Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = seismic–volcanic monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 32212 KiB  
Article
Remote Sensing of Seismic Signals via Enhanced Moiré-Based Apparatus Integrated with Active Convolved Illumination
by Adrian A. Moazzam, Anindya Ghoshroy, Durdu Ö. Güney and Roohollah Askari
Remote Sens. 2025, 17(12), 2032; https://doi.org/10.3390/rs17122032 - 12 Jun 2025
Viewed by 640
Abstract
The remote sensing of seismic waves in challenging and hazardous environments, such as active volcanic regions, remains a critical yet unresolved challenge. Conventional methods, including laser Doppler interferometry, InSAR, and stereo vision, are often hindered by atmospheric turbulence or necessitate access to observation [...] Read more.
The remote sensing of seismic waves in challenging and hazardous environments, such as active volcanic regions, remains a critical yet unresolved challenge. Conventional methods, including laser Doppler interferometry, InSAR, and stereo vision, are often hindered by atmospheric turbulence or necessitate access to observation sites, significantly limiting their applicability. To overcome these constraints, this study introduces a Moiré-based apparatus augmented with active convolved illumination (ACI). The system leverages the displacement-magnifying properties of Moiré patterns to achieve high precision in detecting subtle ground movements. Additionally, ACI effectively mitigates atmospheric fluctuations, reducing the distortion and alteration of measurement signals caused by these fluctuations. We validated the performance of this integrated solution through over 1900 simulations under diverse turbulence intensities. The results illustrate the synergistic capabilities of the Moiré apparatus and ACI in preserving the fidelity of Moiré fringes, enabling reliable displacement measurements even under conditions where passive methods fail. This study establishes a cost-effective, scalable, and non-invasive framework for remote seismic monitoring, offering transformative potential across geophysics, volcanology, structural analysis, metrology, and other domains requiring precise displacement measurements under extreme conditions. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

19 pages, 22225 KiB  
Article
Integrated Correction of Nonlinear Dynamic Drift in Terrestrial Mobile Gravity Surveys: A Comparative Study Based on the Northeastern China Gravity Monitoring Network
by Zhaohui Chen and Jinzhao Liu
Remote Sens. 2025, 17(12), 2025; https://doi.org/10.3390/rs17122025 - 12 Jun 2025
Viewed by 429
Abstract
The Northeastern China Gravity Monitoring Network (NCGMN; 40–50°N), a pioneering time-variable gravity monitoring system in high-latitude cold-temperate environments, serves as a critical infrastructure for geodynamic investigations of the Songliao Basin, Changbai Mountain volcanic zone, and northern Tan-Lu Fault Zone. To address the data [...] Read more.
The Northeastern China Gravity Monitoring Network (NCGMN; 40–50°N), a pioneering time-variable gravity monitoring system in high-latitude cold-temperate environments, serves as a critical infrastructure for geodynamic investigations of the Songliao Basin, Changbai Mountain volcanic zone, and northern Tan-Lu Fault Zone. To address the data reliability challenges posed by nonlinear dynamic drifts in spring-type relative gravimeters during mobile surveys, this study quantifies—for the first time—the non-smooth normal distribution characteristics of such drifts using the inaugural 2015 dataset from two CG-5 instruments. Results demonstrate a 7–15% reduction in mean dynamic drift rates compared to static conditions, with spatiotemporal variability governed by multi-physics field coupling (terrain undulation, thermal fluctuation, and barometric perturbation). A comprehensive correction framework—integrating a gravimetric line drift rate computation, multi-model validation, and absolute datum cross-validation—reveals gravity value discrepancies up to ±10 μGal across models. The innovative hybrid scheme combines local drift preprocessing (initial-point modeling, line fitting, variance-sum optimization) with global adjustment optimization, achieving the significant suppression of nonlinear drift errors. The variance-sum optimal and Bayesian adjustment hybrid synergizes local variance minimization and global temporal correlation priors, delivering the following: (1) 34% and 29% reductions in segment self-difference standard deviations versus classical and Bayesian adjustments; (2) 24% and 14% decreases in segment residual standard deviations; (3) 12% and 6% improvements in absolute datum cross-validation precision. This study establishes a foundation for the reliable extraction of μGal-level gravity signals, advancing high-precision gravity monitoring of seismicity, volcanic unrest, and fault zone deformation in complex terrains. By harmonizing local-scale accuracy with network-wide consistency, the framework sets a new benchmark for time-variable gravity studies in challenging environments. Full article
Show Figures

