Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (100)

Search Parameters:
Keywords = sediment plume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6356 KiB  
Article
Tectonic Rift-Related Manganese Mineralization System and Its Geophysical Signature in the Nanpanjiang Basin
by Daman Cui, Zhifang Zhao, Wenlong Liu, Haiying Yang, Yun Liu, Jianliang Liu and Baowen Shi
Remote Sens. 2025, 17(15), 2702; https://doi.org/10.3390/rs17152702 - 4 Aug 2025
Viewed by 226
Abstract
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several [...] Read more.
The southeastern Yunnan region in the southwestern Nanpanjiang Basin is one of the most important manganese enrichment zones in China. Manganese mineralization is mainly confined to marine mud–sand–carbonate interbeds of the Middle Triassic Ladinian Falang Formation (T2f), which contains several medium to large deposits such as Dounan, Baixian, and Yanzijiao. However, the geological processes that control manganese mineralization in this region remain insufficiently understood. Understanding the tectonic evolution of the basin is therefore essential to unravel the mechanisms of Middle Triassic metallogenesis. This study investigates how rift-related tectonic activity influences manganese ore formation. This study integrates global gravity and magnetic field models (WGM2012, EMAG2v3), audio-frequency magnetotelluric (AMT) profiles, and regional geological data to investigate ore-controlling structures. A distinct gravity low–magnetic high belt is delineated along the basin axis, indicating lithospheric thinning and enhanced mantle-derived heat flow. Structural interpretation reveals a rift system with a checkerboard pattern formed by intersecting NE-trending major faults and NW-trending secondary faults. Four hydrothermal plume centers are identified at these fault intersections. AMT profiles show that manganese ore bodies correspond to stable low-resistivity zones, suggesting fluid-rich, hydrothermally altered horizons. These findings demonstrate a strong spatial coupling between hydrothermal activity and mineralization. This study provides the first identification of the internal rift architecture within the Nanpanjiang Basin. The basin-scale rift–graben system exerts first-order control on sedimentation and manganese metallogenesis, supporting a trinity model of tectonic control, hydrothermal fluid transport, and sedimentary enrichment. These insights not only improve our understanding of rift-related manganese formation in southeastern Yunnan but also offer a methodological framework applicable to similar rift basins worldwide. Full article
Show Figures

Figure 1

21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 285
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

32 pages, 5632 KiB  
Article
One-Dimensional Plume Dispersion Modeling in Marine Conditions (SEDPLUME1D-Model)
by L. C. van Rijn
J. Mar. Sci. Eng. 2025, 13(6), 1186; https://doi.org/10.3390/jmse13061186 - 18 Jun 2025
Viewed by 455
Abstract
Dredging of fine sediments and dumping of fines at disposal sites produce passive plumes behind the dredging equipment. Each type of dredging method has its own plume characteristics. All types of dredging operations create some form of turbidity (spillage of dredged materials) in [...] Read more.
Dredging of fine sediments and dumping of fines at disposal sites produce passive plumes behind the dredging equipment. Each type of dredging method has its own plume characteristics. All types of dredging operations create some form of turbidity (spillage of dredged materials) in the water column, depending on (i) the applied method (mechanical grab/backhoe, hydraulic suction dredging with/without overflow), (ii) the nature of the sediment bed, and (iii) the hydrodynamic conditions. A simple parameter to represent the spillage of dredged materials is the spill percentage (Rspill) of the initial load. In the case of cutter dredging and hopper dredging without overflow, sediment spillage is mostly low, with values in the range of 1% to 3%, The spill percentage is higher, in the range of 3% to 30%, for hopper dredging of mud with intensive overflow. Spilling of dredged materials also occurs at disposal sites. The spill percentage is generally low, with values in the range of 1% to 3%, if the load is dumped through bottom doors in deep water, creating a dynamic plume which descends rapidly to the bottom with cloud velocities of 1 m/s. The most accurate approach to study passive plume behavior is the application of a 3D model, which, however, is a major, time-consuming effort. A practical 1D plume dispersion model can help to identify the best parameter settings involved and to conduct fast scan studies. The proposed 1D model represents equations for dynamic plume behavior, as well as passive plume behavior including advection, diffusion and settling processes. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

