Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (802)

Search Parameters:
Keywords = seismic monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 18075 KB  
Article
Geodynamic Characterization of Hydraulic Structures in Seismically Active Almaty Using Lineament Analysis
by Dinara Talgarbayeva, Andrey Vilayev, Tatyana Dedova, Oxana Kuznetsova, Larissa Balakay and Aibek Merekeyev
GeoHazards 2026, 7(1), 11; https://doi.org/10.3390/geohazards7010011 - 9 Jan 2026
Viewed by 104
Abstract
Monitoring the stability of hydraulic structures such as dams and reservoirs in seismically active regions is essential for ensuring their safety and operational reliability. This study presents a comprehensive geospatial approach combining lineament analysis and geodynamic zoning to assess the structural stability of [...] Read more.
Monitoring the stability of hydraulic structures such as dams and reservoirs in seismically active regions is essential for ensuring their safety and operational reliability. This study presents a comprehensive geospatial approach combining lineament analysis and geodynamic zoning to assess the structural stability of the Voroshilov and Priyut reservoirs located in the Almaty region, Kazakhstan. A regional lineament map was generated using ASTER GDEM data, while ALOS PALSAR data were used for detailed local analysis. Lineaments were extracted and analyzed through automated processing in PCI Geomatica. Lineament density maps and azimuthal rose diagrams were constructed to identify zones of tectonic weakness and assess regional structural patterns. Integration of lineament density, GPS velocity fields, InSAR deformation data, and probabilistic seismic hazard maps enabled the development of a detailed geodynamic zoning model. Results show that the studied sites are located within zones of low local geodynamic activity, with lineament densities of 0.8–1.2 km/km2, significantly lower than regional averages of 3–4 km/km2. GPS velocities in the area do not exceed 4 mm/year, and InSAR analysis indicates minimal surface deformation (<5 mm/year). Despite this apparent local stability, the 2024 Voroshilov Dam failure highlights the cumulative effect of regional seismic stresses (PGA up to 0.9 g) and localized filtration along fracture zones as critical risk factors. The proposed geodynamic zoning correctly identified the site as structurally stable under normal conditions but indicates that even low-activity zones are vulnerable under cumulative seismic loading. This demonstrates that an integrated approach combining remote sensing, geodetic, and seismic data can provide quantitative assessments for dam safety, predict potential high-risk zones, and support preventive monitoring in tectonically active regions. Full article
Show Figures

Figure 1

21 pages, 4706 KB  
Article
Near-Real-Time Integration of Multi-Source Seismic Data
by José Melgarejo-Hernández, Paula García-Tapia-Mateo, Juan Morales-García and Jose-Norberto Mazón
Sensors 2026, 26(2), 451; https://doi.org/10.3390/s26020451 - 9 Jan 2026
Viewed by 69
Abstract
The reliable and continuous acquisition of seismic data from multiple open sources is essential for real-time monitoring, hazard assessment, and early-warning systems. However, the heterogeneity among existing data providers such as the United States Geological Survey, the European-Mediterranean Seismological Centre, and the Spanish [...] Read more.
The reliable and continuous acquisition of seismic data from multiple open sources is essential for real-time monitoring, hazard assessment, and early-warning systems. However, the heterogeneity among existing data providers such as the United States Geological Survey, the European-Mediterranean Seismological Centre, and the Spanish National Geographic Institute creates significant challenges due to differences in formats, update frequencies, and access methods. To overcome these limitations, this paper presents a modular and automated framework for the scheduled near-real-time ingestion of global seismic data using open APIs and semi-structured web data. The system, implemented using a Docker-based architecture, automatically retrieves, harmonizes, and stores seismic information from heterogeneous sources at regular intervals using a cron-based scheduler. Data are standardized into a unified schema, validated to remove duplicates, and persisted in a relational database for downstream analytics and visualization. The proposed framework adheres to the FAIR data principles by ensuring that all seismic events are uniquely identifiable, source-traceable, and stored in interoperable formats. Its lightweight and containerized design enables deployment as a microservice within emerging data spaces and open environmental data infrastructures. Experimental validation was conducted using a two-phase evaluation. This evaluation consisted of a high-frequency 24 h stress test and a subsequent seven-day continuous deployment under steady-state conditions. The system maintained stable operation with 100% availability across all sources, successfully integrating 4533 newly published seismic events during the seven-day period and identifying 595 duplicated detections across providers. These results demonstrate that the framework provides a robust foundation for the automated integration of multi-source seismic catalogs. This integration supports the construction of more comprehensive and globally accessible earthquake datasets for research and near-real-time applications. By enabling automated and interoperable integration of seismic information from diverse providers, this approach supports the construction of more comprehensive and globally accessible earthquake catalogs, strengthening data-driven research and situational awareness across regions and institutions worldwide. Full article
(This article belongs to the Special Issue Advances in Seismic Sensing and Monitoring)
Show Figures