Figure 1

12 pages, 22446 KiB  
Article
Detection of Seismic and Acoustic Sources Using Distributed Acoustic Sensing Technology in the Gulf of Catania
by Abdelghani Idrissi, Danilo Bonanno, Letizia S. Di Mauro, Dídac Diego-Tortosa, Clara Gómez-García, Stephan Ker, Florian Le Pape, Shane Murphy, Sara Pulvirenti, Giorgio Riccobene, Simone Sanfilippo and Salvatore Viola
J. Mar. Sci. Eng. 2025, 13(4), 658; https://doi.org/10.3390/jmse13040658 - 25 Mar 2025
Cited by 1 | Viewed by 1044
Abstract
Distributed Acoustic Sensing (DAS) technology presents an innovative method for marine monitoring by adapting existing underwater optical fiber networks. This paper examines the use of DAS with the Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali del Sud (INFN-LNS) optical fiber infrastructure in the Gulf [...] Read more.
Distributed Acoustic Sensing (DAS) technology presents an innovative method for marine monitoring by adapting existing underwater optical fiber networks. This paper examines the use of DAS with the Istituto Nazionale di Fisica Nucleare–Laboratori Nazionali del Sud (INFN-LNS) optical fiber infrastructure in the Gulf of Catania, Eastern Sicily, Italy. This region in the Western Ionian Sea provides a unique natural laboratory due to its tectonic and volcanic activity, proximity to Mount Etna, diverse marine ecosystems and significant human influence through maritime traffic. By connecting a 28 km long optical cable to an Alcatel Submarine Network OptoDAS interrogator, DAS successfully detected a range of natural and human–made signals, including a magnitude 3.5 ML earthquake recorded on 14 November 2023, and acoustic signatures from vessel noise. The earthquake–induced Power Spectral Density (PSD) increased to up to 30 dB above background levels in the 1–15 Hz frequency range, while vessel noise exhibited PSD peaks between 30 and 60 Hz with increases of up to 5 dB. These observations offered a detailed spatial and temporal resolution for monitoring seismic wave propagation and vessel acoustic noise. The results underscore DAS’s capability as a robust tool for the continuous monitoring of the rich underwater environments in the Gulf of Catania. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

16 pages, 4638 KiB  
Article
A 34-Year Record of Seismic Activity on Vulcano Island, Italy
by Susanna Falsaperla, Salvatore Spampinato, Ornella Cocina and Giovanni Barreca
Geosciences 2025, 15(3), 96; https://doi.org/10.3390/geosciences15030096 - 8 Mar 2025
Viewed by 1086
Abstract
Following the abrupt geochemical and geophysical variations that occurred on the island of Vulcano in September 2021, the search for previous multidisciplinary data on decades-long time spans became necessary to contextualize the newly recorded anomalous variations, which represented a serious threat for the [...] Read more.
Following the abrupt geochemical and geophysical variations that occurred on the island of Vulcano in September 2021, the search for previous multidisciplinary data on decades-long time spans became necessary to contextualize the newly recorded anomalous variations, which represented a serious threat for the local population. Our analyses of ‘vintage’ reports, old documents and analogue seismograms, broaden our understanding of crustal seismic activity. The results unravel the predominant role of Vulcano’s hydrothermal system with respect to tectonic processes in the generation of seismicity in the analyzed sector. Earthquakes were generally located offshore and achieved a maximum M4.6. A 2D strain release map and DBSCAN application highlight seismogenic volumes to the NW, SW and E offshore of the island and trending NNW-SSE inshore, in agreement with structural patterns. Two major volcano unrests in 1985 and 1988 had seismicity mostly confined to the island. In comparison, the longer duration and typology of seismic signals recorded between 2021 and 2022 make this latest episode peculiar in the context of Vulcano’s past seismic activity. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

