Air Pressure Perturbations in Karst Caves and Waters after the Hunga Tonga–Hunga Ha’apai Volcano Eruption on 15 January 2022
Abstract
:1. Introduction
2. Study Locations and Methods
3. Results and Discussion
3.1. Air Pressure in Caves and on the Surface over a One-Year Period
3.2. Air Pressure in Cave Air and on the Surface after the HTHH Eruption on 15 January 2022
3.2.1. Postojna Cave
3.2.2. Škocjan Caves
3.2.3. Kostanjevica Cave
3.3. Pressure in Karst Waters after the HTHH Eruption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šebela, S.; Turk, J. Local characteristics of Postojna Cave climate, air temperature, and pressure monitoring. Theor. Appl. Climatol. 2011, 105, 371–386. [Google Scholar] [CrossRef]
- Šebela, S.; Turk, J. Sustainable use of the Predjama Cave (Slovenia) and possible scenarios related to anticipated major increase in tourist numbers. Tour. Manag. Perspect. 2014, 10, 37–45. [Google Scholar] [CrossRef]
- Šebela, S.; Turk, J. Comparison of historical and current temperatures in show caves (Slovenia). SN Appl. Sci. 2022, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Debevec, V.; Rakovec, J. Impact of Visits on the Microclimates of Caves, Experimental Evidence from Škocjan Caves. Acta Carsologica 2021, 50, 269–290. [Google Scholar] [CrossRef]
- Šebela, S. Introduction. In Natural and Anthropogenic Impacts on Cave Climates: Postojna and Predjama Show Caves of Slovenia; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–6. [Google Scholar]
- Mulec, J. Human impact on underground cultural and natural heritage sites, biological parameters of monitoring and remediation actions for insensitive surfaces: Case of Slovenian show caves. J. Nat. Conserv. 2014, 22, 132–141. [Google Scholar] [CrossRef]
- Mulec, J.; Oarga-Mulec, A.; Šturm, S.; Tomazin, R.; Matos, T. Spacio-Temporal Distribution and Tourist Impact on Airborne Bacteria in a Cave (Škocjan Caves, Slovenia). Diversity 2017, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Prelovšek, M.; Gabrovšek, F.; Kozel, P.; Mulec, J.; Pipan, T.; Šebela, S. The Škocjan Caves-UNESCO World Heritage Site. In Zeitschrift für Geomorphologie: Preserving World Subterranean Heritage: Natural, Cultural and Mixed Subterranean Heritage; Trofimova, E., Salomon, J.-N., Eds.; Borntraeger Science Publishers: Stuttgart, Germany, 2021; Volume 62, pp. 49–64. [Google Scholar]
- Tonga Volcano Plume Reached the Mesosphere. Available online: https://earthobservatory.nasa.gov/images/149474/tonga-volcano-plume-reached-the-mesosphere (accessed on 17 February 2022).
- Yuen, D.A.; Scruggs, M.A.; Spera, F.J.; Zheng, Y.; Hu, H.; McNutt, S.R.; Thompson, G.; Mandli, K.; Keller, B.R.; Wei, S.S.; et al. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthquake Res. Adv. 2022, 2, 100134. [Google Scholar] [CrossRef]
- Brenna, M.; Cronin, S.J.; Smith, I.E.M.; Pontesilli, A.; Tost, M.; Baker, S.; Tonga’onevai, S.; Kula, T.; Vaiomounga, R. Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga volcano, Tonga, SW Pacific. Lithos 2022, 412–413, 106614. [Google Scholar] [CrossRef]
- Wright, C.J.; Hindley, N.P.; Alexander, M.J.; Barlow, M.; Hoffmann, L.; Mitchell, C.N.; Prata, F.; Bouillon, M.; Carstens, J.; Clerbaux, C.; et al. Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption. Nature 2022, 609, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Matoza, R.S.; Fee, D.; Assink, J.D.; Iezzi, A.M.; Green, D.N.; Kim, K.; Toney, L.; Lecocq, T.; Krishnamoorthy, S.; Lalande, J.-M.; et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption, Tonga. Science 2022, 377, 95–100. [Google Scholar] [CrossRef]
- Udarni val Vulkana Prepotoval ves Svet, v 16 Urah Dosegel Slovenijo. Available online: https://www.24ur.com/novice/slovenija/udarni-val-vulkana-prepotoval-17000-kilometrov-in-dosegel-slovenijo.html (accessed on 17 February 2022).
- Data of Weather Stations of the Slovenian Environment Agency. Available online: https://meteo.arso.gov.si/met/sl/archive/ (accessed on 17 January 2023).
- Ob Izbruhu Podvodnega Vulkana Tudi Pri Nas »Mali Zračni Tsunami«. Available online: https://www.primorski.eu/trzaska/ob-izbruhu-podvodnega-vulkana-tudi-pri-nas-mali-zracni-tsunami-CH1018567 (accessed on 17 February 2022).