Figure 1

21 pages, 12613 KB  
Article
The Evolution and Impact of Glacier and Ice-Rock Avalanches in the Tibetan Plateau with Sentinel-2 Time-Series Images
by Duo Chu, Linshan Liu and Zhaofeng Wang
GeoHazards 2026, 7(1), 10; https://doi.org/10.3390/geohazards7010010 - 9 Jan 2026
Viewed by 131
Abstract
Catastrophic mass flows originating from the high mountain cryosphere often cause cascading hazards. With increasing human activities in the alpine region and the sensitivity of the cryosphere to climate warming, cryospheric hazards are becoming more frequent in the mountain regions. Monitoring the evolution [...] Read more.
Catastrophic mass flows originating from the high mountain cryosphere often cause cascading hazards. With increasing human activities in the alpine region and the sensitivity of the cryosphere to climate warming, cryospheric hazards are becoming more frequent in the mountain regions. Monitoring the evolution and impact of the glaciers and ice-rock avalanches and hazard consequences in the mountain regions is crucial to understand nature and drivers of mass flow process in order to prevent and mitigate potential hazard risks. In this study, the glacier and ice-rock avalanches that occurred in the Tibetan Plateau (TP) were investigated based on the Sentinel-2 satellite data and in situ observations, and the main driving forces and impacts on the regional environment, landscape, and geomorphological conditions were also analyzed. The results showed that the avalanche deposit of Arutso glacier No. 53 completely melted away in 2 years, while the deposit of Arutso glacier No. 50 melted in 7 years. Four large-scale ice-rock avalanches in the Sedongpu basin not only had significant impacts on the river flow, landscape, and geomorphologic shape in the basin, but also caused serious disasters in the region and beyond. These glacier and ice-rock avalanches were caused by temperature anomaly, heavy precipitation, climate warming, and seismic activity, etc., which act on the specific glacier properties in the high mountain regions. The study highlights scientific advances should support and benefit the remote and vulnerable mountain communities to make mountain regions safer. Full article
Show Figures

Figure 1

18 pages, 19599 KB  
Article
A Semi-Supervised Approach to Microseismic Source Localization with Masked Pre-Training and Residual Convolutional Autoencoder
by Zhe Wang, Xiangbo Gong, Qiao Cheng, Zhuo Xu, Zhiyu Cao and Xiaolong Li
Appl. Sci. 2026, 16(2), 683; https://doi.org/10.3390/app16020683 - 8 Jan 2026
Viewed by 70
Abstract
Microseismic monitoring is extensively applied in hydraulic fracturing and mineral extraction, with accurate event localization being a critical component. Recently, deep learning approaches have shown promise for microseismic event localization; however, most of these supervised methods depend on large, labeled datasets, which are [...] Read more.
Microseismic monitoring is extensively applied in hydraulic fracturing and mineral extraction, with accurate event localization being a critical component. Recently, deep learning approaches have shown promise for microseismic event localization; however, most of these supervised methods depend on large, labeled datasets, which are costly and challenging to acquire. To mitigate this issue, we propose a semi-supervised approach based on a residual convolutional autoencoder (RCAE) for automated microseismic localization, designed to leverage limited labeled data effectively and improve source localization accuracy even with small sample sizes. Our method employs pre-training by masking and reconstructing unlabeled seismic records, while integrating residual connections within the encoder to enhance feature extraction from seismic signals. This enables high localization accuracy with minimal labeled data, resulting in significant cost savings. Experimental results indicate that our method surpasses purely supervised approaches on both a 2D salt dome model and a 3D homogeneous half-space model, validating its effectiveness in microseismic localization. Further comparisons with baseline models highlight the method’s advantages, providing an innovative solution for improving cost-efficiency in practical applications. Full article
(This article belongs to the Special Issue Machine Learning Applications in Seismology: 2nd Edition)
18 pages, 2150 KB  
Article
Towards Near-Real-Time Seismic Phase Recognition, Event Detection, and Location with Deep Neural Networks in Volcanic Area of Campi Flegrei
by Pasquale Cantiello, Roberta Esposito, Alessandro Di Filippo and Rosario Peluso
Appl. Sci. 2026, 16(1), 458; https://doi.org/10.3390/app16010458 - 1 Jan 2026
Viewed by 198
Abstract
The real-time phase picking, detection, and location of seismic events is a crucial challenge for monitoring in densely populated volcanic areas. In such contexts, low-magnitude events may escape traditional detection methods due to high levels of anthropogenic noise, which often masks weak seismic [...] Read more.
The real-time phase picking, detection, and location of seismic events is a crucial challenge for monitoring in densely populated volcanic areas. In such contexts, low-magnitude events may escape traditional detection methods due to high levels of anthropogenic noise, which often masks weak seismic signals. This study presents the implementation of a near-real-time automatic event detector with a seismic phase recognizer, pick associator, and localiser. The system is based on PhaseNet, a well-established deep neural network recognized for its effectiveness in seismology. The main innovation introduced in this work lies in the direct application of this method to real-time data streams. This integration allows for the enhanced identification and cataloguing of low-magnitude seismic events that would otherwise remain unobserved. The adoption of the system in a real-time operational context not only increases monitoring sensitivity and responsiveness but also contributes to a more detailed and comprehensive understanding of seismic activity in critical volcanic areas, providing essential data for risk assessment and prevention. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Earthquake Science)
Show Figures