14 pages, 3730 KiB  
Article
Near-Real-Time Event-Driven System for Calculating Peak Ground Acceleration (PGA) in Earthquake-Affected Areas: A Critical Tool for Seismic Risk Management in the Campi Flegrei Area
by Claudio Martino, Pasquale Cantiello and Rosario Peluso
GeoHazards 2025, 6(1), 8; https://doi.org/10.3390/geohazards6010008 - 15 Feb 2025
Viewed by 4572
Abstract
Peak Ground Acceleration (PGA) is a measure of the maximum ground shaking intensity during an earthquake. The estimation of PGA in areas affected by earthquakes is a fundamental task in seismic hazard assessment and emergency response. This paper presents an automated service capable [...] Read more.
Peak Ground Acceleration (PGA) is a measure of the maximum ground shaking intensity during an earthquake. The estimation of PGA in areas affected by earthquakes is a fundamental task in seismic hazard assessment and emergency response. This paper presents an automated service capable of rapidly calculating the PGA’s values in regions impacted by seismic events and publishing its results on an interactive website. The importance of such a service is discussed, focusing on its contribution to timely response efforts and infrastructure resilience. The necessity for automatic and real-time systems in earthquake-prone areas is emphasized, enabling decision-makers to assess damage potential and deploy resources efficiently. Thanks to a collaboration agreement with the Civil Protection Department, we are able to acquire accelerometric data from the Italian National Accelerometric Network (RAN) in real time at the monitoring center of the Osservatorio Vesuviano. These data, in addition to those normally acquired by the INGV network, enable us to utilize all available accelerometric data in the Campi Flegrei area, enhancing our capacity to provide timely and accurate PGA estimates during seismic events in this highly active volcanic region. Full article
Show Figures

Figure 1

18 pages, 5424 KiB  
Article
A Geographical Complementary Approach to Unveiling the Spatial Dynamics of Bradyseismic Events at the Campi Flegrei Caldera
by Stefano De Falco and Claudio Martino
Geographies 2025, 5(1), 4; https://doi.org/10.3390/geographies5010004 - 29 Jan 2025
Cited by 2 | Viewed by 1619
Abstract
Concerning the monitoring of the resumption of seismic activity at the Campi Flegrei caldera, which is causing concern to the inhabitants and involving various protection efforts by research bodies, this work intends to constitute a complementary and auxiliary tool with respect to the [...] Read more.
Concerning the monitoring of the resumption of seismic activity at the Campi Flegrei caldera, which is causing concern to the inhabitants and involving various protection efforts by research bodies, this work intends to constitute a complementary and auxiliary tool with respect to the geophysical studies in progress. In particular, a geographical analysis of the phenomenon is proposed here aimed at identifying any spatial dynamics that can be added to the interpretation of seismic activity in a strictly geological and geophysical manner. The research study is focused on the comparison between the historical series of data starting from the year 2005 and those data relating to the last two years 2023 and 2024, in which the phenomenon resumed; particularly, the month of May 2024 is analyzed, which was characterized by high intensity of seismic events in the area. The results obtained through the joint use of spatial analysis tools aim, therefore, to identify any geographical seismic clusters that can then be interpreted in a geophysical way and can be used as an addendum in the current risk maps. Indeed, this geographical approach revealed complex spatial heterogeneities demonstrating the value of combining multiple methodological tools. The findings highlight the importance of multidisciplinary approaches in volcanic research and their critical role in improving hazard assessment and risk mitigation efforts. Full article
Show Figures

Figure 1

22 pages, 8813 KiB  
Article
Monitoring of Ionospheric Anomalies Using GNSS Observations to Detect Earthquake Precursors
by Nicola Perfetti, Yuri Taddia and Alberto Pellegrinelli
Remote Sens. 2025, 17(2), 338; https://doi.org/10.3390/rs17020338 - 19 Jan 2025
Cited by 2 | Viewed by 1888
Abstract
The study of the Earth’s ionosphere is a topic that has increased in relevance over the past few decades. The ability to predict the ionosphere’s behavior, as well as to mitigate the effects of its rapid changes, is a matter of primary importance [...] Read more.
The study of the Earth’s ionosphere is a topic that has increased in relevance over the past few decades. The ability to predict the ionosphere’s behavior, as well as to mitigate the effects of its rapid changes, is a matter of primary importance in satellite communications, positioning, and navigation applications at present. Ionosphere perturbations can be produced by geomagnetic storms correlated with the solar activity or by earthquakes, volcanic activities, and so on. The monitoring of space weather is achieved through analyzing the Vertical Total Electron Content (VTEC) and its anomalies by means of time series, maps, and other derived parameters. In this study, we outline a strategy to estimate the VTEC in real-time, its rate of change, and the corresponding Signal-to-Noise Ratio (SNR) based on dual-frequency GNSS Doppler observations. We describe how to compute these parameters from GNSS data for a regional network using Adjusted Spherical Harmonic Analysis (ASHA) applied to a local model. The proposed method was tested to study ionospheric anomalies for two seismic events: the 2015 Nepal and 2023 Turkey earthquakes. In both cases, anomalies were detected in the maps of the differential VTEC (DTEC), differential VTEC rate, and SNR of the VTEC produced close to the earthquake zone. The robustness of the results is strongly related to the availability of a dense Ionosphere Pierce Point (IPP) cloud on the ionospheric layer and surrounding the studied area. At present, the distribution of Continuously Operating Reference Stations (CORSs) around the world is insufficiently dense and homogeneous in certain regions (e.g., the oceans). Robustness can be improved by increasing the number of CORSs and developing new models involving measurements over ocean surfaces. Full article
Show Figures