- Tonga Volcano Eruption Detected by ALICE DCS. Available online: https://alice-collaboration.web.cern.ch/node/35254 (accessed on 27 March 2022).
- Harrison, G. Pressure anomalies from the January 2022 Hunga Tonga-Hunga Ha’apai eruption. Weather 2022, 77, 87–90. [Google Scholar] [CrossRef]
- Lane, E.M. Atmospheric waves reinforced tsunami after Tongan eruption. Nature 2022, 609, 677–678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-R.; Vierinen, J.; Aa, E.; Goncharenko, L.P.; Erickson, P.J.; Rideout, W.; Coster, A.J.; Spicher, A. 2022 Tonga Volcanic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Front. Astron. Space Sci. 2022, 9, 871275. [Google Scholar] [CrossRef]
- Legras, B.; Duchamp, C.; Sellitto, P.; Podglajen, A.; Carboni, E.; Siddans, R.; Grooß, J.-U.; Khaykin, S.; Ploeger, F. The evolution and dynamics of the Hunga Tonga–Hunga Ha’apai sulfate aerosol plume in the stratosphere. Atmos. Chem. Phys. 2022, 22, 14957–14970. [Google Scholar] [CrossRef]
- Blatnik, M.; Culver, D.C.; Gabrovšek, F.; Knez, M.; Kogovšek, B.; Kogovšek, J.; Hong, L.; Mayaud, C.; Mihevc, A.; Mulec, J.; et al. Karstology in the Classical Karst; Springer: Cham, Switzerland, 2020; pp. 1–222. [Google Scholar]
- Gostinčar, P. Geomorphological Characteristics of Karst on Contact between Limestone and Dolomite in Slovenia. Ph.D. Thesis, University of Nova Gorica, Nova Gorica, Slovenia, 2016. [Google Scholar]
- Gomell, A.K.; Austin, D.C.; Ohms, M.J.; Pflitsch, A. Air pressure propagation through Wind Cave and Jewel Cave: How do pressure waves travel through barometric caves? Int. J. Speleol. 2021, 50, 263–273. [Google Scholar] [CrossRef]
- Godissart, J.; Ek, C. Air CO2 in Comblain-au-Pont Cave (Belgium). Relationships with soil CO2 and open air meteorology. In Proceedings of the 16th International Congress of Speleology, Brno, Czech Republic, 21–28 July 2013; Filippi, M., Bosák, P., Eds.; Czech Speleological Society: Praha, Czech Republic, 2013; pp. 400–405. [Google Scholar]
- Bussani, A. Atmospheric tide effects in a Trieste karst cave: Preliminary results. Atti Memorie Comm. Grotte “E. Boegan” 2007, 41, 17–24. [Google Scholar]
- Chen, C.-H.; Sun, Y.-Y.; Lin, L.-C.; Han, P.; Yu, H.-Z.; Zhang, X.M.; Tang, C.-C.; Chen, C.-R.; Yen, H.-Y.; Lin, C.-H.; et al. Large air pressure changes triggered by P-SV ground motion in a cave in northern Taiwan. Sci. Rep. 2021, 11, 12850. [Google Scholar] [CrossRef]
- Lang, M.; Faimon, J.; Godissart, J.; Ek, C. Carbon dioxide seasonality in dynamically ventilated caves: The role of advective fluxes. Theor. Appl. Climatol. 2017, 129, 1355–1372. [Google Scholar] [CrossRef]
- Lang, M.; Faimon, J.; Kejíková, S. The impact of door opening on CO2 levels: A case study from the Balcarka Cave (Moravian Karst, Czech Republic). Int. J. Speleol. 2017, 46, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Faimon, J.; Troppová, D.; Baldík, V.; Novotný, R. Air circulation and its impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). Int. J. Climatol. 2012, 32, 599–623. [Google Scholar] [CrossRef]
- Madonia, P.; Bonaccorso, A.; Bonforte, A.; Buonocunto, C.; Cannata, A.; Carleo, L.; Cesaroni, C.; Currenti, G.; De Gregorio, S.; Di Lieto, B.; et al. Propagation of Perturbations in the Lower and Upper Atmosphere over the Central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha’apai Volcano Explosion. Atmosphere 2023, 14, 65. [Google Scholar] [CrossRef]