19 pages, 11500 KiB  
Article
Continental Rift Driven by Asthenosphere Flow and Lithosphere Weakening by Flood Basalts: South America and Africa Cenozoic Rifting
by Ingo L. Stotz, Berta Vilacís, Jorge N. Hayek and Hans-Peter Bunge
Minerals 2025, 15(6), 644; https://doi.org/10.3390/min15060644 - 13 Jun 2025
Viewed by 494
Abstract
Continental rifting is the process by which land masses separate and create new ocean basins. The emplacement of large igneous provinces (LIPs) is thought to have played a key role in (super) continental rifting; however, this relationship remains controversial due to the lack [...] Read more.
Continental rifting is the process by which land masses separate and create new ocean basins. The emplacement of large igneous provinces (LIPs) is thought to have played a key role in (super) continental rifting; however, this relationship remains controversial due to the lack of a clearly established mechanism linking LIP emplacement to continental fragmentation. Here, we show that plume flow links LIP magmatism to continental rifting quantitatively. Our findings are further supported by the sedimentary record, as well as by the mineralogy and petrology of the rocks. This study analyzes the early Cretaceous separation of West Gondwana into South America and Africa. Prior to rifting, Jurassic hiatuses in the stratigraphic record of continental sediments from both continents indicate plume ascent and the resulting dynamic topography. Cretaceous mafic dyke swarms and sill intrusions are products of major magmatic events that coincided with continental rifting, leading to the formation of large igneous provinces in South America and Africa, including the Central Atlantic Magmatic Province, Equatorial Magmatic Province, Paraná–Etendeka, and Karoo. It has been suggested that dyke intrusions may weaken the lithosphere by reducing its mechanical strength, creating structural weaknesses that localize extensional deformation and facilitate rift initiation. The sedimentary analysis and petrological evidence from flood basalt magmas indicate that plumes may have migrated from the depths toward the surface during the Jurassic and erupted during the Cretaceous. It is thought that the resulting fast plume flow, induced by one or more mantle plumes, generated a dynamic force that, in combination with lithospheric weakening from dyke intrusion, eventually rifted the lithosphere of West Gondwana. Full article
(This article belongs to the Special Issue Large Igneous Provinces: Research Frontiers)
Show Figures

Figure 1

16 pages, 4452 KiB  
Article
Augmenting Satellite Remote Sensing with AERONET-OC for Plume Monitoring in the Chesapeake Bay
by Samantha Lynn Smith, Stephanie Schollaert Uz, J. Blake Clark and Dirk Aurin
Remote Sens. 2025, 17(10), 1767; https://doi.org/10.3390/rs17101767 - 19 May 2025
Viewed by 540
Abstract
Satellite observations provide broad spatial coverage of complex coastal environments but may lack temporal resolution to capture rapid changes in these dynamic systems. This study explores the potential of the recently installed NASA Aerosol Robotic Network Ocean Color (AERONET-OC) in the Chesapeake Bay, [...] Read more.
Satellite observations provide broad spatial coverage of complex coastal environments but may lack temporal resolution to capture rapid changes in these dynamic systems. This study explores the potential of the recently installed NASA Aerosol Robotic Network Ocean Color (AERONET-OC) in the Chesapeake Bay, USA, both for comparison with satellite remote sensing and to complement the satellite observations by filling temporal gaps at a fixed site. Using AERONET-OC’s effectiveness as a validation tool through comparisons with multi- and hyperspectral satellites, we find agreement between AERONET-OC and satellite remote sensing reflectance measurements in the Chesapeake Bay. We use AERONET-OC to estimate total suspended matter transport through the upper bay, revealing a 3-day lag of sediment plume transport from riverine discharge to the AERONET-OC site. During the 2023 Canadian wildfire smoke episode, AERONET-OC aerosol optical depth measurements in the Chesapeake Bay agree with satellite products while capturing diurnal variations that are not observable through daily satellite passes. This study demonstrates the potential of continuous in situ monitoring by AERONET-OC to complement satellite observations with higher frequency, important for capturing extreme events that may be missed by daily satellite overpass or are less frequent when cloudy. Full article
Show Figures