Figure 1

24 pages, 55271 KiB  
Article
Santorini Volcanic Complex (SVC): How Much Has the Crustal Velocity Structure Changed since the 2011–2012 Unrest, and at What Point Are We Now?
by Andreas Karakonstantis and Filippos Vallianatos
Geosciences 2024, 14(10), 263; https://doi.org/10.3390/geosciences14100263 - 4 Oct 2024
Viewed by 4036
Abstract
This study is focused on one of the most active features of the Hellenic Volcanic Arc Southern Aegean Sea, the Santorini Island Volcanic Complex (SVC). The recent volcano-tectonic crisis in the intracalderic area has emerged the need for closer monitoring of the region. [...] Read more.
This study is focused on one of the most active features of the Hellenic Volcanic Arc Southern Aegean Sea, the Santorini Island Volcanic Complex (SVC). The recent volcano-tectonic crisis in the intracalderic area has emerged the need for closer monitoring of the region. The 2011–2012 unrest has been attributed to the augmentation of fluid flow inside local mapped fracture zones. After March 2012, the seismic activity dropped significantly, raising questions about whether we would have a long period of quiescence or be on a break before the next period of unrest. In this research, a re-examination of the seismic outbreak of 2011–2012 was conducted by adding more travel-time data from 2013 while we further analyzed the waveform data from 2014 to May 2024 to explore the differences of the SVC body-wave velocity structure by performing seismic tomography in these two time windows. The new dataset serves to identify the state of the Santorini Volcanic Complex. The results show a significant reduction in Vp and Vs anomalies at shallow depths since the period of unrest. At the same time, the distribution of Vp/Vs ratio remains high (>1.87) in the area NNE of Kameni at a shallower depth (2 km). The areas of Christiana Islands and Columbo volcano are mainly characterized by negative body-wave anomalies and low Vp/Vs ratio (1.56–1.64) at shallow depths for the study period, while a possible explanation to results in the submarine volcano may be explained by dry steam/gas phases that may have resulted in the generation of the swarms that occurred in the region. Full article
Show Figures

Figure 1

15 pages, 50410 KiB  
Article
Hydroacoustic Monitoring of Mayotte Submarine Volcano during Its Eruptive Phase
by Aude Lavayssière, Sara Bazin and Jean-Yves Royer
Geosciences 2024, 14(6), 170; https://doi.org/10.3390/geosciences14060170 - 17 Jun 2024
Cited by 4 | Viewed by 2689
Abstract
Submarine volcanoes are more challenging to monitor than subaerial volcanoes. Yet, the large eruption of the Hunga Tonga-Hunga Ha’apai volcano in the Tonga archipelago in 2022 was a reminder of their hazardous nature and hence demonstrated the need to study them. In October [...] Read more.
Submarine volcanoes are more challenging to monitor than subaerial volcanoes. Yet, the large eruption of the Hunga Tonga-Hunga Ha’apai volcano in the Tonga archipelago in 2022 was a reminder of their hazardous nature and hence demonstrated the need to study them. In October 2020, four autonomous hydrophones were moored in the sound fixing and ranging channel 50 km offshore Mayotte Island, in the North Mozambique Channel, to monitor the Fani Maoré 2018–2020 submarine eruption. Between their deployment and July 2022, this network of hydrophones, named MAHY, recorded sounds generated by the recent volcanic activity, along with earthquakes, submarine landslides, marine mammals calls, and marine traffic. Among the sounds generated by the volcanic activity, impulsive signals have been evidenced and interpreted as proxy for lava flow emplacements. The characteristics and the spatio-temporal evolution of these hydroacoustic signals allowed the estimation of effusion and flow rates, key parameters for volcano monitoring. These sounds are related to the non-explosive quenching of pillow lavas due to the rapid heat transfer between hot lava and cold seawater, with this process releasing an energy equivalent to an airgun source as used for active seismic exploration. Volcano observatories could hence use autonomous hydrophones in the water column to detect and monitor active submarine eruptions in the absence of regular on-site seafloor survey. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