Figure 1

19 pages, 1041 KB  
Article
Smart Prediction of Rockburst Risks Using Microseismic Data and K-Nearest Neighbor Classification
by Mahmood Ahmad, Zia Ullah, Sabahat Hussan, Abdullah Alzlfawi, Rohayu Che Omar, Shay Haq, Feezan Ahmad and Muhammad Naveed Khalil
GeoHazards 2026, 7(1), 5; https://doi.org/10.3390/geohazards7010005 - 1 Jan 2026
Viewed by 147
Abstract
Effective mitigation of geotechnical risk and safety management of underground mine requires accurate estimation of rockburst damage potential. The inherent complexity of the rockburst phenomena due to nonlinear, high dimensional, and interdependent nature of the geological factors involved, however, makes predictive modeling a [...] Read more.
Effective mitigation of geotechnical risk and safety management of underground mine requires accurate estimation of rockburst damage potential. The inherent complexity of the rockburst phenomena due to nonlinear, high dimensional, and interdependent nature of the geological factors involved, however, makes predictive modeling a difficult task. The proposed research is based on the use of the K-Nearest Neighbor (KNN) algorithm to predict the risk of rockbursts with the use of microseismic monitoring data. Several key features like the ratio of total maximum principal stress to uniaxial compressive strength, energy capacity of support system, excavation span, geology factor, Richter magnitude of seismic event, distance between rockburst location and microseismic event, and rock density were applied as input parameters to extract critical rockburst precursor activities. In the test stage, the proposed KNN model recorded an accuracy of 75.50%, a precision of 0.913, a recall value of 0.509, and F1 Score of 0.576. The model is reliable with a significant performance indicating its efficacy in practice. The KNN model showed better classification results as compared to recently available models in literature and provided better generalization and interpretability. The model exhibited high prediction in classified low-risk incidents and had strong indicative capabilities towards high-risk situations, attributed to being a useful tool in rockburst hazard measurement. Full article
Show Figures