Figure 1

33 pages, 11005 KiB  
Article
Temporal and Spatial Distribution of 2022–2023 River Murray Major Flood Sediment Plume
by Evan Corbett, Sami W. Rifai, Graziela Miot da Silva and Patrick A. Hesp
Remote Sens. 2025, 17(10), 1711; https://doi.org/10.3390/rs17101711 - 14 May 2025
Viewed by 1132
Abstract
This study examined a sediment plume from Australia’s largest river, The River Murray, which was produced during a major flood event in 2022–2023. This flood resulted from successive La Niña events, causing high rainfall across the Murray–Darling Basin and ultimately leading to a [...] Read more.
This study examined a sediment plume from Australia’s largest river, The River Murray, which was produced during a major flood event in 2022–2023. This flood resulted from successive La Niña events, causing high rainfall across the Murray–Darling Basin and ultimately leading to a significant riverine flow through South Australia. The flood was characterised by a significant increase in riverine discharge rates, reaching a peak of 1305 m³/s through the Lower Lakes barrage system from November 2022 to February 2023. The water quality anomaly within the coastal region (<~150 km offshore) was effectively quantified and mapped utilising the diffuse attenuation coefficient at 490 nm (Kd490) from products derived from MODIS Aqua Ocean Color satellite imagery. The sediment plume expanded and intensified alongside the increased riverine discharge rates, which reached a maximum spatial extent of 13,681 km2. The plume typically pooled near the river’s mouth within the northern corner of Long Bay, before migrating persistently westward around the Fleurieu Peninsula through Backstairs Passage into Gulf St Vincent, occasionally exhibiting brief eastward migration periods. The plume gradually subsided by late March 2023, several weeks after riverine discharge rates returned to pre-flood levels, indicating a lag in attenuation. The assessment of the relationship and accuracy between the Kd490 product and the surface-most in situ turbidity, measured using conductivity, temperature, and depth (CTD) casts, revealed a robust positive linear correlation (R2 = 0.85) during a period of high riverine discharge, despite temporal and spatial discrepancies between the two datasets. The riverine discharge emerged as an important factor controlling the spatial extent and intensities of the surface sediment plume, while surface winds also exerted an influence, particularly during higher wind velocity events, as part of a broader interplay with other drivers. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

13 pages, 6743 KiB  
Article
Weak Underwater Signals’ Detection by the Unwrapped Instantaneous Phase
by Aldo Vesnaver, Luca Baradello and Eleonora Denich
J. Mar. Sci. Eng. 2025, 13(5), 907; https://doi.org/10.3390/jmse13050907 - 3 May 2025
Viewed by 347
Abstract
In marine seismic surveys, weak signals can be overlaid by stronger signals or even random noise. Detecting these signals can be challenging, especially when they are close to each other or partially overlapping. Several normalization methods have already been proposed, but they often [...] Read more.
In marine seismic surveys, weak signals can be overlaid by stronger signals or even random noise. Detecting these signals can be challenging, especially when they are close to each other or partially overlapping. Several normalization methods have already been proposed, but they often lead to distortion. In this paper, we show that the unwrapped instantaneous phase of the associated analytical signal is an effective detection tool and validate it using synthetic and real data examples. This approach does not require user-defined parameters and therefore does not introduce personal bias in the results. We show that weak signals from submarine fluid plumes can be successfully detected by seismic surveys. These plumes can reveal anomalies in shallow sediments such as near-surface gas pockets and soft formations, which can severely affect offshore structures such as platforms and wind farms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 31927 KiB  
Article
Fine Sediment Dispersion in the Addu-City Dredging and Reclamation Project
by Efstratios N. Fonias, Erik van Eekelen and Barend van den Bosch
J. Mar. Sci. Eng. 2025, 13(3), 489; https://doi.org/10.3390/jmse13030489 - 1 Mar 2025
Viewed by 764
Abstract
The matter of the quantification of the fraction of the dredged sediment that is released by a trailing suction hopper dredger into the surrounding waters, also known as the passive phase of the plume during dredging operations through the overflow, is a rather [...] Read more.
The matter of the quantification of the fraction of the dredged sediment that is released by a trailing suction hopper dredger into the surrounding waters, also known as the passive phase of the plume during dredging operations through the overflow, is a rather complex process. A number of processes, including sediment settling, propeller wash, and entrapment of air during sediment release, are only a few of the reasons why plumes are formed and sediments because of the overflow are released back into the environment. The present work attempts to examine the empirical considerations used for the estimation of the amount of sediments expected to be released through the overflow or via a reclamation by looking into the case of the Addu-City dredging and reclamation project. Moreover, the effectiveness of silt curtains as a turbidity containment measure is discussed. Based on the field data collected, it can be concluded that under normal hydrodynamic conditions, from the sediment source calculated based on the existing literature, only 20% of the fine sediments is available for dispersion. Moreover, the accurate and consistent follow-up of the work schedule execution and consistent monitoring as a part of environmental management can ensure compliance with environmental regulations further away from the project area. Full article
(This article belongs to the Special Issue Sediment Dynamics in Artificial Nourishments—2nd Edition)
Show Figures