20 pages, 6106 KiB  
Article
A Hidden Eruption: The 21 May 2023 Paroxysm of the Etna Volcano (Italy)
by Emanuela De Beni, Cristina Proietti, Simona Scollo, Massimo Cantarero, Luigi Mereu, Francesco Romeo, Laura Pioli, Mariangela Sciotto and Salvatore Alparone
Remote Sens. 2024, 16(9), 1555; https://doi.org/10.3390/rs16091555 - 27 Apr 2024
Cited by 8 | Viewed by 5070
Abstract
On 21 May 2023, a hidden eruption occurred at the Southeast Crater (SEC) of Etna (Italy); indeed, bad weather prevented its direct and remote observation. Tephra fell toward the southwest, and two lava flows propagated along the SEC’s southern and eastern flanks. The [...] Read more.
On 21 May 2023, a hidden eruption occurred at the Southeast Crater (SEC) of Etna (Italy); indeed, bad weather prevented its direct and remote observation. Tephra fell toward the southwest, and two lava flows propagated along the SEC’s southern and eastern flanks. The monitoring system of the Istituto Nazionale di Geofisica e Vulcanologia testified to its occurrence. We analyzed the seismic and infrasound signals to constrain the temporal evolution of the fountain, which lasted about 5 h. We finally reached Etna’s summit two weeks later and found an unexpected pyroclastic density current (PDC) deposit covering the southern lava flow at its middle portion. We performed unoccupied aerial system and field surveys to reconstruct in 3D the SEC, lava flows, and PDC deposits and to collect some samples. The data allowed for detailed mapping, quantification, and characterization of the products. The resulting lava flows and PDC deposit volumes were (1.54 ± 0.47) × 106 m3 and (1.30 ± 0.26) × 105 m3, respectively. We also analyzed ground-radar and satellite data to evaluate that the plume height ranges between 10 and 15 km. This work is a comprehensive analysis of the fieldwork, UAS, volcanic tremor, infrasound, radar, and satellite data. Our results increase awareness of the volcanic activity and potential dangers for visitors to Etna’s summit area. Full article
Show Figures

Figure 1

16 pages, 12646 KiB  
Article
Application of Time Series INSAR (SBAS) Method Using Sentinel-1 for Monitoring Ground Deformation of the Aegina Island (Western Edge of Hellenic Volcanic Arc)
by Ioanna-Efstathia Kalavrezou, Ignacio Castro-Melgar, Dimitra Nika, Theodoros Gatsios, Spyros Lalechos and Issaak Parcharidis
Land 2024, 13(4), 485; https://doi.org/10.3390/land13040485 - 9 Apr 2024
Cited by 16 | Viewed by 3879
Abstract
This study employs advanced synthetic aperture radar (SAR) techniques, specifically the small baseline subset (SBAS) method, to analyze ground deformation dynamics on Aegina, a volcanic island within the Hellenic Volcanic Arc. Using Sentinel-1 satellite data spanning January 2016 to May 2023, this research [...] Read more.
This study employs advanced synthetic aperture radar (SAR) techniques, specifically the small baseline subset (SBAS) method, to analyze ground deformation dynamics on Aegina, a volcanic island within the Hellenic Volcanic Arc. Using Sentinel-1 satellite data spanning January 2016 to May 2023, this research reveals different deformation behaviors. The towns of Aegina and Saint Marina portray regions of stability, contrasting with central areas exhibiting subsidence rates of up to 1 cm/year. The absence of deformation consistent with volcanic activity on Aegina Island aligns with geological records and limited seismic activity, attributing the observed subsidence processes to settlement phenomena from past volcanic events and regional geothermal activity. These findings reinforce the need for continuous monitoring of the volcanic islands located in the Hellenic Volcanic Arc, providing important insights for local risk management, and contributing to our broader understanding of geodynamic and volcanic processes. Full article
(This article belongs to the Special Issue Ground Deformation Monitoring via Remote Sensing Time Series Data)
Show Figures