Figure 1

22 pages, 6063 KB  
Article
The KUYUY Accelerograph and SIPA System: Towards Low-Cost, Real-Time Intelligent Seismic Monitoring in Peru
by Carmen Ortiz, Jorge Alva, Roberto Raucana, Michael Chipana, José Oliden, Nelly Huarcaya, Grover Riveros and José Valverde
Sensors 2026, 26(1), 254; https://doi.org/10.3390/s26010254 - 31 Dec 2025
Viewed by 458
Abstract
Accelerographs are essential instruments for quantifying strong ground motion, serving as the foundation of modern earthquake engineering. In Peru, the first accelerographic station was installed in Lima in 1944; since then, various institutions have promoted the expansion of the national network. However, this [...] Read more.
Accelerographs are essential instruments for quantifying strong ground motion, serving as the foundation of modern earthquake engineering. In Peru, the first accelerographic station was installed in Lima in 1944; since then, various institutions have promoted the expansion of the national network. However, this network’s spatial coverage and instrumentation remain insufficient to properly characterize strong motion and support seismic risk reduction policies. In this context, the KUYUY accelerograph is presented as a low-cost, low-noise device equipped with real-time telemetry and high-performance MEMS sensors. Its interoperability with the Intelligent Automatic Processing System (SIPA) enables real-time monitoring and automated signal analysis for seismic microzonation studies and rapid damage assessment, contributing to seismic risk reduction in Peru. The validation process included static gravity calibration, field comparison with a reference accelerograph, and an initial deployment in Lima and Yurimaguas. The results demonstrate the proposed accelerograph’s linear response, temporal stability, and amplitude consistency with respect to high-end instruments, with differences below 5–10%. Full article
(This article belongs to the Special Issue Electronics and Sensors for Structure Health Monitoring)
Show Figures

Figure 1

31 pages, 4459 KB  
Article
A Study on the Increase in Measured Methane Concentration Values During the 2024 Noto Peninsula Earthquake
by Ryosaku Kaji
Atmosphere 2026, 17(1), 39; https://doi.org/10.3390/atmos17010039 - 27 Dec 2025
Viewed by 205
Abstract
This study aims to demonstrate the presence of a pronounced coseismic increase in atmospheric methane concentrations during the 2024 Noto Peninsula Earthquake and to examine whether this increase may have originated from underground natural gas release. By analyzing hourly CH4 data from [...] Read more.
This study aims to demonstrate the presence of a pronounced coseismic increase in atmospheric methane concentrations during the 2024 Noto Peninsula Earthquake and to examine whether this increase may have originated from underground natural gas release. By analyzing hourly CH4 data from the Ministry of the Environment’s monitoring network, this study shows that significant methane increases occurred only in areas with seismic intensity of 6– or greater, and that an exceptional anomaly—reaching 29 times the standard deviation of the past year—was recorded at the Nanao station. The validity of this anomaly was confirmed through consultation with local atmospheric officer, and high-time-resolution data (6 min values) were provided, verifying continuous instrument operation. Detailed analysis further shows that two major methane peaks occurred, each rising not immediately after the main shock but synchronously with two large aftershocks approximately 8 and 44 min later. Geological and hydrogeological information indicates the presence of water-soluble gas and unsaturated hydrocarbons beneath the Nanao region, suggesting that seismic shaking may have ruptured clay layers and released accumulated gas. Analyses of public reports and interviews with local officials show that alternative explanations—such as fire smoke, pipeline rupture, instrument malfunction, and gas-cylinder damage—were unlikely. These findings indicate that the observed methane anomaly was most likely caused by earthquake-synchronous underground gas release, suggesting that methane-release risk should be considered in post-earthquake fire-hazard assessments. Full article
Show Figures

Figure 1

20 pages, 15925 KB  
Article
Observational Study on Spatiotemporal Characteristics of Outgoing Longwave Radiation Anomalies Associated with the Dezhou Ms5.5 Earthquake
by Tao Jing, Jing Cui, Qiang Wang, Jun Liu, Yi Sun, Yuyong Yang and Xinqian Wang
Atmosphere 2026, 17(1), 35; https://doi.org/10.3390/atmos17010035 - 26 Dec 2025
Viewed by 182
Abstract
This study presents a case study of the Ms5.5 Dezhou Earthquake to document the spatiotemporal characteristics of Outgoing Longwave Radiation (OLR) anomalies and their concurrent patterns with tidal force cycles. Based on NOAA satellite OLR data, synchronous monitoring and comparative analysis were conducted [...] Read more.
This study presents a case study of the Ms5.5 Dezhou Earthquake to document the spatiotemporal characteristics of Outgoing Longwave Radiation (OLR) anomalies and their concurrent patterns with tidal force cycles. Based on NOAA satellite OLR data, synchronous monitoring and comparative analysis were conducted with tidal force variation cycles. The results show that pronounced OLR anomalies were concentrated exclusively in the co-seismic tidal cycle (Cycle C: 23 July–5 August 2023), while no significant anomalies were detected in pre-seismic Cycles A/B and post-seismic Cycle D. Temporally, the OLR anomalies in Cycle C exhibited a distinct six-stage evolutionary pattern: initial warming (31 July) → rapid intensification (1–3 August) → peak (4 August) → abrupt decline (5 August) → post-seismic pulse (6 August) → exponential decay (7–9 August). Spatially, the anomalies were closely distributed along the Liaocheng–Lankao Fault, showing a NE-trending (N35°E) distribution that matches the structural characteristics of the fault zone. Additionally, the spatial extent of OLR anomalies (within 400 km of the epicenter) is consistent with the effective detection range of co-seismic electromagnetic signals reported in existing studies. This study provides a typical observational case of OLR anomaly characteristics associated with medium-magnitude earthquakes, offering a reference for understanding the spatiotemporal evolution of seismic thermal anomalies. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