Figure 1

22 pages, 8644 KiB  
Article
Enhanced Transport Induced by Tropical Cyclone and River Discharge in Hangzhou Bay
by Hongquan Zhou and Xiaohui Liu
Water 2025, 17(2), 164; https://doi.org/10.3390/w17020164 - 9 Jan 2025
Viewed by 783
Abstract
Sediment transport in Hangzhou Bay and the adjacent Changjiang Estuary is extremely complex due to the bathymetry and hydrodynamic conditions in this region. Using the particle tracing method based on the ROMS model, three-dimensional (3D) passive particle transport in Hangzhou Bay and the [...] Read more.
Sediment transport in Hangzhou Bay and the adjacent Changjiang Estuary is extremely complex due to the bathymetry and hydrodynamic conditions in this region. Using the particle tracing method based on the ROMS model, three-dimensional (3D) passive particle transport in Hangzhou Bay and the Changjiang Estuary was simulated. Ocean temperature, salinity, and circulation patterns before and during Severe Tropical Storm Ampil (2018) were reproduced by the model. The circulation in Hangzhou Bay is significantly influenced by the passing of the storm with an enhanced southeastward surface current. The along-front current offshore of the Changjiang Estuary, accompanied by the Changjiang River plume, is weakened by strong mixing under the storm. The transport of passive particles before and during the storm was also simulated based on the current fields of the model. The results show that the passing of the tropical storm enhances mass exchange in Hangzhou Bay by the storm-induced southeast circulation, while particle transport near the Changjiang Estuary decreases as the estuarine plume is weakened by the intense mixing of strong winds of the storm. Full article
(This article belongs to the Special Issue Hydrodynamics and Sediment Transport in Ocean Engineering)
Show Figures

Figure 1

15 pages, 1626 KiB  
Article
Dynamic Boundary Estimation of Suspended Sediment Plume Benefit by the Autonomous Underwater Vehicle Sensing
by Yanxin Zhang and Shaoyuan Li
Sensors 2024, 24(24), 8182; https://doi.org/10.3390/s24248182 - 21 Dec 2024
Cited by 1 | Viewed by 1000
Abstract
The suspended sediment plume generated in the deep-sea mining process significantly impacts the marine environment and seabed ecosystem. Accurate boundary estimation can effectively monitor the scope of environmental impact, guiding mining operations to prevent ecological damage. In this paper, we propose a dynamic [...] Read more.
The suspended sediment plume generated in the deep-sea mining process significantly impacts the marine environment and seabed ecosystem. Accurate boundary estimation can effectively monitor the scope of environmental impact, guiding mining operations to prevent ecological damage. In this paper, we propose a dynamic boundary estimation approach for the suspended sediment plume, leveraging the sensing capability of the Autonomous Underwater Vehicles (AUVs). Based on the plume model and the point-by-point sensor measurements, a Luenberger-type observer is established for designing the AUV control algorithm. To address the challenge of unknown and time-varying environmental parameters, the estimation errors are reduced by using the projection modification unit. Rigorous convergence and stability analyses of the proposed control algorithm are provided by the Lyapunov method. Numerical simulations demonstrate that the improved algorithm enhances the estimation accuracy of unknown parameters and enables the AUV to patrol along the dynamic boundary in a shorter time, thereby verifying the effectiveness of the boundary estimation algorithm based on AUV sensing. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