Figure 1

22 pages, 17116 KiB  
Article
Active Faults, Kinematics, and Seismotectonic Evolution during Tajogaite Eruption 2021 (La Palma, Canary Islands, Spain)
by Miguel Ángel Rodríguez-Pascua, Raúl Perez-Lopez, María Ángeles Perucha, Nieves Sánchez, Julio López-Gutierrez, José F. Mediato, David Sanz-Mangas, Gonzalo Lozano, Inés Galindo, Juan Carlos García-Davalillo, Carlos Lorenzo Carnicero and Marta Béjar
Appl. Sci. 2024, 14(7), 2745; https://doi.org/10.3390/app14072745 - 25 Mar 2024
Cited by 2 | Viewed by 6910
Abstract
During the 2021 La Palma strombolian and fissure eruption, two faults were identified that controlled the spatial distribution of earthquake hypocenters and effusive eruptive vents. One of these faults has a NW-SE trend (Tazacorte Fault: TZF) and the other one shows an ENE-WSW [...] Read more.
During the 2021 La Palma strombolian and fissure eruption, two faults were identified that controlled the spatial distribution of earthquake hypocenters and effusive eruptive vents. One of these faults has a NW-SE trend (Tazacorte Fault: TZF) and the other one shows an ENE-WSW trend (Mazo Fault: MZF). Previous works on fault structural analysis in La Palma indicated that the eruption zone was compatible with an extensional tectonic strain ellipsoid which activated normal-strike-slip directional faults at the confluence of TZF and MZF. These fractures were activated during the 2021 Tajogaite eruption, determining the NW-SE and WSW-ENE spatial distribution of vents. Both faults were mapped in real time during the volcanic eruption from fieldwork and remote sensing imagery (aerial drone images). We have collected more than 300 fracture data associated with the effusive vents and post-eruption seismic creep. Since the affected area was densely inhabited, most of these fractures affect houses and infrastructures. Some of the houses affected by the TZF were damaged 9 months after the eruption, although they were not damaged during the eruption. Surprisingly, these houses already had repairs made to the same fractures since 1980, giving information of previous fault creep movement. During the 2021 Tajogaite eruption, shallow seismicity was spatially related to both faults, suggesting a seismic behavior instead of the precedent creep movement. However, the lack of seismicity after the eruption indicates that the faults went back to creep aseismic behavior, similarly to 1980. The mapping and monitoring of these faults (TZF and MZF) is relevant bearing in mind that they have been active since 1980 and the post-eruptive phase of the 2021 volcanic eruption, which has to be included in the land use planning in areas affected by the volcanic eruption and creep movement. Furthermore, both faults could act as seismogenic sources triggering volcanic earthquakes with potential high macroseismic intensities and mass movements. The data presented here show the importance of having this type of study before the onset of the eruption, thus allowing a better interpretation of seismic data during volcanic unrest. Full article
(This article belongs to the Special Issue New Challenges in Seismic Hazard Assessment)
Show Figures

Figure 1

25 pages, 78215 KiB  
Article
Multiparametric Monitoring System of Mt. Melbourne Volcano (Victoria Land, Antarctica)
by Graziano Larocca, Danilo Contrafatto, Andrea Cannata and Gaetano Giudice
Sensors 2023, 23(17), 7594; https://doi.org/10.3390/s23177594 - 1 Sep 2023
Cited by 3 | Viewed by 1908
Abstract
Volcano monitoring is the key approach in mitigating the risks associated with volcanic phenomena. Although Antarctic volcanoes are characterized by remoteness, the 2010 Eyjafjallajökull eruption and the 2022 Hunga eruption have reminded us that even the farthest and/or least-known volcanoes can pose significant [...] Read more.
Volcano monitoring is the key approach in mitigating the risks associated with volcanic phenomena. Although Antarctic volcanoes are characterized by remoteness, the 2010 Eyjafjallajökull eruption and the 2022 Hunga eruption have reminded us that even the farthest and/or least-known volcanoes can pose significant hazards to large and distant communities. Hence, it is important to also develop monitoring systems in the Antarctic volcanoes, which involves installing and maintaining multiparametric instrument networks. These tasks are particularly challenging in polar regions as the instruments have to face the most extreme climate on the Earth, characterized by very low temperatures and strong winds. In this work, we describe the multiparametric monitoring system recently deployed on the Melbourne volcano (Victoria Land, Antarctica), consisting of seismic, geochemical and thermal sensors together with powering, transmission and acquisition systems. Particular strategies have been applied to make the monitoring stations efficient despite the extreme weather conditions. Fumarolic ice caves, located on the summit area of the Melbourne volcano, were chosen as installation sites as they are protected places where no storm can damage the instruments and temperatures are close to 0 °C all year round. In addition, the choice of instruments and their operating mode has also been driven by the necessity to reduce energy consumption. Indeed, one of the most complicated tasks in Antarctica is powering a remote instrument year-round. The technological solutions found to implement the monitoring system of the Melbourne volcano and described in this work can help create volcano monitoring infrastructures in other polar environments. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