12 pages, 4170 KB  
Article
Wind-Induced Seismic Noise and Stable Resonances Reveal Ice Shelf Thickness at Pine Island Glacier
by Yuqiao Chen, Peng Yan, Yuande Yang, David M. Holland and Fei Li
J. Mar. Sci. Eng. 2026, 14(1), 36; https://doi.org/10.3390/jmse14010036 - 24 Dec 2025
Viewed by 280
Abstract
Antarctic ice shelves regulate ice-sheet discharge and global sea-level rise, yet their rapid retreat underscores the need for new, low-cost monitoring tools. We analyze ambient seismic noise recorded by seismometers on the Pine Island Glacier ice shelf to characterize wind-induced signals and detect [...] Read more.
Antarctic ice shelves regulate ice-sheet discharge and global sea-level rise, yet their rapid retreat underscores the need for new, low-cost monitoring tools. We analyze ambient seismic noise recorded by seismometers on the Pine Island Glacier ice shelf to characterize wind-induced signals and detect persistent structural resonances. Power spectral analysis shows that wind sensitivity is strongly damped compared with bedrock sites: noise increases only 5–7 dB from 0 to 25 m s−1 winds, versus a 42 dB increase at an inland bedrock station, reflecting the contrasted coupling environments of floating and grounded substrates. The horizontal-to-vertical spectral ratio (HVSR) spectrograms reveal two temporally stable peaks at ~2.2 Hz and ~4.3 Hz that persist across stations and remain independent of environmental forcing. Forward modeling indicates that these peaks correspond to S-wave resonances within the ice shelf. The inferred ice-water interface depth (~440 m) agrees with the Bedmap2 thickness estimate (466 m). This work demonstrates that HVSR provides an effective passive, single-station method for measuring ice shelf thickness. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

18 pages, 13431 KB  
Article
Research on Synergistic Fracturing Technology for Lateral Multi-Layer Thick Hard Rock Stratum in Fully Mechanized Faces with Large Mining Height Based on the Triangular Slip Zone Theory
by Hui Gao, Chenlong Qian, Xufeng Wang, Chongpeng Ren and Yuanman Xie
Appl. Sci. 2026, 16(1), 130; https://doi.org/10.3390/app16010130 - 22 Dec 2025
Viewed by 153
Abstract
In response to ground pressure problems such as an abnormal increase in working face support resistance and severe roadway floor heave induced by the lateral composite structure of the multi-layer thick and hard roof in the 11,223 working face of Xiaojihan Coal Mine, [...] Read more.
In response to ground pressure problems such as an abnormal increase in working face support resistance and severe roadway floor heave induced by the lateral composite structure of the multi-layer thick and hard roof in the 11,223 working face of Xiaojihan Coal Mine, based on the triangle area slip theory, this study reveals that the lateral triangle area forms a composite structure of “cantilever beam + masonry beam”. The stress transfer and unloading mechanism of the high- and low-position thick and hard rock stratum fracturing was clarified. A technical scheme is proposed and implemented to weaken the high- and low-position thick and hard rock strata through horizontal Long Directional Borehole synergistic fracturing and optimize stress transfer. The results show that (1) the lateral overlying rock forms a triangular slip area under the clamping of the cantilever and masonry beam structures. This composite structure is the main reason for the increase in the support resistance at the end of the working face and the stress concentration of the roadway surrounding rock. (2) The influence law that the load of the triangular slip area is mainly influenced by the length of the broken block, and the breaking angle was clarified. The distribution characteristics of the load in the lateral triangle area under the fracturing of thick and hard rock strata at different horizons are mastered. When the length of the key block is reduced by 40%, the supporting force F1 of the rock mass below the broken block on it is reduced by 62.5%, and the supporting force F2 and the frictional force F3 of the end part on the broken area of the triangle area are reduced by 34.6%. (3) The fracturing of high- and low-position thick and hard rock strata can collaboratively weaken the stress accumulation at high and low positions. Fracturing the low-position thick and hard rock strata can cut off the low-position “cantilever beam” structure, and fracturing the high-position thick and hard rock strata at the same time can transfer the load of the “masonry beam”. Through simulation, it is seen that the stress peaks at the end of the working face and the roadway surrounding rock during synergistic fracturing are, respectively, reduced by 12.2% and 28.9%. (4) An industrial test of directional drilling hydraulic fracturing of lateral thick and hard rock strata is carried out, achieving the regulation effect that the average value of the support resistance at the end of the cycle is reduced from 27.2 MPa to 22.7 MPa, and the floor heave amount of the reused roadway is reduced by 62.3%. The research results can provide a reference for the advanced treatment of the strong ground pressure area of the multi-layer thick and hard roof. Full article
Show Figures