27 pages, 29442 KiB  
Article
Sinking Particle Fluxes at the Jan Mayen Hydrothermal Vent Field Area from Short-Term Sediment Traps
by Alexey A. Klyuvitkin, Marina D. Kravchishina, Dina P. Starodymova, Anton V. Bulokhov and Alla Yu. Lein
J. Mar. Sci. Eng. 2024, 12(12), 2339; https://doi.org/10.3390/jmse12122339 - 20 Dec 2024
Viewed by 958
Abstract
The mixing of hydrothermal vent fluids with deep ocean water and near-vent pelagic matter results in particle populations with a complex composition consisting of hydrothermally derived, rock-forming, and biogenic particles. This study is the first investigation of deep sediment trap material collected at [...] Read more.
The mixing of hydrothermal vent fluids with deep ocean water and near-vent pelagic matter results in particle populations with a complex composition consisting of hydrothermally derived, rock-forming, and biogenic particles. This study is the first investigation of deep sediment trap material collected at the Jan Mayen hydrothermal vent field area at 71° N and 6° W of the southernmost Mohns Ridge in the Norwegian–Greenland Sea. This area is characterized by high magmatic activity, axial volcanic ridges, and mafic-hosted volcanogenic massive sulfide deposits. Data on sinking particle fluxes from two hydrothermal settings, the Troll Wall and Soria Moria vent fields, located about 4 km apart, are discussed in the article. In particular, the study emphasize the differences between two hydrothermal settings from each other that demonstrate the geodiversity of hydrothermal processes within the relatively shallow Jan Mayen hydrothermal vent field area affected by the Iceland and Jan Mayen hotspots. The fluxes of sinking hydrothermally derived particles (barite, gypsum, non-crystalline Fe-Si oxyhydroxides, and Fe, Zn, and Cu sulfides) obtained at the Jan Mayen hydrothermal vents made it possible to elucidate the characteristic features of their buoyancy plumes and compare them with similar data reported for other submarine hydrothermal systems. In terms of the composition of the deep-sea hydrothermal particles from buoyant plumes, the studied vent fields are most similar to the Menez Gwen and Lucky Strike vent fields affected by the Azores hotspot. The supply of hydrothermally derived matter is accompanied by normal pelagic/hemipelagic sedimentation, which is dominated by biogenic particles, especially in the upper water layers. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

14 pages, 8958 KiB  
Article
Improved Detection of Great Lakes Water Quality Anomalies Using Remote Sensing
by Karl R. Bosse, Robert A. Shuchman, Michael J. Sayers, John Lekki and Roger Tokars
Water 2024, 16(24), 3602; https://doi.org/10.3390/w16243602 - 14 Dec 2024
Viewed by 1115
Abstract
Due to their immense economic and recreational value, the monitoring of Great Lakes water quality is of utmost importance to the region. Historically, this has taken place through a combination of ship-based sampling, buoy measurements, and physical models. However, these approaches have spatial [...] Read more.
Due to their immense economic and recreational value, the monitoring of Great Lakes water quality is of utmost importance to the region. Historically, this has taken place through a combination of ship-based sampling, buoy measurements, and physical models. However, these approaches have spatial and temporal deficiencies which can be improved upon through satellite remote sensing. This study details a new approach for using long time series of satellite remote sensing data to identify historical and near real-time anomalies across a range of data products. Anomalies are traditionally detected as deviations from historical climatologies, typically assuming that there are no long-term trends in the historical data. However, if present, such trends could result in misclassifying ordinary events as anomalous or missing actual anomalies. The new anomaly detection method explicitly accounts for long-term trends and seasonal variability by first decomposing a 10-plus year data record of satellite remote sensing-derived Great Lakes water quality parameters into seasonal, trend, and remainder components. Anomalies were identified as differences between the observed water quality parameter from the model-derived expected value. Normalizing the anomalies to the mean and standard deviation of the full model remainders, the relative anomaly product can be used to compare deviations across parameters and regions. This approach can also be used to forecast the model into the future, allowing for the identification of anomalies in near real time. Multiple case studies are detailed, including examples of a harmful algal bloom in Lake Erie, a sediment plume in Saginaw Bay (Lake Huron), and a phytoplankton bloom in Lake Superior. This new approach would be best suited for use in a water quality dashboard, allowing users (e.g., water quality managers, the research community, and the public) to observe historical and near real-time anomalies. Full article
Show Figures

