, D., & Baca, V. (2025). Structural Reliability Assessment of Dual RC Buildings for Different Shear Wall Configuration. Buildings, 15(11), 1783. https://doi.org/10.3390/buildings15111783