- Perrier, F.; Bourges, F.; Girault, F.; Le Mouël, J.-L.; Genty, D.; Lartiges, B.; Losno, R.; Bonnet, S. Temperature variations in caves induced by atmospheric pressure variations–Part 2: Unveiling hidden thermal signals. Geosyst. Geoenviron. 2023, 2, 100146. [Google Scholar] [CrossRef]
Name | Altitude | Medium | Coordinates (WGS84) | Air Pressure (hPa) | ||
---|---|---|---|---|---|---|
(m a.s.l.) | Air–Water | Lat | Lon | at 20:00 CET | at 21:00 CET | |
Postojna Cave | ||||||
Postojna (ARSO) | 538 | surface air | 45.7722 | 14.1973 | 956.150 | 956.750 |
Postojna Cave (surface) | 559 | surface air | 45.8051 | 14.204 | 960.449 | 961.037 |
Črna Jama 2 | 517 | cave air | 45.7996 | 14.2068 | 968.779 | 969.441 |
Črna Jama 3 | 513 | cave air | 45.8 | 14.2071 | 966.207 | 966.795 |
Otoška Jama 1 | 529.8 | cave air | 45.7915 | 14.198 | 959.450 | 960.225 |
Velika Gora | 559 | cave air | 45.7943 | 14.2057 | 961.175 | 961.650 |
Lepe Jame 2 | 525 | cave air | 45.7955 | 14.2032 | 960.225 | 961.175 |
Lepe Jame 3 | 523 | cave air | 45.7954 | 14.2035 | 962.200 | 962.950 |
Koncertna Dvorana | 526.8 | cave air | 45.7923 | 14.2049 | 962.385 | 962.899 |
Sepolcro | 525.5 | cave air | 45.7891 | 14.2077 | 961.993 | 962.826 |
Biospeleološka Postaja 1 | 529 | cave air | 45.7826 | 14.2049 | 958.700 | 959.150 |
Biospeleološka Postaja 2 | 530 | cave air | 45.7825 | 14.2047 | 958.475 | 959.100 |
Škocjan Caves | ||||||
Škocjan (ARSO) | 422 | surface air | 45.6638 | 13.9931 | 975.000 | 976.000 |
Tunel | 349.8 | cave air | 45.6619 | 13.986 | 980.050 | 980.500 |
Šumeča Jama | 270 | cave air | 45.6649 | 13.9868 | 996.125 | 996.300 |
Tominčeva Jama | 320.9 | cave air | 45.667 | 13.9899 | 983.825 | 984.425 |
Kostanjevica Cave | ||||||
Cerklje na Dolenjskem (ARSO) | 154 | surface air | 45.8919 | 15.5319 | 1009.000 | 1009.000 |
Kostanjeviška Jama 1 | 188 | cave air | 45.8377 | 15.4347 | 1003.850 | 1004.025 |
Kostanjeviška Jama 2 | 172 | cave air | 45.8361 | 15.4372 | 1003.825 | 1003.975 |
Hydrological Sites * | ||||||
Planina Cave: Rak | 473 | cave water | 45.8158 | 14.2468 | 1310.490 | 1310.490 |
Planina Cave: Pivka | 458 | cave water | 45.819 | 14.2427 | 1097.870 | 1098.220 |
Planina Cave: Unica | 453 | cave water | 45.8203 | 14.2458 | 1099.220 | 1099.600 |
Tkalca: Rak | 479 | cave water | 45.794 | 14.2836 | 1251.900 | 1252.250 |
Rešeto | 537 | surface water | 45.7708 | 14.3564 | 2055.490 | 2055.810 |
Mali Obrh | 510 | cave water | 45.7099 | 14.4432 | 4081.770 | 4082.410 |
Dimnice Cave | 433 | cave water | 45.5631 | 14.0384 | 1006.000 | 1006.320 |
Brezovica: Ločica | 518 | surface water | 45.6013 | 14.0035 | 973.230 | 973.640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šebela, S.; Novak, U.; Kogovšek, B. Air Pressure Perturbations in Karst Caves and Waters after the Hunga Tonga–Hunga Ha’apai Volcano Eruption on 15 January 2022. Atmosphere 2023, 14, 1088. https://doi.org/10.3390/atmos14071088
Šebela S, Novak U, Kogovšek B. Air Pressure Perturbations in Karst Caves and Waters after the Hunga Tonga–Hunga Ha’apai Volcano Eruption on 15 January 2022. Atmosphere. 2023; 14(7):1088. https://doi.org/10.3390/atmos14071088
Chicago/Turabian StyleŠebela, Stanka, Uroš Novak, and Blaž Kogovšek. 2023. "Air Pressure Perturbations in Karst Caves and Waters after the Hunga Tonga–Hunga Ha’apai Volcano Eruption on 15 January 2022" Atmosphere 14, no. 7: 1088. https://doi.org/10.3390/atmos14071088
APA StyleŠebela, S., Novak, U., & Kogovšek, B. (2023). Air Pressure Perturbations in Karst Caves and Waters after the Hunga Tonga–Hunga Ha’apai Volcano Eruption on 15 January 2022. Atmosphere, 14(7), 1088. https://doi.org/10.3390/atmos14071088