Figure 1

29 pages, 14647 KiB  
Article
Turbidity Currents Carrying Shallow Heat Invading Stable Deep-Water Areas May Be an Unrecognized Source of “Pollution” in the Ocean
by Hao Tian, Guohui Xu, Jingtao Zhao, Yupeng Ren and Hanru Wu
Water 2024, 16(23), 3521; https://doi.org/10.3390/w16233521 - 6 Dec 2024
Viewed by 1640
Abstract
When turbidity currents carrying shallow heat enter stable stratified lakes or oceans, they can trigger changes in temperature, dissolved chemicals, oxygen concentrations, and nutrient mixing through the stable stratified environmental water. Although it is common for warm turbidity currents to invade stable regions, [...] Read more.
When turbidity currents carrying shallow heat enter stable stratified lakes or oceans, they can trigger changes in temperature, dissolved chemicals, oxygen concentrations, and nutrient mixing through the stable stratified environmental water. Although it is common for warm turbidity currents to invade stable regions, the impact of turbidity current characteristics on environmental entrainment and the impact of temperature changes caused by the mixing of warm turbidity currents with the environment remains poorly understood. In this study, systematic experiments on warm turbidity currents were conducted to understand how sediment-driven turbidity currents lead to mixing in stable stratification using existing environmental entrainment numbers. The experimental results show that the dimensionless numbers Rs (the ratio of the change in environmental water concentration caused by salinity to sediment load), RT (the ratio of the change in environmental water concentration caused by temperature difference to sediment load), and R0 (non-dimensional density ratio) control the flow process of warm turbid plumes, and corresponding functional relationships are summarized. The frequent occurrence of warm turbidity currents events caused by increasingly prominent environmental problems cannot be ignored, as it directly affects the deep-water environment of lakes or coastal oceans, which may be an important contribution to heat transfer that has not been evaluated in previous ocean events. Full article
(This article belongs to the Special Issue Advanced Research on Marine Geology and Sedimentology)
Show Figures

Figure 1

14 pages, 11579 KiB  
Article
Role of Organic Matter Present in the Water Column on Turbidity Flows
by Shaheen Akhtar Wahab, Waqas Ali, Claire Chassagne and Rudy Helmons
J. Mar. Sci. Eng. 2024, 12(10), 1884; https://doi.org/10.3390/jmse12101884 - 21 Oct 2024
Cited by 1 | Viewed by 1347
Abstract
Turbidity flows are known to be affected by the density difference between sediment plumes and the surrounding water. However, besides density, other factors could lead to changes in flow propagation. Such a factor is the presence of suspended organic matter. Recently, it was [...] Read more.
Turbidity flows are known to be affected by the density difference between sediment plumes and the surrounding water. However, besides density, other factors could lead to changes in flow propagation. Such a factor is the presence of suspended organic matter. Recently, it was found that flocculation does occur within plumes upon release of a sediment/organic matter mixture in a lock exchange flume. In the present study, mineral sediment (illite clay) was released into the outflow compartment containing water and synthetic organic matter (polyacrylamide flocculant). Even though the density of water was barely affected by the presence of flocculant, flow head velocity was observed to be larger in the presence of flocculant than without. Samples taken at different positions in the flume indicated that flocs were created during the small current propagation time (about 30–60 s) and that their sizes were larger with higher flocculant dosage. The size of flocs depended on their positions in the flow: flocs sampled in the body part of the flow were larger than the ones sampled at the bottom. All these properties are discussed as a function of sediment–flocculant interactions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

22 pages, 14841 KiB  
Article
Hydrodynamics and Sediment Transport Under Solitary Waves in the Swash Zone
by Shuo Li, Wenxin Li, Huabin Shi and Xiafei Guan
J. Mar. Sci. Eng. 2024, 12(9), 1686; https://doi.org/10.3390/jmse12091686 - 23 Sep 2024
Cited by 4 | Viewed by 1501
Abstract
Swash–swash interaction is a common natural phenomenon in the nearshore region, characterized by complex fluid motion. The characteristics of swash–swash interaction are crucial to sediment transport, subsequently affecting the beach morphology. This study investigates the hydrodynamics and sediment transport in swash–swash interaction under [...] Read more.
Swash–swash interaction is a common natural phenomenon in the nearshore region, characterized by complex fluid motion. The characteristics of swash–swash interaction are crucial to sediment transport, subsequently affecting the beach morphology. This study investigates the hydrodynamics and sediment transport in swash–swash interaction under two successive solitary waves using a two-phase Smoothed Particle Hydrodynamics (SPH) model. The effects of the time interval between the two waves are examined. It is shown that the time interval has a minor effect on the breaking and swash–swash interacting patterns as well as the final beach morphology but influences the run-up of the second wave and the instantaneous sediment flux. Under wave breaking in the swash–swash interaction, there is significant sediment suspension due to strong vortices, and the suspended sediment forms a plume upward from the bed. The sediment plumes gradually settle down as the vortices decay. These insights enhance the understanding of sediment transport and beach morphology under complex swash–swash interaction. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Back to TopTop