Figure 1

16 pages, 4018 KB  
Article
Seismic Monitoring of Coal-Rock Mass Damage Under Static and Dynamic Loads and Its Application in Coal Burst Forecast
by Changbin Wang, Anye Cao, Yifan Zang, Hui Li and Yang Yue
Appl. Sci. 2025, 15(24), 13208; https://doi.org/10.3390/app152413208 - 17 Dec 2025
Viewed by 203
Abstract
Precise monitoring of damage evolution in coal-rock mass during mining emerges as a paramount requirement for developing accurate early warning systems for coal burst hazards. However, limited research has demonstrated the integrated damage characteristics of the coal-rock mass under static and dynamic loads [...] Read more.
Precise monitoring of damage evolution in coal-rock mass during mining emerges as a paramount requirement for developing accurate early warning systems for coal burst hazards. However, limited research has demonstrated the integrated damage characteristics of the coal-rock mass under static and dynamic loads during longwall mining. Therefore, in this paper, two novel seismic monitoring approaches, the Seismic Cluster Index (CI) and the Number of High Ground Motions (NHGMs), are developed to study the evolution of coal-rock mass damage during longwall mining under static and dynamic loads, respectively. Two months of monitored seismic data from a burst-prone longwall are used for analysis. The results show that CI can depict coal-rock damage conditions under static load, which identifies coalescence of fractures based on seismic source sizes and inter-event distances. Ground motion intensity has a positive correlation with seismic energy. The induced dynamic disturbance to roadways can further weaken the coal-rock mass, depending on the distance from the seismic sources. High-intensity dynamic disturbances, as indicated by elevated NHGMs and accelerated increments, strongly correlate with coal-burst damage. The proposed CI and NHGMs framework evaluate coal-rock mass damage and forecasts coal burst hazards, validated by the correlation between high CI/NHGMs values and actual burst locations. Full article
Show Figures

Figure 1

24 pages, 3218 KB  
Article
Analysis of Ionospheric TEC Anomalies Using BDS High-Orbit Satellite Data: A Regional Statistical Study and a Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Hanyi Cao, Ranran Shen, Meiting Xin, Penggang Tian and Lin Pan
Remote Sens. 2025, 17(24), 4032; https://doi.org/10.3390/rs17244032 - 14 Dec 2025
Viewed by 391
Abstract
This study presents a comprehensive analysis of pre- and co-seismic ionospheric disturbances associated with the 2023 Ms6.2 Jishishan earthquake by leveraging the unique observational strengths of BDS, particularly its high-orbit satellites. A multi-parameter space weather index was employed to effectively isolate seismogenic signals [...] Read more.
This study presents a comprehensive analysis of pre- and co-seismic ionospheric disturbances associated with the 2023 Ms6.2 Jishishan earthquake by leveraging the unique observational strengths of BDS, particularly its high-orbit satellites. A multi-parameter space weather index was employed to effectively isolate seismogenic signals from geomagnetic disturbances, confirming that the main shock occurred during geomagnetically quiet conditions. Statistical analysis of 41 historical earthquakes (Mw ≥ 5.5) reveals that 47.2% were associated with detectable Total Electron Content (TEC) anomalies. An inverse correlation between earthquake magnitude and anomaly detectability within a 31-day window suggests prolonged precursor durations for larger events may produce longer-duration precursory signals, which challenge conventional detection methods. The synergistic capabilities of BDS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites were demonstrated: GEO satellites provide unprecedented temporal stability for continuous TEC monitoring, while IGSO satellites enable high-resolution spatial mapping of Co-seismic Ionospheric Disturbances (CIDs). The detected CIDs propagated at velocities below 1.6 km/s, consistent with acoustic gravity wave (AGW) mechanisms. A case study during a geomagnetically active period further reveals modulated CID propagation characteristics, indicating potential coupling between seismic forcing and space weather. Our findings validate BDS as a powerful and precise tool for ionospheric seismology and provide critical insights into Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) dynamics. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