12 pages, 3231 KiB  
Article
Air Pressure Perturbations in Karst Caves and Waters after the Hunga Tonga–Hunga Ha’apai Volcano Eruption on 15 January 2022
by Stanka Šebela, Uroš Novak and Blaž Kogovšek
Atmosphere 2023, 14(7), 1088; https://doi.org/10.3390/atmos14071088 - 29 Jun 2023
Cited by 1 | Viewed by 2060
Abstract
Microclimatic monitoring (air T, air pressure, CO2, ventilation, humidity, methane, and radon) in selected show caves in Slovenia has been a continuous process for more than 10 years, a process that aims to supervise the use of the caves for [...] Read more.
Microclimatic monitoring (air T, air pressure, CO2, ventilation, humidity, methane, and radon) in selected show caves in Slovenia has been a continuous process for more than 10 years, a process that aims to supervise the use of the caves for tourism in the sense of sustainable environmental management. After the cataclysmic eruption of the Hunga Tonga–Hunga Ha’apai (HTHH) volcano on 15 January 2022, global propagation of ionospheric disturbances was reported worldwide as barometric pressure changes and seismic noise events. Weather stations in Slovenia reported 2–4 hPa changes in atmospheric pressure 16 h after the eruption at 20:30 CET (19:30 UTC). Changes in atmospheric pressure were also detected at 15 air monitoring sites in 3 different caves (20–120 m below the surface), at 8 water monitoring sites in 4 different caves (1–10 m below the water surface), and on the surface (4 air and 2 water monitoring sites), where we identified a small but significant increase in atmospheric pressure of <1 hPa, with the highest signal at 21:00 CET (20:00 UTC). At some cave monitoring locations, air T fell during this global event induced by a far-field volcanic eruption. Cave CO2, methane, and radon measurements did not show significant changes related to the eruption. This is the first evidence of atmospheric pressure changes due to the HTHH volcano eruption in karst caves and waters. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

16 pages, 5195 KiB  
Article
Detection of Geothermal Anomalies in Hydrothermal Systems Using ASTER Data: The Caldeiras da Ribeira Grande Case Study (Azores, Portugal)
by Jéssica Uchôa, Fátima Viveiros, Rafaela Tiengo and Artur Gil
Sensors 2023, 23(4), 2258; https://doi.org/10.3390/s23042258 - 17 Feb 2023
Cited by 6 | Viewed by 3878
Abstract
Current-day volcanic activity in the Azores archipelago is characterized by seismic events and secondary manifestations of volcanism. Remote sensing techniques have been widely employed to monitor deformation in volcanic systems, map lava flows, or detect high-temperature gas emissions. However, using satellite imagery, it [...] Read more.
Current-day volcanic activity in the Azores archipelago is characterized by seismic events and secondary manifestations of volcanism. Remote sensing techniques have been widely employed to monitor deformation in volcanic systems, map lava flows, or detect high-temperature gas emissions. However, using satellite imagery, it is still challenging to identify low-magnitude thermal changes in a volcanic system. In 2010, after drilling a well for geothermal exploration on the northern flank of Fogo Volcano on São Miguel Island, a new degassing and thermal area emerged with maximum temperatures of 100 °C. In the present paper, using the ASTER sensor, we observed changes in the near-infrared signals (15 m spatial resolution) six months after the anomaly emerged. In contrast, the thermal signal (90 m spatial resolution) only changed its threshold value one and a half years after the anomaly was recognized. The results show that wavelength and spatial resolution can influence the response time in detecting changes in a system. This paper reiterates the importance of using thermal imaging and high spatial resolution images to monitor and map thermal anomalies in hydrothermal systems such as those found in the Azores. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Volcanic Applications)
Show Figures

Figure 1

Back to TopTop