19 pages, 6064 KB  
Article
Distributed Acoustic Sensing of Urban Telecommunication Cables for Subsurface Tomography
by Yanzhe Zhang, Cai Liu, Jing Li and Qi Lu
Appl. Sci. 2025, 15(24), 13145; https://doi.org/10.3390/app152413145 - 14 Dec 2025
Viewed by 317
Abstract
With the continuous development of cities and the increasing utilization of underground space, ambient noise seismic imaging has become an essential approach for exploring and monitoring the urban subsurface. The integration of Distributed Acoustic Sensing (DAS) with ambient noise imaging offers a more [...] Read more.
With the continuous development of cities and the increasing utilization of underground space, ambient noise seismic imaging has become an essential approach for exploring and monitoring the urban subsurface. The integration of Distributed Acoustic Sensing (DAS) with ambient noise imaging offers a more convenient and effective solution for investigating shallow subsurface structures in urban environments. To overcome the limitations of conventional ambient noise seismic nodes, which are costly and incapable of achieving high-density data acquisition, this work makes use of existing urban telecommunication fibers to record ambient noise and perform sliding-window cross-correlation on it. Then the Phase-Weighted Stack (PWS) technique is applied to enhance the quality and stability of the cross-correlation signals, and fundamental-mode Rayleigh wave dispersion curves are extracted from the cross-correlation functions through the High-Resolution Linear Radon Transform (HRLRT). In the inversion stage, an adaptive regularization strategy based on automatic L-curve corner detection is introduced, which, in combination with the Preconditioned Steepest Descent (PSD) method, enables efficient and automated dispersion inversion, resulting in a well-resolved near-surface S-wave velocity structure. The results indicate that the proposed workflow can extract useful surface-wave dispersion information under typical urban noise conditions, achieving a feasible level of subsurface velocity imaging and providing a practical technical means for urban underground space exploration and utilization. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

25 pages, 7433 KB  
Article
Spatial and Magnitude Distribution of Seismic Events in Santorini Island, January–February 2025: Tectonic or Volcanic Earthquakes?
by Alexandra Moshou
GeoHazards 2025, 6(4), 81; https://doi.org/10.3390/geohazards6040081 - 12 Dec 2025
Viewed by 1075
Abstract
During January–February 2025, the Santorini volcanic complex experienced intense seismic activity, increasing interest and concern regarding the possible reactivation of the magmatic system. This study investigates the spatial and magnitude distribution of seismic events with the aim of distinguishing between tectonic and volcanic [...] Read more.
During January–February 2025, the Santorini volcanic complex experienced intense seismic activity, increasing interest and concern regarding the possible reactivation of the magmatic system. This study investigates the spatial and magnitude distribution of seismic events with the aim of distinguishing between tectonic and volcanic earthquakes and understanding the underlying processes governing seismicity in the region. The analysis is based on data from the national and local seismic network, including epicenter and focus determination, local magnitude (ML) calculation, depth analysis, statistical processing, and the application of machine learning methods for event classification. The results show that tectonic earthquakes are mainly located at depths, D > 8 km along active faults, while volcanic earthquakes are concentrated at shallower levels (D < 5 km) below the volcanic center. The analysis of b values suggests the differentiation of the focal mechanism, with higher values for volcanic events, which is related to fluid and magmatic pressure processes. The spatiotemporal evolution of seismicity demonstrates seismic swarm characteristics, without a main earthquake, which are attributed to processes within the subvolcanic system. The study contributes to improving the understanding of the current seismovolcanic crisis of Santorini and enhances the ability to identify magmatic instability processes in a timely manner, critical for hazard assessment and monitoring of the South Aegean volcanic arc. Full article
(This article belongs to the Special Issue Active Faulting and Seismicity—2nd Edition)
Show Figures

Figure 1

Back to TopTop